JPH0249497A - Radio wave absorber - Google Patents

Radio wave absorber

Info

Publication number
JPH0249497A
JPH0249497A JP20064288A JP20064288A JPH0249497A JP H0249497 A JPH0249497 A JP H0249497A JP 20064288 A JP20064288 A JP 20064288A JP 20064288 A JP20064288 A JP 20064288A JP H0249497 A JPH0249497 A JP H0249497A
Authority
JP
Japan
Prior art keywords
radio wave
wave absorber
carbon
absorber
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20064288A
Other languages
Japanese (ja)
Inventor
Shigeru Yamazaki
茂 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP20064288A priority Critical patent/JPH0249497A/en
Publication of JPH0249497A publication Critical patent/JPH0249497A/en
Pending legal-status Critical Current

Links

Landscapes

  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Aerials With Secondary Devices (AREA)

Abstract

PURPOSE:To obtain a radio wave absorber which has nearly the same characteristic as a conventional one by a method wherein glass, which is foamed in small bubbles, is impregnated with carbon so as to prevent it from deforming. CONSTITUTION:Glass 1 foamed in small bubbles is impregnated with carbon 2. The glass 1 has the same impedance as the air, so that a material, which has almost the same characteristic as a conventional radio absorber, can be obtained. The radio wave absorbing mechanism of the absorber of this design is the same as that of a conventional one and such that it is based on conversion of electric energy into thermal energy through the resistance of the carbon 2. By these processes, the radio wave absorber, which is prevented from deforming and has characteristic equivalent to that of a conventional one, can be obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、EMC(Electro Magneti
c Compatibility )評価用の電波暗室
を構成するものの他、いろいろな用途が考えられる電波
吸収体に関するものである。
[Detailed Description of the Invention] [Industrial Field of Application] This invention is based on EMC (Electro Magnetic
c Compatibility) This relates to a radio wave absorber that can be used for various purposes in addition to forming an anechoic chamber for evaluation.

〔従来の技術〕[Conventional technology]

従来のEMC評価用電波暗室に使われている電波吸収体
を第4図に示す。第4図において、4は発泡ポリウレタ
ンあるいは発泡ポリスチロールで、この吸収体を構成し
ている材質である。2はカーボンで発泡ポリウレタンあ
るいは発泡ポリスチロール4に含浸している。
Figure 4 shows a radio wave absorber used in a conventional anechoic chamber for EMC evaluation. In FIG. 4, 4 is foamed polyurethane or foamed polystyrene, which is the material constituting this absorbent body. 2, the foamed polyurethane or foamed polystyrene 4 is impregnated with carbon.

次に動作について説明する。Next, the operation will be explained.

発泡ポリウレタンあるいは発泡ポリスチロール4は空気
とほぼ同じインピーダンスをもっていてカーボン2を含
浸させることによって誘電損失が大きな材質が得られる
。この吸収体に電波が入射すると発泡状の小さなループ
になっているカーボンの抵抗でエネルギーが電気−熱変
換され、電波が吸収されるのである。電波吸収体は(発
泡ポリウレタンあるいは発泡ポリスチロール4+カーボ
ン2)の材質の誘電定数から導き出した伝搬定数式によ
って設計され、垂直入射の減衰特性と周波数の広帯域特
性を追求してゆ(と、通常ピラミッド型になる。
Foamed polyurethane or foamed polystyrene 4 has approximately the same impedance as air, and by impregnating it with carbon 2, a material with large dielectric loss can be obtained. When radio waves are incident on this absorber, the energy is converted from electricity to heat by the resistance of the small foam-like carbon loops, and the radio waves are absorbed. Radio wave absorbers are designed using a propagation constant formula derived from the dielectric constant of the material (foamed polyurethane or foamed polystyrene 4 + carbon 2), and are designed to pursue normal incidence attenuation characteristics and broadband frequency characteristics. Become a type.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の電波吸収体は以上のように構成されているので、
ポリウレタンやポリスチロールという材質上、形状がく
ずれやすく、また火災に弱いなどの欠点があり、さらに
含浸させであるカーボンが吸収体からこぼれやすく、吸
収体のインピーダンスが変化し、吸収特性が下がるなど
の欠点があった。
Conventional radio wave absorbers are constructed as described above, so
Due to the materials such as polyurethane and polystyrene, they have drawbacks such as being easily deformed and being susceptible to fire.Furthermore, the impregnated carbon tends to spill out of the absorber, changing the impedance of the absorber and reducing its absorption properties. There were drawbacks.

この発明は上記のような問題点を解消するためになされ
たもので、形状がしっかりしていて、高い吸収特性を保
持し、かつ多用途に使用できる電波吸収体を提供するこ
とを目的とする。
This invention was made to solve the above-mentioned problems, and its purpose is to provide a radio wave absorber that has a solid shape, maintains high absorption characteristics, and can be used for a variety of purposes. .

