JP2016146374A - Electromagnetic wave absorber - Google Patents
Electromagnetic wave absorber Download PDFInfo
- Publication number
- JP2016146374A JP2016146374A JP2015021846A JP2015021846A JP2016146374A JP 2016146374 A JP2016146374 A JP 2016146374A JP 2015021846 A JP2015021846 A JP 2015021846A JP 2015021846 A JP2015021846 A JP 2015021846A JP 2016146374 A JP2016146374 A JP 2016146374A
- Authority
- JP
- Japan
- Prior art keywords
- radio wave
- wave absorber
- ghz
- absorber
- sheet material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
Abstract
Description
本発明は、電波吸収体に関する。 The present invention relates to a radio wave absorber.
電波暗室とは、電子機器から放射される電磁ノイズ評価、外来電磁ノイズに対する電子機器のイミュニティ評価や、アンテナ特性の評価等を行う測定施設である。電波暗室の壁面や天井面には電波吸収体が用いられており、電波吸収体に要求される吸収周波数帯域は数十MHz〜数GHzである。電波吸収体としては、一般的に、数十〜数百MHzの吸収を担うフェライトタイルと、GHz帯域の吸収を担うカーボンやグラファイト等を含有する発泡ウレタン、発泡ポリスチレンからなるピラミッド型やクサビ型吸収体等の立体型吸収体とが組み合わせて使用されている。 An anechoic chamber is a measurement facility that performs evaluation of electromagnetic noise radiated from electronic devices, immunity evaluation of electronic devices against external electromagnetic noise, evaluation of antenna characteristics, and the like. A radio wave absorber is used on the wall or ceiling surface of the anechoic chamber, and the absorption frequency band required for the radio wave absorber is several tens of MHz to several GHz. In general, as a radio wave absorber, a ferrite tile that absorbs tens to several hundreds of MHz, a foamed urethane containing carbon or graphite that supports absorption in the GHz band, a pyramid type or wedge type absorption made of expanded polystyrene. It is used in combination with a three-dimensional absorber such as a body.
尚、近年は、情報伝達量の高密度化に伴い電子機器は高周波化の一途を辿っており、それを評価する電波暗室の要求性能も数GHzから数十GHzと高周波に伸びており、高周波帯域の吸収を担う電波吸収体の役割はますます重要になってきている。 In recent years, electronic devices have been increasing in frequency with the increase in the amount of information transmitted, and the required performance of an anechoic chamber for evaluating it has increased from several GHz to several tens of GHz. The role of radio wave absorbers responsible for band absorption is becoming increasingly important.
また、近年では電波吸収特性と騒音低減性能とを同時に兼ね備えた、錐体や錐体台形を規則的に配列した電波音波吸収体が提案されている(特許文献1)。 In recent years, there has been proposed a radio wave absorber that regularly has a pyramid and a trapezoidal trapezoid having both radio wave absorption characteristics and noise reduction performance (Patent Document 1).
また、軽量かつ不燃性の電波吸収体を生産性よく製造するために、珪酸カルシウム板からなる四角錐台と小四角錐を結合した電波吸収体が提案されている(特許文献2)。 Moreover, in order to manufacture a lightweight and non-combustible radio wave absorber with high productivity, a radio wave absorber in which a square pyramid made of a calcium silicate plate and a small square pyramid are combined has been proposed (Patent Document 2).
さらに、優れた電波吸収性能を有し、輸送性、現場施工性などのハンドリング性に優れた、シート材からなる電波吸収体が提案されている(特許文献3)。 Furthermore, a radio wave absorber made of a sheet material that has excellent radio wave absorption performance and excellent handling properties such as transportability and on-site workability has been proposed (Patent Document 3).
上記の特許文献1に開示された電波音波吸収体は、錐体や錐体台形の形状を採用しているものの、その下面と斜面との角度や高さが不適切であり、電波暗室として要求されている、特に1GHz〜3GHzの高周波帯域における吸収性能に劣るとの課題がある。
Although the electromagnetic wave absorber disclosed in
また、上記の特許文献2に開示された電波吸収体は、四角錐台の上部に小四角錐を結合した四角錐の形状を採用しているものの、その下面と斜面との角度や高さが不適切であり、電波暗室として要求されている、特に1GHz〜3GHzの高周波帯域における吸収性能に劣る。また、電波吸収体の高さが956mmと高く、電波暗室の壁面や天井面に貼り付け、施工した後に、電波暗室として利用できる有効利用容積が小さくなるとの課題がある。
Further, the radio wave absorber disclosed in the above-mentioned
上記の特許文献3に開示された電波音波吸収体は、四角錐台形に似た形状を採用しているものの、その下面と斜面との角度や高さが不適切であり、電波暗室として要求されている、特に1GHz〜3GHzの高周波帯域における吸収性能に劣るとの課題がある。
Although the electromagnetic wave absorber disclosed in
そこで、本発明は、高度な電波吸収性能、特に1GHz〜3GHzの高周波帯域の電波に対し優れた電波吸収性能を有する電波吸収体を提供することを課題とする。 Then, this invention makes it a subject to provide the radio wave absorber which has the high radio wave absorption performance, especially the radio wave absorption performance excellent with respect to the high frequency band of 1 GHz-3 GHz.
