JPH0249679B2 - HOSHASEIHAIEKINOKOKASHORISOCHI - Google Patents

HOSHASEIHAIEKINOKOKASHORISOCHI

Info

Publication number
JPH0249679B2
JPH0249679B2 JP18770883A JP18770883A JPH0249679B2 JP H0249679 B2 JPH0249679 B2 JP H0249679B2 JP 18770883 A JP18770883 A JP 18770883A JP 18770883 A JP18770883 A JP 18770883A JP H0249679 B2 JPH0249679 B2 JP H0249679B2
Authority
JP
Japan
Prior art keywords
cartridge
waste liquid
furnace
radioactive waste
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP18770883A
Other languages
Japanese (ja)
Other versions
JPS6080796A (en
Inventor
Noriaki Sasaki
Yutaka Nagaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Doryokuro Kakunenryo Kaihatsu Jigyodan
Original Assignee
Doryokuro Kakunenryo Kaihatsu Jigyodan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Doryokuro Kakunenryo Kaihatsu Jigyodan filed Critical Doryokuro Kakunenryo Kaihatsu Jigyodan
Priority to JP18770883A priority Critical patent/JPH0249679B2/en
Publication of JPS6080796A publication Critical patent/JPS6080796A/en
Publication of JPH0249679B2 publication Critical patent/JPH0249679B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Treatment Of Sludge (AREA)
  • Gasification And Melting Of Waste (AREA)

Description

【発明の詳細な説明】 本発明は、低・中・高レベルの液体状又はスラ
リー状の放射性廃棄物を、吸水性の良好なカート
リツジにしみ込ませ、それを加熱処理することに
よつて放射性物質を固定化する装置の改良に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention allows liquid or slurry radioactive waste of low, medium, and high levels to be impregnated into a cartridge with good water absorption, and then heated to remove radioactive waste. This invention relates to improvements in devices for immobilizing .

高レベル放射性廃液(スラリー状液体も含む)
の固化処理法としては、現在、主にガラス固化す
る方法が研究開発中である。そのプロセスにおい
ては、廃液或いはその濃縮液は、ガラス原料と共
に直接溶融炉内へ供給されて溶融されるか、或い
は前もつて乾燥仮焼され、粉末状にされたのち、
ガラス原料と共に溶融炉内へ供給されることが多
い。前者の方法においては、液体が溶融したガラ
ス面(1000〜1100℃)と接触して激しく沸騰する
ので、ミストや微粉が多量に発生する。これらは
水蒸気や空気と共に溶融炉から排出され、そのと
きの多量の微粉が排ガス処理装置内に沈積して閉
塞を生ぜしめたり、放射能が高くなるという問題
が生じている。更に溶融炉へ供給される水の蒸発
に多量の熱が奪われ、溶融能力が低下するという
問題も生じている。他方後者の方法においては、
ロータリーキルン法、流動床法、スプレー法等の
乾燥仮焼方法が用いられるが、何れも多量の微粉
を生じ、前記と同様の問題が生じている他、装置
も複雑となるという欠点があつた。
High-level radioactive waste liquid (including slurry liquid)
As a solidification treatment method, the main method currently under research and development is vitrification. In this process, the waste liquid or its concentrate is either directly fed into the melting furnace together with the glass raw material and melted, or it is previously dried and calcined and made into a powder.
It is often supplied into the melting furnace together with the glass raw material. In the former method, the liquid comes into contact with the molten glass surface (1000 to 1100°C) and boils violently, resulting in a large amount of mist and fine powder. These are discharged from the melting furnace along with water vapor and air, causing problems such as a large amount of fine powder depositing in the exhaust gas treatment equipment, causing blockages and increasing radioactivity. Furthermore, a large amount of heat is taken away by the evaporation of the water supplied to the melting furnace, resulting in a problem that the melting ability is reduced. On the other hand, in the latter method,
Dry calcining methods such as a rotary kiln method, a fluidized bed method, and a spray method are used, but all of them produce a large amount of fine powder, causing the same problems as described above, and have the disadvantage that the equipment is complicated.

また、原子力発電所等から発生する中・低レベ
ル放射性廃液(スラリー状液体も含む)の固化処
理方法としては、現在、アスフアルト、セメント
等で固定化する方法が採用されているが、更に性
能の優れた例えばガラスなど高温で製造される固
化体の利用も考えられる。しかし、これも前記高
レベル放射性廃液の固化処理の場合と同様の問題
が生じるので、微粉の発生の少ない方法の開発が
課題となる。
In addition, as a method of solidifying medium- to low-level radioactive waste liquid (including slurry liquid) generated from nuclear power plants, etc., methods of immobilizing it with asphalt, cement, etc. are currently used, but even more It is also conceivable to use solidified materials produced at high temperatures, such as glass. However, this also causes the same problems as in the solidification treatment of high-level radioactive waste liquid, so the challenge is to develop a method that generates less fine powder.