〔課題を解決するための手段〕[Means to solve the problem]

この発明に係る電波吸収体はガラスを小さなシャボン玉
状に発泡させたものにカーボンを含浸するようにしたも
のである。
The radio wave absorber according to the present invention is made by foaming glass into the shape of small soap bubbles and impregnating it with carbon.

〔作用〕[Effect]

この発明における電波吸収体は、ポリウレタンやポリス
チロールとほぼ同じインピーダンスをもつガラスを使用
し、これをシャボン玉状にしたものにカーボンを含浸す
るようにしたから、従来の電波吸収体のように形状がく
ずれやすく、また火災に弱いなどの欠点、さらにカーボ
ンがこぼれやすく、吸収体のインピーダンスが変化し、
吸収特性が下がるなどの欠点がなく、従来の電波吸収体
とほぼ同等の特性をもつ電波吸収体を作ることができる
The radio wave absorber in this invention uses glass that has almost the same impedance as polyurethane or polystyrene, and is made into a soap bubble shape that is impregnated with carbon, so it has a shape similar to conventional radio wave absorbers. It has disadvantages such as being easy to collapse and being susceptible to fire, and carbon is easily spilled and the impedance of the absorber changes.
It is possible to create a radio wave absorber with properties almost equivalent to those of conventional radio wave absorbers without any drawbacks such as reduced absorption properties.

〔実施例〕〔Example〕

以下、この発明の一実施例を図について説明す机 第1図は本発明の一実施例による電波吸収体を示し、こ
れは第4図の従来の電波吸収体と同じく、EMC評価用
電波暗室に使用されるものとして同じ方法で設計された
ものである0図において、1は小さなシャボン玉状に発
泡しているガラスで、空気とほぼ同じインピーダンスを
もつもの、2はカーボンで、ガラス1をシャボン玉状に
発泡させる時に空気に混入してシャボン玉内部に塗布さ
せたものである。また第2図は第1図の細部拡大図であ
る。
Hereinafter, one embodiment of the present invention will be explained with reference to the drawings. Figure 1 shows a radio wave absorber according to an embodiment of the present invention, which, like the conventional radio wave absorber shown in Figure 4, is an anechoic chamber for EMC evaluation. In Figure 0, which was designed using the same method as that used in It is mixed into the air when foaming into soap bubbles and applied to the inside of the soap bubble. FIG. 2 is an enlarged view of the details of FIG. 1.

次に動作原理について説明する。ガラス1は空気と同じ
インピーダンスをもっているので従来の吸収体の特性と
ほぼ同じ特性をもつ材質が得られる。電波吸収のメカニ
ズムは従来と同じでカーボン2の抵抗によるエネルギー
の電気−熱変換によるものである。また設計方法も従来
の方法と同じく電波吸収材の伝搬定数式により設計でき
、ピラミッド型にすることができる。
Next, the operating principle will be explained. Since the glass 1 has the same impedance as air, a material having almost the same characteristics as a conventional absorber can be obtained. The mechanism of radio wave absorption is the same as the conventional one, and is based on electrical-thermal conversion of energy due to the resistance of carbon 2. Also, the design method can be similar to the conventional method, and can be designed using the propagation constant equation of the radio wave absorbing material, and can be made into a pyramid shape.

なお、上記実施例ではある設計法によりその形状がピラ
ミッド型になったものの例を示したが、第3図の本発明
の他の実施例に示すように、斜入射に対する減衰特性が
高くなるように、かつ垂直入射の特性を落とさないよう
に、伝搬定数式から試行錯誤によって形状を追求してゆ
くことによって、図に示すようにエラフェル塔のような
型を得ることもできる。この場合従来の発冶ポリウレタ
ンあるいは発泡ポリスチロール4のような弱い材質に比
し、ガラス1は硬質であるので形状維持に適している。
In addition, although the above embodiment shows an example in which the shape is pyramid-shaped by a certain design method, as shown in another embodiment of the present invention in FIG. By pursuing the shape through trial and error from the propagation constant formula without compromising the characteristics of normal incidence, it is also possible to obtain a type like the Elafel Tower, as shown in the figure. In this case, the glass 1 is hard and suitable for maintaining its shape, compared to weak materials such as conventional foamed polyurethane or foamed polystyrene 4.

さらに磁力に対して吸収特性をもつフェライトからなる
タイル3を底につければ、より広帯域特性にすぐれた電
波吸収体を得ることができる。
Furthermore, by attaching a tile 3 made of ferrite that has magnetic absorption properties to the bottom, a radio wave absorber with even better broadband properties can be obtained.