上記課題を解決するため、本発明は以下の構成を有する。すなわち、
(1)上面、下面および4つの斜面を有する四角錐台形の電波吸収体であり、前記下面と前記斜面との角度が64°以上68°以下であり、高さが35cm以上105cm以下である電波吸収体、
(2)前記四角錐台形が、正四角錐台形である(1)の電波吸収体、
(3)電波吸収性能を有する電波吸収体用シート材から構成される(1)または(2)の電波吸収体、
(4)前記電波吸収体用シート材の3GHzにおける複素比誘電率は、実部εr’が7以上18以下、かつ、虚部εr”が4以上15以下である(3)の電波吸収体。
In order to solve the above problems, the present invention has the following configuration. That is,
(1) A quadrangular frustum-shaped radio wave absorber having an upper surface, a lower surface, and four inclined surfaces, wherein an angle between the lower surface and the inclined surface is not less than 64 ° and not more than 68 °, and a height is not less than 35 cm and not more than 105 cm. Absorber,
(2) The radio wave absorber according to (1), wherein the quadrangular pyramid is a regular quadrangular pyramid.
(3) The radio wave absorber according to (1) or (2), comprising a radio wave absorber sheet material having radio wave absorption performance,
(4) The radio wave absorber according to (3), wherein the complex relative permittivity at 3 GHz of the radio wave absorber sheet material is real part εr ′ of 7 to 18 and imaginary part εr ″ of 4 to 15.
本発明によれば、高度な電波吸収性能、特に1GHz〜3GHzの高周波帯域の電波に対し優れた電波吸収性能を有する電波吸収体を得ることができる。 According to the present invention, it is possible to obtain a radio wave absorber having high radio wave absorption performance, particularly excellent radio wave absorption performance for radio waves in a high frequency band of 1 GHz to 3 GHz.
以下、本発明の実施の形態を詳細に説明する。本発明の電波吸収体は、四角錐台形の電波吸収体である。四角錐台形とすることにより、角錐形状に比べ、吸収体の高さを低く抑えつつ、かつ、高度な吸収性能、特に1GHz〜3GHzの高周波帯域の電波に対し優れた吸収性能を有する電波吸収体を得ることができる。ここで、図1は、本発明の電波吸収体の一例を示す斜視概念図であり、図2は、本発明の電波吸収体の一例を示す側面概念図である。本発明の電波吸収体は四角錐台形であり、四角形の上面1、四角形の下面2および4つの台形の斜面3を有する。また、本発明の電波吸収体の高さBは、上面1と下面2の距離であり、後述するとおり特定の範囲内となっている。さらに、本発明の電波吸収体は4つの斜面3を有しており、下面2と斜面3との角度Aは後述するとおり特定の範囲内となっている。また、本発明の電波吸収体の一例は、後述するとおり電波吸収体用シート材4を折り曲げ加工することで作製されるもので中空の構造となっている。
Hereinafter, embodiments of the present invention will be described in detail. The radio wave absorber of the present invention is a quadrangular pyramid shaped radio wave absorber. By adopting a quadrangular pyramid shape, the wave absorber has high absorption performance, particularly excellent absorption performance for radio waves in the high frequency band of 1 GHz to 3 GHz, while suppressing the height of the absorber lower than that of the pyramid shape. Can be obtained. Here, FIG. 1 is a perspective conceptual diagram illustrating an example of the radio wave absorber of the present invention, and FIG. 2 is a side conceptual diagram illustrating an example of the radio wave absorber of the present invention. The radio wave absorber of the present invention has a quadrangular pyramid shape and has a quadrangular
また、本発明の電波吸収体の形状は、四角錐台形であるが、安定した電波吸収性能が得られるとの観点から、正四角錐台形であることが好ましい。 The shape of the radio wave absorber of the present invention is a quadrangular pyramid, but it is preferably a regular quadrangular pyramid from the viewpoint of obtaining stable radio wave absorption performance.
本発明の電波吸収体は、下面と斜面との角度が、64°以上68°以下の範囲内である。電波吸収体の下面と電波吸収体の斜面との角度を上記の範囲内とすることにより、電波吸収体の上方から入射した電波の多くを電波吸収体に進入させ、その下面まで到達させることができるので、本発明の電波吸収体の電波吸収効率は優れたものとなる。下面と斜面との角度が、64°を下回る場合、本発明の電波吸収体を少なくとも2つ用い、隣接させて配置した際に、電波吸収体の上方から入射した入射電波が、第1の電波吸収体の斜面で反射され、次いで隣り合う第2の電波吸収体の斜面で反射され、入射電波の一部が電波吸収体により吸収されず電波吸収体の上方に放射される放射電波となるため、電波吸収体の電波吸収性能が著しく低下する。一方、下底面と斜面との角度が、68°を超える場合、メカニズムは定かではないものの、電波吸収体の上方から入射した電波と電波吸収体の斜面との入射角が大きくなり、結果的に電波吸収体の表面での反射率が大きくなり、電波吸収体の内部に進入する電波の割合が低下するため、電波吸収体の電波吸収性能が著しく低下するものと推測される。上記の観点から、電波吸収体の下面と斜面との角度の下限は、65°以上が好ましく、その上限は、67°以下が好ましく、66°以下がより好ましい。 In the radio wave absorber of the present invention, the angle between the lower surface and the slope is in the range of 64 ° to 68 °. By making the angle between the lower surface of the radio wave absorber and the slope of the radio wave absorber within the above range, most of the radio waves incident from above the radio wave absorber can enter the radio wave absorber and reach the lower surface thereof. Therefore, the radio wave absorption efficiency of the radio wave absorber of the present invention is excellent. When the angle between the lower surface and the slope is less than 64 °, when at least two radio wave absorbers of the present invention are used and arranged adjacent to each other, the incident radio wave incident from above the radio wave absorber is the first radio wave. Because it is reflected by the slope of the absorber and then reflected by the slope of the adjacent second radio wave absorber, a part of the incident radio wave is not absorbed by the radio wave absorber and becomes a radiated radio wave emitted above the radio wave absorber. The radio wave absorption performance of the radio wave absorber is significantly reduced. On the other hand, when the angle between the bottom surface and the slope exceeds 68 °, the mechanism is not clear, but the incident angle between the radio wave incident from above the radio wave absorber and the slope of the radio wave absorber becomes large, and as a result Since the reflectance at the surface of the radio wave absorber increases and the proportion of radio waves entering the radio wave absorber decreases, it is presumed that the radio wave absorption performance of the radio wave absorber is significantly reduced. From the above viewpoint, the lower limit of the angle between the lower surface and the inclined surface of the radio wave absorber is preferably 65 ° or more, and the upper limit is preferably 67 ° or less, more preferably 66 ° or less.