ところで、ガラス溶融による固化処理の一つの
方法として、ガラス繊維等からなる吸水性のカー
トリツジを利用する方法が提案されている(特開
昭53−17572号参照)。ここで開示されている技術
は、カートリツジに放射性廃液を吸収させ、乾燥
炉においてそれにマイクロ波を印加してカートリ
ツジ上で乾燥生成物を生成させ、次に乾燥生成物
を有するカートリツジを溶融炉へ送つて溶融させ
て放射性廃棄物を組み入れた溶融ガラス物質を生
成させるものである。つまり放射性廃液を固化処
理するためには、乾燥炉のほかに溶融炉を別に設
けねばならず、装置が複雑化し、高価なものとな
るという欠点があつた。その上、溶融炉の前段に
設けられるマイクロ波乾燥炉内において、カート
リツジの供給方向とは逆の方向に排ガスを排出し
ており、そのため乾燥中および乾燥生成物が付着
したカートリツジを溶融する際に発生する粉塵等
によつてカートリツジの目詰りが生じ易く、排ガ
スのスムーズな排出ができなくなるという欠点も
あつた。
By the way, as one method of solidification treatment by glass melting, a method using a water-absorbing cartridge made of glass fiber or the like has been proposed (see JP-A-53-17572). The technology disclosed herein involves absorbing radioactive waste into a cartridge, applying microwaves to it in a drying oven to produce a dry product on the cartridge, and then sending the cartridge with the dry product to a melting furnace. and melt it to produce a molten glass material incorporating radioactive waste. In other words, in order to solidify radioactive waste liquid, a melting furnace must be provided in addition to the drying furnace, which has the drawback of making the equipment complex and expensive. Furthermore, in the microwave drying furnace installed before the melting furnace, exhaust gas is discharged in the opposite direction to the direction in which the cartridges are supplied, so that during drying and when melting the cartridges with dried products attached, Another drawback was that the cartridge was likely to become clogged due to the generated dust and the like, making it impossible to smoothly discharge the exhaust gas.

本発明の目的は、上記のような従来技術の欠点
を解消し、放射性廃液の溶融、焼結等の固化処理
において、微粉の発生による目詰りを著しく低減
化して排ガスを容易にかつスムーズに排出させる
ことができ、処理能力を向上させることが出来る
と共に固化処理工程及び炉自体を著しく簡素化す
ることが出来るような装置を提供することにあ
る。
The purpose of the present invention is to eliminate the above-mentioned drawbacks of the conventional technology, and to significantly reduce clogging caused by the generation of fine powder during solidification processes such as melting and sintering of radioactive waste liquids, thereby allowing exhaust gas to be easily and smoothly discharged. It is an object of the present invention to provide an apparatus that can improve the processing capacity and significantly simplify the solidification process and the furnace itself.

かかる目的を達成することのできる本発明は、
放射性廃液を吸水性カートリツジに吸収させた被
処理物を加熱処理する炉本体に、カートリツジ供
給配管やカートリツジ押出装置、廃液供給配管や
排ガス管等を付設したものであつて、排ガス管が
前記炉本体の上部に接続された構成の放射性廃液
の固化処理装置である。
The present invention, which can achieve such objects,
A furnace body for heat-treating a material to be treated in which radioactive waste liquid has been absorbed into a water-absorbing cartridge is provided with a cartridge supply pipe, a cartridge extrusion device, a waste liquid supply pipe, an exhaust gas pipe, etc., and the exhaust gas pipe is attached to the furnace body. This is a radioactive waste liquid solidification treatment device that is connected to the top of the radioactive waste liquid.