また、本発明の電波吸収体が、ガラスという硬質な材質
からなっていることに着目すると電子機器フレーム、あ
るいはシールドルームの窓など、従来のポリスチロール
やポリウレタンでは適用できなかった用途にも使用でき
るという効果を生じる。
Furthermore, since the radio wave absorber of the present invention is made of a hard material called glass, it can be used in applications where conventional polystyrene or polyurethane could not be applied, such as electronic equipment frames or shield room windows. This effect is produced.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明にかかる電波吸収体によれば、
ガラスを小さなシャボン玉状に発泡させたものにカーボ
ンを含浸するようにしたので、従来の高い吸収特性をも
つ発泡ポリウレタンあるいは発泡ポリスチロールからな
る電波吸収体とほぼ同等の特性を持ち、しかもその用途
に多様性のあるものが得られるという効果がある。
As described above, according to the radio wave absorber according to the present invention,
Since the glass is foamed into small soap bubbles and impregnated with carbon, it has almost the same characteristics as the conventional electromagnetic wave absorbers made of foamed polyurethane or foamed polystyrene, which have high absorption properties. This has the effect of providing a variety of products.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例によるEMC評価用電波暗
室に使用される電波吸収体を示す斜視図、第2図は第1
図の細部拡大図、第3図は本発明の他の実施例による電
波吸収体を示す斜視図、第4図は従来のEMC評価用電
波暗室に使用される電波吸収体を示す斜視図である。 図において、1は小さなシャボン玉状に発泡しているガ
ラス、2はカーボンである。 なお図中同一符号は同−又は相当部分を示す。 図 1 ンp茄ンI九ノフ2 2:/v−ノガン 3 : 7x )f、5チ’−f/ly第 図
FIG. 1 is a perspective view showing a radio wave absorber used in an anechoic chamber for EMC evaluation according to an embodiment of the present invention, and FIG.
3 is a perspective view showing a radio wave absorber according to another embodiment of the present invention, and FIG. 4 is a perspective view showing a radio wave absorber used in a conventional anechoic chamber for EMC evaluation. . In the figure, 1 is glass foamed into the shape of small soap bubbles, and 2 is carbon. Note that the same reference numerals in the figures indicate the same or equivalent parts. Figure 1 Np eggplant I ninefu 2 2:/v-bustard 3: 7x) f, 5chi'-f/ly diagram

Claims (1)

【特許請求の範囲】[Claims] (1)電波吸収体において、 ガラスを小さなシャボン玉状に発泡させたものにカーボ
ンを含浸させてなることを特徴とする電波吸収体。
(1) A radio wave absorber characterized by being made by foaming glass into the shape of small soap bubbles and impregnating it with carbon.
JP20064288A 1988-08-10 1988-08-10 Radio wave absorber Pending JPH0249497A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20064288A JPH0249497A (en) 1988-08-10 1988-08-10 Radio wave absorber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20064288A JPH0249497A (en) 1988-08-10 1988-08-10 Radio wave absorber

Publications (1)

Publication Number Publication Date
JPH0249497A true JPH0249497A (en) 1990-02-19

Family

ID=16427789

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20064288A Pending JPH0249497A (en) 1988-08-10 1988-08-10 Radio wave absorber

Country Status (1)

Country Link
JP (1) JPH0249497A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002121842A (en) * 2000-10-13 2002-04-26 Takenaka Komuten Co Ltd Reinforcing structure for electromagnetic wave absorption material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002121842A (en) * 2000-10-13 2002-04-26 Takenaka Komuten Co Ltd Reinforcing structure for electromagnetic wave absorption material

Similar Documents

Publication Publication Date Title
CN106058483B (en) The broadband absorbing material of stable polarization
WO2006112001A1 (en) All-weather radio wave reflector/absorber and its assembling structure
KR102012415B1 (en) Broadband electromagnetic wave absorber and method for manufacturing thereof
KR102213841B1 (en) Electro-magnetic wave absorber and manufacturing method thereof
JPH0249497A (en) Radio wave absorber
JP2001127483A (en) Electric-wave absorber
WO2011016109A1 (en) Wave absorber
JP4684699B2 (en) Radio wave absorbing sheet material and radio wave absorber using the same
US20030198800A1 (en) Plastic element for the confinement of HF reflections
CN212232013U (en) Broadband structure type high-temperature-resistant wave-absorbing material
JPH07193388A (en) Micro wave and millimeter wave absorber
JPH01220899A (en) Wave absorber and manufacture thereof
JP2001230588A (en) Electromagnetic wave absorbing body and its manufacturing method
JPH02880B2 (en)
JP2772404B2 (en) Structural radio wave absorber
JPH03204999A (en) Radiowave absorbent body
JP4004096B2 (en) Radio wave absorber
JPS61292998A (en) Radio wave absorbing material
JPH0369197A (en) Hollow polypyramid type radio wave absorbing body
JPH08130389A (en) Porous ferrite radio wave absorber
JPH07302991A (en) Porous ferrite radio-wave absorber
CN215991800U (en) Electromagnetic shielding structure and electromagnetic shielding body
JP2592004Y2 (en) Broadband radio wave absorber
JPH023675Y2 (en)
RU97103691A (en) SUPERWIDE-BAND ELECTROMAGNETIC WAVE DETECTOR