ここで、図3は、下面と斜面との角度が、64°以上68°以下の2つの電波吸収体による電波吸収のメカニズムを示す概念図であり、図4は、下面と斜面との角度が、64°を下回る2つの電波吸収体による電波吸収のメカニズムを示す概念図である。下面と斜面との角度が、64°以上68°の電波吸収体を用いた場合、電波吸収体の上方からの入射電波5の一部は第1の電波吸収体6の斜面にて第1の電波吸収体6に進入する。また、第1の電波吸収体6に進入しなかった入射電波5は反射電波8となり、その一部が第2の電波吸収体7に進入し第2の電波吸収体7の下面に至る。また、第2の電波吸収体7に進入しなかった反射電波8は反射電波9となり、反射電波9は再び第1の電波吸収体6の斜面に至る。ここで、下面と斜面との角度が、64°を下回る電波吸収体を用いた場合、電波吸収体の上方からの入射電波5の一部は第1の電波吸収体6の斜面にて第1の電波吸収体6に進入する。また、第1の電波吸収体6に進入しなかった入射電波5は反射電波8となり、第2の電波吸収体7の斜面に至る。ここで、反射電波8の一部は、第2の電波吸収体7の斜面で反射し、電波吸収体に吸収されることなく、電波吸収体の上方に放射される放射電波10となる。ここで、入射電波5の入射角Mおよび反射電波8の反射角Nは、電波吸収体の下面と斜面との角度によって変わる。
Here, FIG. 3 is a conceptual diagram showing a mechanism of radio wave absorption by two radio wave absorbers having an angle between the lower surface and the slope of 64 ° to 68 °, and FIG. 4 shows an angle between the lower surface and the slope. It is a conceptual diagram which shows the mechanism of the electromagnetic wave absorption by two electromagnetic wave absorbers which are less than 64 degrees. When a radio wave absorber having an angle between the lower surface and the slope of 64 ° or more and 68 ° is used, a part of the
また、本発明の電波吸収体は、高さは35cm以上105cm以下である。電波吸収体の高さを35cm以上とすることで、高度な吸収性能、特に1GHz〜3GHzの高周波帯域の電波に対し優れた吸収性能を有する電波吸収体を得ることができる。電波吸収体の高さと、電波吸収性能が高まる周波数域、つまり電波の波長には相関があり、本発明の形状で、特に1GHz〜3GHzの高周波帯域の電波に対し高度な吸収性能を得ようとする場合、電波吸収体の高さを35cm以上とする必要がある。上記の観点から、本発明の電波吸収体の高さの下限は45cm以上が好ましい。一方、電波吸収体の高さを105cm以下とすることで、高度な吸収性能、特に1GHz〜3GHzの高周波帯域の電波に対し優れた吸収性能を有する電波吸収体を得ることができる。上記の観点から、本発明の電波吸収体の高さの上限は55cm以下が好ましい。また、本発明の電波吸収体の高さを55cm以下とすることで、電波暗室の壁面や天井面に貼り付け、施工した際に、その電波暗室内の有効利用容積を大きくとることも可能となり、電波暗室の実用においてその利便性が飛躍的に向上する。上記の通り、電波吸収体の高さが35cm未満または105cmを超える場合には、特に1GHz〜3GHzの高周波帯域の電波に対し高度な電波吸収性能が得られない。 The radio wave absorber of the present invention has a height of 35 cm or more and 105 cm or less. By setting the height of the radio wave absorber to 35 cm or more, it is possible to obtain a radio wave absorber having high absorption performance, particularly excellent absorption performance for radio waves in a high frequency band of 1 GHz to 3 GHz. There is a correlation between the height of the radio wave absorber and the frequency range where the radio wave absorption performance is enhanced, that is, the wavelength of the radio wave, and in the shape of the present invention, an attempt is made to obtain a high absorption performance particularly for radio waves in the high frequency band of 1 GHz to 3 GHz. In this case, the height of the radio wave absorber needs to be 35 cm or more. From the above viewpoint, the lower limit of the height of the radio wave absorber of the present invention is preferably 45 cm or more. On the other hand, by setting the height of the radio wave absorber to 105 cm or less, it is possible to obtain a radio wave absorber having high absorption performance, particularly excellent absorption performance for radio waves in a high frequency band of 1 GHz to 3 GHz. From the above viewpoint, the upper limit of the height of the radio wave absorber of the present invention is preferably 55 cm or less. In addition, by setting the height of the electromagnetic wave absorber of the present invention to 55 cm or less, it becomes possible to increase the effective use volume in the anechoic chamber when it is attached to the wall or ceiling surface of the anechoic chamber. In the practical use of the anechoic chamber, the convenience is greatly improved. As described above, when the height of the radio wave absorber is less than 35 cm or exceeds 105 cm, high radio wave absorption performance cannot be obtained particularly for radio waves in a high frequency band of 1 GHz to 3 GHz.