以下、図面に基づき本発明について更に詳しく
説明する。第1図は本発明の一実施例を示す説明
図である。この装置は、放射性廃液をガラス原料
製の吸水性カートリツジに吸収させた被処理物を
加熱溶融する炉本体1と、該炉本体1の上側部と
連通し略水平に延びる被処理物供給路2と、該被
処理物供給路2の基端側に位置するカートリツジ
供給配管3並びにカートリツジ押出装置4と、被
処理物供給路2の中間部に接続される廃液供給配
管5と、炉本体1の上部に接続された排ガス管6
及びマイクロ波導波管7とからなる。カートリツ
ジ供給装置(図示せず)から送られてくるカート
リツジ8は、例えばガラス繊維等のシート状物を
巻付け円柱状とした吸水性の良好な繊維集合体で
あり、処理すべき廃液組成と最終ガラス組成とか
ら決められた組成を持つ。このカートリツジ8
は、カートリツジ供給配管3を通つて被処理物供
給路2に送られ、カートリツジ押出装置4により
水平方向に被処理物供給路2に沿つて送り出され
る。廃液供給配管5の真下に到達したカートリツ
ジ8には、廃液供給系から廃液供給配管5を通つ
て送られてくる放射性廃液(微粉子等を多量に含
むスラリー状液体も含まれる)がしみ出さない程
度にまでしみ込ませられ被処理物9となる。その
後、カートリツジ押出装置4によつて炉本体1内
に送込まれ、マイクロ波発振器(図示せず)から
マイクロ波導波管7を通つて印加されたマイクロ
波によつて加熱溶融されることになる。その際生
じる排ガスは、排ガス管6を通つて排ガス処理系
(図示せず)に供され、そこで処理されることに
なる。炉本体1内で生成された溶融物は、その下
部に形成されているガラス抜き出しノズル10を
通つて炉本体1の外に取出される。この様な装置
によつて、廃液中に含まれる核分裂生成物、アク
チニド元素或いは重金属元素等の不揮発性成分を
固定化することが出来る。尚、水蒸気や発生ガス
等の気体は通すものの微粉は通さないというカー
トリツジ自体の過作用を利用しているため、炉
本体内での粉塵の発生は極めて少なく、また微粉
の飛散や排ガスへの同伴を極めて低く抑えること
が出来るし、単一の炉本体内で被処理物を乾燥
し、溶融することができるため、放射性廃液の処
理工程及び炉自体を簡素化でき、排ガス処理を極
めて容易にすることが出来る。また、本実施例の
ように廃液をしみ込ませた後のカートリツジ(被
処理物)の加熱にマイクロ波を利用すると、カー
トリツジの内部から加熱できるので、溶融に要す
る時間が大きく短縮できるのみならず、装置を極
めて単純化することができる。
Hereinafter, the present invention will be explained in more detail based on the drawings. FIG. 1 is an explanatory diagram showing one embodiment of the present invention. This apparatus includes a furnace body 1 that heats and melts a workpiece in which radioactive waste liquid has been absorbed into a water-absorbing cartridge made of glass raw material, and a workpiece supply path 2 that communicates with the upper side of the furnace body 1 and extends approximately horizontally. , a cartridge supply pipe 3 and a cartridge extrusion device 4 located on the proximal end side of the workpiece supply path 2 , a waste liquid supply pipe 5 connected to an intermediate portion of the workpiece supply path 2 , and a furnace main body 1 . Exhaust gas pipe 6 connected to the top
and a microwave waveguide 7. The cartridge 8 sent from a cartridge supply device (not shown) is a cylindrical aggregate of fibers with good water absorption properties wrapped around a sheet-like material such as glass fiber. It has a composition determined from the glass composition. This cartridge 8
is sent to the workpiece supply path 2 through the cartridge supply piping 3, and is sent out horizontally along the workpiece supply path 2 by the cartridge extrusion device 4. The radioactive waste liquid (including slurry liquid containing a large amount of fine particles, etc.) sent from the waste liquid supply system through the waste liquid supply pipe 5 does not seep into the cartridge 8 that has reached the position directly below the waste liquid supply pipe 5. It is soaked to a certain degree and becomes the object to be processed 9. Thereafter, the cartridge is fed into the furnace body 1 by the cartridge extrusion device 4, and is heated and melted by microwaves applied from a microwave oscillator (not shown) through the microwave waveguide 7. . The exhaust gas generated at this time is supplied to an exhaust gas treatment system (not shown) through the exhaust gas pipe 6 and is treated there. The molten material produced within the furnace body 1 is taken out of the furnace body 1 through a glass extraction nozzle 10 formed at the bottom thereof. With such a device, nonvolatile components such as nuclear fission products, actinide elements, and heavy metal elements contained in the waste liquid can be immobilized. In addition, since the cartridge itself utilizes the overeffect of allowing gases such as water vapor and generated gases to pass through, but not fine powder, the generation of dust within the furnace body is extremely small, and there is no possibility that fine powder will be scattered or entrained in the exhaust gas. Since the waste can be kept extremely low, and the material to be treated can be dried and melted within a single furnace, the radioactive waste liquid treatment process and the furnace itself can be simplified, making exhaust gas treatment extremely easy. I can do it. In addition, if microwaves are used to heat the cartridge (workpiece) after soaking with waste liquid as in this example, heating can be done from inside the cartridge, which not only greatly reduces the time required for melting, but also The device can be extremely simplified.