電波吸収体の高さと電波吸収体の電波吸収性能の関係、および、電波吸収体の下面と斜面との角度と電波吸収体の電波吸収性能の関係は上記のとおりであるが、本発明者は、本発明の電波吸収体を、その下面と斜面との角度が64°以上68°以下、かつ、その高さが40cm以上105cm以下とすることで、特に1GHz〜3GHzの高周波帯域の電波に対する吸収性能が顕著に優れたものとなることを見いだした。 The relationship between the height of the radio wave absorber and the radio wave absorption performance of the radio wave absorber, and the relationship between the angle between the lower surface and the slope of the radio wave absorber and the radio wave absorption performance of the radio wave absorber is as described above. The radio wave absorber of the present invention has an angle between the lower surface and the slope of 64 ° to 68 ° and a height of 40 cm to 105 cm, so that the radio wave absorber of the present invention absorbs radio waves particularly in a high frequency band of 1 GHz to 3 GHz. We have found that the performance is remarkably superior.
本発明の電波吸収体が正四角錐台形である場合、その下面は正方形であり、そのサイズは、その1辺の長さが50cm以上70cm以下であることが好ましく、下限については55cm以上がより好ましく、上限については65cm以下がより好ましい。このようなサイズとすることで、電波暗室の壁面や天井面に貼り付けが容易となり施工性が向上する。1辺の長さを50cm以上とすることで、施工に必要となる電波吸収体の個数が少なくなり、電波吸収体の組み立て工程や電波吸収体の取り付け工程に要する時間をより少なくすることができる。一方、1辺の長さを70cm以下とすることで、電波吸収体のサイズを小さな物とすることができ、電波暗室の壁面や天井面に電波吸収体を貼り付ける際の、電波吸収体のハンドリング性が向上する。 When the radio wave absorber of the present invention is a regular quadrangular pyramid trapezoid, the lower surface is square, and the size of one side is preferably 50 cm or more and 70 cm or less, and the lower limit is more preferably 55 cm or more. The upper limit is more preferably 65 cm or less. By setting it as such a size, affixing to the wall surface and ceiling surface of an anechoic chamber becomes easy, and workability improves. By setting the length of one side to 50 cm or more, the number of radio wave absorbers required for construction is reduced, and the time required for the radio wave absorber assembly process and the radio wave absorber attachment process can be further reduced. . On the other hand, by setting the length of one side to 70 cm or less, the size of the radio wave absorber can be made small, and when the radio wave absorber is attached to the wall or ceiling surface of the anechoic chamber, Handling is improved.
本発明の電波吸収体は、電波吸収性能を有する電波吸収体用シート材から構成されることが好ましい。本発明の電波吸収体を上記のシート材で構成されるものとすることで、電波吸収体の内部を中空とすることができ、カーボンやグラファイト等を含有した内部が中実の発泡ウレタンで構成される電波吸収体などに比べ、軽量で施工性が良く、輸送や保管が容易となる。なお、本発明の電波吸収体は、電波吸収性能を有する電波吸収体用シート材のみから構成されていてもよいし、本発明の効果を阻害しない範囲において電波吸収体用シート材以外の部材を有していてもよい。 The radio wave absorber of the present invention is preferably composed of a radio wave absorber sheet material having radio wave absorption performance. By making the radio wave absorber of the present invention composed of the above sheet material, the interior of the radio wave absorber can be made hollow, and the inside containing carbon, graphite or the like is made of solid foamed urethane Compared to a radio wave absorber or the like, it is light and has good workability, and is easy to transport and store. The radio wave absorber of the present invention may be composed only of a radio wave absorber sheet material having radio wave absorption performance, or a member other than the radio wave absorber sheet material within a range that does not impair the effects of the present invention. You may have.
電波吸収性能を有する電波吸収体用シート材としては、電波吸収体用シート材に電波吸収性能を付与するための材料を含有する電波吸収体用シート材が挙げられる。上記の電波吸収体用シート材に用いる、電波吸収体用シート材に電波吸収性能を付与するための材料としては、導電性材料や磁性材料が挙げられるが、低コスト化や軽量化、基材に均一に分散させやすいといった点から導電性材料を用いることが好ましい。導電性材料の中でも、導電性短繊維を用いることがより好ましい。導電性短繊維はアスペクト比が大きいので、繊維同士が接触しやすく、粉体に比べて少量でも効果的に電波吸収体用シート材に電波吸収性能を付与することができる。また、導電性短繊維の中でも、炭素繊維は、繊維自体が剛直であり基材内に配向させやすいこと、長期間の使用においてほとんど性能の変化がないことから、更に好ましい。 Examples of the radio wave absorber sheet material having radio wave absorbing performance include a radio wave absorber sheet material containing a material for imparting radio wave absorbing performance to the radio wave absorber sheet material. Examples of the material for imparting radio wave absorption performance to the radio wave absorber sheet material used for the radio wave absorber sheet material include conductive materials and magnetic materials. It is preferable to use a conductive material because it can be easily dispersed uniformly. Among conductive materials, it is more preferable to use conductive short fibers. Since the conductive short fibers have a large aspect ratio, the fibers are easily brought into contact with each other, and the radio wave absorber sheet material can be effectively imparted with radio wave absorbing performance even in a small amount as compared with the powder. Among conductive short fibers, carbon fibers are more preferable because the fibers themselves are rigid and easy to be oriented in the base material, and there is almost no change in performance over a long period of use.
また、上記の電波吸収体用シート材の形態としては、樹脂膜、フィルム、不織布、織物、編物、紙、紙を基材とした段ボール、樹脂板または発泡ボートなどがある。また、上記の電波吸収体用シート材の形態は、折り曲げて中空立体形状の電波吸収体とするため、折り曲げ加工のやり易さの点からフィルムや不織布、織物、編物、紙、または、紙を基材とした段ボールとすることが好ましい。 Moreover, as a form of said sheet | seat material for electromagnetic wave absorbers, there are a resin film, a film, a nonwoven fabric, a woven fabric, a knitted fabric, paper, a corrugated cardboard based on paper, a resin plate, or a foam boat. In addition, the above-mentioned sheet material for the wave absorber is folded into a hollow three-dimensional wave absorber, so that film, non-woven fabric, woven fabric, knitted fabric, paper, or paper is used from the viewpoint of easy folding. It is preferable to use corrugated cardboard as a base material.
また、上記の電波吸収体用シート材は、例えば、フィルムなどを構成する材料に導電性材料などを添加し、それをフィルムなどの形態にしたものであってもよいし、導電性材料などを含有した樹脂を、導電性材料や磁性材料を含有しないフィルムなどにコーティングしたものであってもよいし、また、導電性材料などを含有したフィルムなどを、導電性材料や磁性材料を含有しないフィルムなどに積層したものであってもよい。当然、導電性材料などを含有したフィルムなどを、導電性材料や磁性材料を含有しない樹脂板などに積層したものであってもよい。 In addition, the above-described electromagnetic wave absorber sheet material may be obtained by adding a conductive material to a material constituting a film and the like, and forming the film into a film or the like. A film containing no conductive material or magnetic material may be coated with the contained resin, or a film containing a conductive material or the like may be coated with a film containing no conductive material or magnetic material. It may be laminated on the like. Of course, a film containing a conductive material or the like may be laminated on a resin plate that does not contain a conductive material or a magnetic material.
導電性材料や磁性材料を含有させる基材の材料としては、上記の電波吸収体用シート材の形態が、樹脂膜やフィルムである場合には、天然ゴム、イソプレンゴム、ブタジエンゴム、スチレンブタジエンゴム等のジエン系ゴムや、ブチルゴム、エチレンプロピレンゴム、ウレタンゴム、シリコーンゴム等の非ジエン系ゴム等のゴム材料や、ポリオレフィン樹脂、ポリアミド樹脂、ポリエステル樹脂、ポリエーテル樹脂、ポリイミド樹脂、ポリウレタン樹脂、ポリシロキサン樹脂、フェノール樹脂、エポキシ樹脂、アクリル樹脂、ユリア樹脂、メラミン樹脂、フッ素樹脂、ポリ塩化ビニル樹脂、ポリフェニレンサルファイド樹脂等の樹脂材料が挙げられる。 As a base material containing a conductive material or a magnetic material, natural rubber, isoprene rubber, butadiene rubber, styrene butadiene rubber when the above-mentioned sheet material for radio wave absorber is a resin film or film Rubber materials such as diene rubber such as butyl rubber, ethylene propylene rubber, urethane rubber and silicone rubber, polyolefin resin, polyamide resin, polyester resin, polyether resin, polyimide resin, polyurethane resin, poly Resin materials such as siloxane resin, phenol resin, epoxy resin, acrylic resin, urea resin, melamine resin, fluorine resin, polyvinyl chloride resin, and polyphenylene sulfide resin can be used.
また、上記の電波吸収体用シート材の形態が、織物、編物、不織布、または、紙等の繊維を主体とする構造体の場合には、導電性材料や磁性材料を含有させる基材の材料としては、ガラス繊維やセラミック繊維等の無機繊維、合成繊維、綿、麻、ウール、木材パルプといった天然繊維や、レーヨン等の半合成繊維が挙げられる。更に、合成繊維を形成するポリマーとしては、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリ乳酸、およびそれらのポリエステルの酸成分にイソフタル酸、5−ナトリウムスルホイソフタル酸、アジピン酸等を共重合した共重合ポリエステル等のポリエステルや、ナイロン6、ナイロン66、ナイロン12、ナイロン46、ナイロン6とナイロン66とを共重合した共重合ポリアミド等のポリアミドや、ポリビニルアルコールや、芳香族ポリアミドや、ポリエーテルエーテルケトンや、ポリパラフェニレンベンゾビスオキサゾールや、ポリフェニレンサルファイドや、ポリエチレンや、ポリプロピレン等を挙げることができる。難燃性向上の観点からは、上記に挙げた基材の材料のなかでも、ガラス繊維、芳香族ポリアミド繊維、ポリエーテルエーテルケトン繊維、ポリパラフェニレンベンゾビスオキサゾール繊維、ポリフェニレンサルファイド繊維等を用いることが好ましい。また、水酸化アルミニウムや水酸化マグネシウム等の無機粉末を基材の材料に添加することにより、難燃性を向上させることもできる。 In addition, in the case where the form of the sheet material for the radio wave absorber is a woven fabric, a knitted fabric, a non-woven fabric, or a structure mainly composed of fibers such as paper, a base material containing a conductive material or a magnetic material is used. Examples thereof include inorganic fibers such as glass fibers and ceramic fibers, synthetic fibers, natural fibers such as cotton, hemp, wool, and wood pulp, and semi-synthetic fibers such as rayon. Furthermore, examples of the polymer forming the synthetic fiber include polyethylene terephthalate, polybutylene terephthalate, polylactic acid, and copolymer polyester obtained by copolymerizing the acid component of those polyesters with isophthalic acid, 5-sodium sulfoisophthalic acid, adipic acid, and the like. Polyester, nylon 6, nylon 66, nylon 12, nylon 46, polyamide such as copolymerized polyamide obtained by copolymerizing nylon 6 and nylon 66, polyvinyl alcohol, aromatic polyamide, polyether ether ketone, Examples include paraphenylene benzobisoxazole, polyphenylene sulfide, polyethylene, and polypropylene. From the viewpoint of improving flame retardancy, glass fibers, aromatic polyamide fibers, polyether ether ketone fibers, polyparaphenylene benzobisoxazole fibers, polyphenylene sulfide fibers, etc. should be used among the above-mentioned base material materials. Is preferred. Moreover, a flame retardance can also be improved by adding inorganic powders, such as aluminum hydroxide and magnesium hydroxide, to the material of a base material.