カートリツジの構造・寸法は、基本性能として
必要な条件、すなわち吸水性と過性能のほか取
扱い性等を勘案して適宜決定すればよい。マイク
ロ波を加熱手段として用いる場合には、カートリ
ツジの供給系からマイクロ波が漏洩することを防
止する為に、例えば円柱型の場合、その直径は約
10cm程度以下であることが望ましい。またカート
リツジの組成は、目的とする固化体の種類に応じ
て適宜選択すればよい。
The structure and dimensions of the cartridge may be appropriately determined by taking into consideration the necessary basic performance conditions, ie, water absorption and excess performance, as well as ease of handling. When microwaves are used as a heating means, in order to prevent the microwaves from leaking from the cartridge supply system, for example, in the case of a cylindrical cartridge, the diameter of the cartridge should be approximately
It is desirable that it be about 10cm or less. Further, the composition of the cartridge may be appropriately selected depending on the type of the intended solidified material.

第2図は本発明の他の実施例を示すものであ
る。この実施例ではマイクロ波加熱の他に直接通
電式ジユール加熱が併用されている。炉本体1の
内部下方に電極11が形成され、ガラスの溶融を
主に直接通電で行ない、マイクロ波で補助加熱す
るようにした構成である。勿論この場合、マイク
ロ波を用いないで単に溶融したガラスからの伝熱
や輻射によりカートリツジの溶融を行なうことも
可能である。尚、その他の構成は第1図の場合と
同様であるので対応する部分に同一符号を付しそ
れらについての記載は省略する。
FIG. 2 shows another embodiment of the invention. In this embodiment, in addition to microwave heating, direct energization type Joule heating is used. An electrode 11 is formed inside and below the furnace body 1, and the glass is melted mainly by direct energization, with supplementary heating using microwaves. Of course, in this case, it is also possible to melt the cartridge simply by heat transfer or radiation from the molten glass without using microwaves. Incidentally, since the other configurations are the same as those in FIG. 1, corresponding parts are given the same reference numerals and description thereof will be omitted.

ところで放射性廃液の模擬液をしみ込ませたカ
ートリツジを第2図に示した如きガラス溶融装置
に投下して加熱溶融していく状態を調べた結果、
模擬液がしみ出すこともなく徐々に溶融していく
ことが明らかとなつた。また、その際、微粉の発
生が極めて少ないことも確認された。
By the way, as a result of dropping a cartridge impregnated with a simulated radioactive waste liquid into a glass melting device as shown in Figure 2 and examining the state in which it was heated and melted, we found that:
It became clear that the simulated liquid gradually melted without seeping out. It was also confirmed that the generation of fine powder was extremely small.

なお本発明は前記の如きガラス固化処理以外の
場合にも適用することができる。炉本体内におい
て被処理物がプレス用ピストンによつて加圧され
ながら加熱されれば、それによつて微粉が多量に
発生することなしに焼結体を生成させることもで
きる。
Note that the present invention can also be applied to cases other than the vitrification treatment described above. If the workpiece is heated while being pressurized by the press piston in the furnace main body, a sintered body can be produced without generating a large amount of fine powder.

本発明は上記のように構成した放射性廃液の固
化処理装置であり、被処理物を加熱処理する炉本
体に被処理物供給路をはじめとしてカートリツジ
供給配管やカートリツジ押出装置や廃液供給配管
等が一体として取付けられた構成であり、しかも
乾燥溶融のための炉が一つで済むので装置は非常
に簡単な構造で済み、乾燥生成物の付着したカー
トリツジではなく、廃液のしみ込んだカートリツ
ジを炉本体に直接供給するとともに排ガス管が炉
本体上部に直接取付けられる構成であるので、排
ガス処理がスムーズに且つ容易に出来るほか、全
体として固化処理工程を著しく簡素化することが
できるといつた優れた効果を奏し得るものであ
る。
The present invention is a solidification treatment apparatus for radioactive waste liquid constructed as described above, in which a furnace body for heat-treating objects to be treated is integrated with a feed passage for objects to be processed, a cartridge supply pipe, a cartridge extrusion device, a waste liquid supply pipe, etc. Moreover, since only one furnace is required for drying and melting, the structure of the device is very simple, and instead of cartridges with dried products attached, cartridges soaked with waste liquid are placed in the furnace main body. Since the exhaust gas pipe is directly connected to the upper part of the furnace body, the exhaust gas can be treated smoothly and easily, and the overall solidification process can be significantly simplified. It is something that can be played.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る固化処理装置の一実施例
を示す説明図、第2図は本発明の他の実施例を示
す説明図である。 1……炉本体、2……被処理物供給路、3……
カートリツジ供給配管、4……カートリツジ押出
装置、5……廃液供給配管、6……排ガス管、7
……マイクロ波導波管、8……カートリツジ、9
……被処理物、10……ガラス抜出しノズル。
FIG. 1 is an explanatory diagram showing one embodiment of the solidification processing apparatus according to the present invention, and FIG. 2 is an explanatory diagram showing another embodiment of the present invention. 1... Furnace body, 2... Processing material supply path, 3...
Cartridge supply piping, 4... Cartridge extrusion device, 5... Waste liquid supply piping, 6... Exhaust gas pipe, 7
...Microwave waveguide, 8...Cartridge, 9
...Workpiece, 10...Glass extraction nozzle.