上記の電波吸収体用シート材の形態の中でも、段ボールは電波吸収体用シート材中に空隙を有するため軽量であることに加え、立体形状とするのに十分なシート強度を有しているため、上記の電波吸収体用シート材の形態としては、特に好ましい。また、上記の電波吸収体用シート材の形態を段ボールとする場合には、生産性の点から、導電性材料や磁性材料を含有した紙を製造し、これをコルゲート加工によって段ボール状に加工した構成が好ましく使用される。一般的に段ボールは波型に加工された中芯紙と、上下面のライナー紙の3枚の紙で構成されるが、3枚の紙いずれにも導電性材料や磁性材料を含有しても良いし、3枚のうちいずれか1枚、もしくは2枚だけ含有しても良い。1枚だけに導電性材料や磁性材料を含有した紙を用いる場合には中芯紙に用いるのが好ましく、2枚だけ含有させる場合は、上下面のライナー紙に用いるのが好ましい。 Among the forms of the electromagnetic wave absorber sheet material described above, the corrugated cardboard is light in weight because it has voids in the electromagnetic wave absorber sheet material, and has sufficient sheet strength to form a three-dimensional shape. The form of the above-mentioned electromagnetic wave absorber sheet material is particularly preferable. In addition, when the sheet material for the radio wave absorber is made of corrugated cardboard, from the viewpoint of productivity, a paper containing a conductive material or a magnetic material is manufactured and processed into a corrugated cardboard by corrugating. A configuration is preferably used. Generally, corrugated cardboard is composed of three sheets of corrugated core paper and upper and lower liner sheets, but any of the three sheets may contain conductive or magnetic materials. It is good, and any one of the three or only two may be contained. When paper containing a conductive material or magnetic material is used for only one sheet, it is preferably used for a core paper, and when only two sheets are used, it is preferably used for upper and lower liner paper.
上記の電波吸収体用シート材の形態が樹脂膜、フィルム、不織布、織物、編物、紙または紙を基材とした段ボールである場合、その厚みは0.05mm以上5mm以下の範囲にあることが好ましい。厚みをこの範囲とすることにより、中空立体形状の電波吸収体としたときに良好な強度が得られるとともに、折り曲げ加工が容易にできるためである。 When the above-mentioned sheet material for radio wave absorber is a corrugated cardboard based on resin film, film, nonwoven fabric, woven fabric, knitted fabric, paper or paper, its thickness may be in the range of 0.05 mm or more and 5 mm or less. preferable. This is because, by setting the thickness within this range, good strength can be obtained and a bending process can be easily performed when a hollow three-dimensional electromagnetic wave absorber is obtained.
上記の電波吸収体用シート材の形態が樹脂板または発泡ボードである場合には、その厚みは1mm以上30mm以下であることが好ましく、下限しては2mm以上がより好ましく、上限としては10mm以下がより好ましい。厚みをこの範囲とすることにより、特に強度の要求される電波吸収体を必要とする場合にも対応可能な良好な強度が得られる。 When the form of the sheet material for a radio wave absorber is a resin plate or a foam board, the thickness is preferably 1 mm or more and 30 mm or less, more preferably 2 mm or more as a lower limit, and 10 mm or less as an upper limit. Is more preferable. By setting the thickness within this range, it is possible to obtain a satisfactory strength that can be used even when a radio wave absorber that particularly requires strength is required.
本発明の電波吸収体用シート材の3GHzにおける複素比誘電率は、実部εr’が7以上18以下、かつ、虚部εr”が4以上15以下の範囲にあることが好ましい。特に好ましくは、実部εr’の下限は8以上であることがより好ましく、その上限は16以下であることがより好ましい。また、虚部εr”の下限は5以上であることがより好ましく、その上限は13以下であることがより好ましい。このような範囲の複素比誘電率の電波吸収体用シート材を組み立て、上記の四角錐台形の形状とすることにより、高度な吸収性能、特に1GHz〜3GHzの高周波帯域の電波に対し優れた吸収性能を有する電波吸収体を得ることができる。一般的に、電波暗室では、数十〜数百MHzの低周波帯域の吸収を担うフェライトタイルと、GHzの高周波帯域の吸収を担うピラミッド型やクサビ型吸収体等の立体型吸収体とが組み合わせて用いられる。立体型吸収体の複素比誘電率が高すぎると、低周波帯域の反射が大きくなりフェライトタイルでの電波吸収性能が低下する。一方、複素比誘電率が低すぎると立体型吸収体において高周波帯域の電波を十分に吸収できないといった傾向にある。本発明の電波吸収体用シート材の複素比誘電率を上述の範囲とすることで、十分な電波吸収性能を実現できるようになるため、好ましい。 The complex relative permittivity at 3 GHz of the sheet material for radio wave absorber of the present invention is preferably such that the real part εr ′ is in the range of 7 to 18 and the imaginary part εr ″ is in the range of 4 to 15. Particularly preferably. The lower limit of the real part εr ′ is more preferably 8 or more, and the upper limit thereof is more preferably 16. The lower limit of the imaginary part εr ″ is more preferably 5 or more, and the upper limit thereof is More preferably, it is 13 or less. By assembling a sheet material for a radio wave absorber having a complex relative dielectric constant in such a range and making it the shape of the above-mentioned square pyramid trapezoid, it has excellent absorption performance, particularly excellent absorption for radio waves in a high frequency band of 1 GHz to 3 GHz. A radio wave absorber having performance can be obtained. Generally, in an anechoic chamber, a ferrite tile that is responsible for absorption in the low frequency band of several tens to several hundreds of MHz is combined with a three-dimensional type absorber such as a pyramid type or wedge type absorber that is responsible for absorption in the high frequency band of GHz. Used. If the complex relative permittivity of the three-dimensional absorber is too high, reflection in the low frequency band is increased and the radio wave absorption performance of the ferrite tile is lowered. On the other hand, if the complex dielectric constant is too low, the three-dimensional absorber tends to be unable to sufficiently absorb radio waves in the high frequency band. By setting the complex dielectric constant of the sheet material for a radio wave absorber of the present invention within the above range, it is preferable because sufficient radio wave absorption performance can be realized.
本実施例で用いた測定法を後述する。 The measurement method used in this example will be described later.
(1)電波吸収体用シート材の複素比誘電率
縦30cm×横30cm×厚み5mmのアルミニウム板の上面に、アルミニウム板と同一サイズかつ同一形状の発泡倍率70倍の発泡スチロール製スペーサー(厚み14mm)を上載し、このスペーサーの上にさらにアルミニウム板と同一サイズの電波吸収体用シート材を上載し、発泡スチロール製スペーサーの中心点(発泡スチロール製スペーサーの上記アルミニウム板側の面の反対側の面上かつ発泡スチロール製スペーサーの2本の対角線の交点)から1.4m離れた直上の位置に送信および受信アンテナを電波の入射角度が7°となるようにセットし、2〜4GHzの周波数範囲の電波をサンプルに入射し、ベクトルネットワークアナライザ(機種:N5230、アジレントテクノロジー社製)を用いて、入力インピーダンスを測定した。その後、電波吸収体用シート材を取り除き、上記と同様に電波吸収体用シート材を取り除いた状態の入力インピーダンスを測定し、電波吸収体用シート材がある場合とない場合との入力インピーダンスの差から、電波吸収体用シート材の複素比誘電率を算出、周波数3GHz時の複素比誘電率の実部εr’と虚部εr”を読み取った。測定は異なる電波吸収体用シート材を用いN=3で、それぞれの電波吸収体用シート材について、その任意の一辺と平行方向、および、その一辺と垂直方向の複素比誘電率の実部εr’と虚部εr”を測定し、得られた複素比誘電率の実部εr’と虚部εr”の各6つの測定値の平均値を複素比誘電率の実部εr’と虚部εr”とした。
(1) Complex relative dielectric constant of sheet material for radio wave absorber On the upper surface of an aluminum plate having a length of 30 cm, a width of 30 cm and a thickness of 5 mm, a styrofoam spacer (thickness: 14 mm) having the same size and shape as the aluminum plate and a foaming ratio of 70 times On top of this spacer, a sheet material for a radio wave absorber having the same size as the aluminum plate is further placed, and the center point of the polystyrene foam spacer (on the surface opposite to the aluminum plate side surface of the polystyrene foam spacer and Set the transmitting and receiving antennas to a position just 1.4m away from the intersection of two diagonal lines of polystyrene foam spacers) so that the incident angle of radio waves is 7 °, and sample radio waves in the frequency range of 2 to 4 GHz. The vector network analyzer (model: N5230, manufactured by Agilent Technologies) ) Was used to measure the input impedance. After that, remove the wave absorber sheet material and measure the input impedance with the wave absorber sheet material removed as above, and the difference between the input impedance with and without the wave absorber sheet material. From this, the complex relative permittivity of the sheet material for the radio wave absorber was calculated, and the real part εr ′ and the imaginary part εr ″ of the complex relative dielectric constant at the frequency of 3 GHz were read. = 3, for each radio wave absorber sheet material, the real part εr ′ and the imaginary part εr ″ of the complex relative permittivity in the direction parallel to the one side and the direction perpendicular to the one side are obtained. The average values of the six measured values of the real part εr ′ and the imaginary part εr ″ of the complex relative dielectric constant were defined as the real part εr ′ and the imaginary part εr ″ of the complex relative dielectric constant.