Claims (1)

【特許請求の範囲】[Claims] 1 放射性廃液を吸水性のカートリツジに吸収さ
せた被処理物を加熱処理する炉本体と、該炉本体
の上部と連通し略水平に延びる被処理物供給路
と、該被処理物供給路の基端側に位置するカート
リツジ供給配管並びにカートリツジ押出装置と、
被処理物供給路の中間部に接続される廃液供給配
管と、炉本体上部に接続された排ガス管とからな
ることを特徴とする放射性廃液の固化処理装置。
1. A furnace body for heat-treating a workpiece in which radioactive waste liquid has been absorbed into a water-absorbing cartridge, a workpiece supply path that communicates with the upper part of the furnace body and extends approximately horizontally, and a base of the workpiece supply path. A cartridge supply pipe and a cartridge extrusion device located on the end side,
A radioactive waste liquid solidification processing apparatus comprising a waste liquid supply pipe connected to an intermediate portion of a processing material supply path and an exhaust gas pipe connected to an upper part of a furnace main body.
JP18770883A 1983-10-08 1983-10-08 HOSHASEIHAIEKINOKOKASHORISOCHI Expired - Lifetime JPH0249679B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18770883A JPH0249679B2 (en) 1983-10-08 1983-10-08 HOSHASEIHAIEKINOKOKASHORISOCHI

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18770883A JPH0249679B2 (en) 1983-10-08 1983-10-08 HOSHASEIHAIEKINOKOKASHORISOCHI

Publications (2)

Publication Number Publication Date
JPS6080796A JPS6080796A (en) 1985-05-08
JPH0249679B2 true JPH0249679B2 (en) 1990-10-30

Family

ID=16210774

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18770883A Expired - Lifetime JPH0249679B2 (en) 1983-10-08 1983-10-08 HOSHASEIHAIEKINOKOKASHORISOCHI

Country Status (1)

Country Link
JP (1) JPH0249679B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0721556B2 (en) * 1988-03-28 1995-03-08 動力炉・核燃料料開発事業団 Method for melting and solidifying glass of radioactive waste liquid with suppressed formation of gaseous ruthenium

Also Published As

Publication number Publication date
JPS6080796A (en) 1985-05-08

Similar Documents

Publication Publication Date Title
JPS6317494B2 (en)
US4400604A (en) Heat treating method and apparatus using microwave
US4940865A (en) Microwave heating apparatus and method
JPS6016600B2 (en) Water-based radioactive waste solidification equipment
CA1107073A (en) Method for calcining radioactive wastes
JPH0249679B2 (en) HOSHASEIHAIEKINOKOKASHORISOCHI
JPH0736040B2 (en) Radioactive waste treatment method and apparatus
JPS594431A (en) Fluidized bed reactor by microwave heating
GB2025685A (en) A process for solidifying radioactive fission products
EP0260406B1 (en) Process for disposing of radioactive wastes
ES8505564A1 (en) Apparatus with heat exchange means for treating solid, granular and aggregate materials.
JPH07333393A (en) Processing method for radioactive miscellaneous solid waste
JPS6412359B2 (en)
JPS6350800A (en) Method of processing waste containing radioactive substance
EP0242569B1 (en) Process for preparing a cartridge for disposal of a radioactive waste liquid
JPS6125098A (en) Manufacture of borosilicate glass solidified body
JPS58114723A (en) Fluidized bed reacting device by microwave heating
JPH0260156B2 (en)
GB2012746A (en) Process of treating glass batch material
JPH01235899A (en) Treatment for solidifying nitrate-containing radioactive waste liquid
JPS58132699A (en) Method of melting and solidifying radioactive waste
JPS6247199Y2 (en)
JPH077108B2 (en) Method for melting and solidifying radioactive waste
KR880010810A (en) Waste disposal system
JPS6160399B2 (en)