(2)電波吸収体の電波吸収量
縦60cm×横60cm×厚み5mmのアルミニウム板を、正方形状に4枚並べ、縦120cm×横120cmとなるように配置した。この中心点(縦120cm×横120cmのアルミニウム板の一方の面の表面上かつその2本の対角点の交点)から2.7m離れた直上の位置に送信および受信アンテナを電波の入射角度が7°となるようにセットし、1〜3GHzの周波数範囲の電波をアルミニウム板に入射し、アルミニウム板の反射レベルをベクトルネットワークアナライザ(機種:N5230、アジレントテクノロジー社製)を用いて測定した。次に、このアルミニウム板の上に、下面が60cm×60cmのサイズの正四角錐台形の電波吸収体4つを、上記のアルミニウム板の一方の面全体を覆うように置き、その電波吸収体の反射レベルを測定した。これらの測定値から次式により電波吸収体の電波吸収量(反射減衰量)を求め、1〜3GHzにおける最小値と最大値を読み取った。
電波吸収量(dB)=アルミニウム板の反射レベル(dB)−電波吸収体の反射レベル(dB)
(実施例1)
(電波吸収体用シート材)
平均繊維長3mmのポリアクリロニトリル系炭素繊維(東レ株式会社製“トレカ”(登録商標))、平均繊維長4mmのガラス繊維、木質パルプ、平均繊維長3mmの芯鞘型熱融着ポリエステル短繊維(東レ株式会社製“サフメット”(登録商標))、水酸化アルミニウムを、それぞれ1質量%、19質量%、7質量%、3質量%、70質量%の割合で水に混合してスラリーとし、そのスラリーを平面に流し込み、脱水、乾燥し、厚み130μm、坪量100g/m2の難燃紙Iを得た。
(2) Radio wave absorption amount of radio wave absorber Four aluminum plates having a length of 60 cm, a width of 60 cm, and a thickness of 5 mm were arranged in a square shape so as to be 120 cm long and 120 cm wide. The incident angle of the radio wave is set between the transmitting and receiving antennas at a position 2.7 m away from the center point (on the surface of one surface of an aluminum plate 120 cm long × 120 cm wide and the intersection of the two diagonal points). It set so that it might become 7 degrees, the electromagnetic wave of the frequency range of 1-3 GHz was injected into the aluminum plate, and the reflection level of the aluminum plate was measured using the vector network analyzer (model: N5230, Agilent Technologies). Next, on the aluminum plate, four regular quadrangular pyramid shaped wave absorbers having a size of 60 cm × 60 cm on the lower surface are placed so as to cover the entire one surface of the aluminum plate, and reflection of the wave absorber is performed. Level was measured. From these measured values, the radio wave absorption amount (reflection attenuation amount) of the radio wave absorber was obtained by the following equation, and the minimum value and the maximum value at 1 to 3 GHz were read.
Radio wave absorption (dB) = reflection level (dB) of aluminum plate−reflection level (dB) of radio wave absorber
Example 1
(Radio wave absorber sheet material)
Polyacrylonitrile-based carbon fiber with an average fiber length of 3 mm (“Torayca” (registered trademark) manufactured by Toray Industries, Inc.), glass fiber with an average fiber length of 4 mm, wood pulp, core-sheath type heat-sealable polyester short fiber with an average fiber length of 3 mm ( “Safmet” (registered trademark) manufactured by Toray Industries, Inc.) and aluminum hydroxide were mixed in water at a ratio of 1% by mass, 19% by mass, 7% by mass, 3% by mass, and 70% by mass, respectively. The slurry was poured into a flat surface, dehydrated and dried to obtain flame retardant paper I having a thickness of 130 μm and a basis weight of 100 g / m 2 .
同様にして、ポリアクリロニトリル系炭素繊維を除いた配合で、平均繊維長4mmのガラス繊維の割合を20質量%に変更し、上記と同一の方法で、厚み130μm、坪量100g/m2の難燃紙IIを得た。 In the same manner, the ratio of the glass fiber having an average fiber length of 4 mm was changed to 20% by mass with the composition excluding the polyacrylonitrile-based carbon fiber, and the same method as described above, the thickness of 130 μm and the basis weight of 100 g / m 2 was difficult. Fuel paper II was obtained.
続いて、前記難燃紙IIを熱プレスロールで波形に加工し、段ボール3層構造の波状中芯部とし、その両側を平面状の難燃紙Iと貼り合わせることによって、厚み3.0mmの段ボールシート材とした。 Subsequently, the flame retardant paper II is processed into a corrugated shape with a hot press roll to form a corrugated core portion having a corrugated cardboard three-layer structure, and both sides thereof are bonded to the planar flame retardant paper I to have a thickness of 3.0 mm. Corrugated sheet material was used.
この電波吸収体用シート材の、3GHzにおける複素比誘電率を測定した結果、実部εr’=11.3、虚部εr”=6.5であった。 As a result of measuring the complex dielectric constant at 3 GHz of the sheet material for radio wave absorber, the real part εr ′ = 11.3 and the imaginary part εr ″ = 6.5.
(電波吸収体)
この電波吸収体用シート材を裁断し、折り曲げ、斜面の側辺部、および、上底面と斜面の側辺部にクラフトテープを貼って、下底面と斜面との角度が、65.2°で、高さが35.0cm、上底面のサイズが27.7×27.7cm角、上底面の対角線の長さが39.2cm、下底面が60.0×60.0cm角、下底面の対角線の長さが84.9cmの正四角錘台形状の電波吸収体を得た。
(Radio wave absorber)
This radio wave absorber sheet material is cut and bent, and the kraft tape is attached to the sides of the slope and the sides of the top and bottom surfaces, and the angle between the bottom surface and the slope is 65.2 °. , Height is 35.0 cm, upper base size is 27.7 x 27.7 cm square, upper base diagonal length is 39.2 cm, lower base is 60.0 x 60.0 cm square, lower base diagonal A square wave trapezoidal wave absorber having a length of 84.9 cm was obtained.
この電波吸収体を4体用意し、縦120cm×縦120cm×厚さ5mmのアルミニウム板に上載して電波吸収量を測定した。
結果を表1に示すが、1〜3GHzの周波数帯域において最小18dB、最大35dBの高度な電波吸収量を有していることがわかった。
Four of these radio wave absorbers were prepared and placed on an aluminum plate having a length of 120 cm, a length of 120 cm, and a thickness of 5 mm, and the amount of radio wave absorption was measured.
The results are shown in Table 1, and it was found that the radio wave absorption amount was a minimum of 18 dB and a maximum of 35 dB in the frequency band of 1 to 3 GHz.
(実施例2)
実施例1の電波吸収体用シート材を裁断し、折り曲げ、側辺部にクラフトテープを貼って、下底面と斜面との角度が、65.2°で、高さが40.0cm、上底面のサイズが23.2×23.2cm角、上底面の対角線の長さが32.9cm、下底面が60.0×60.0cm角、下底面の対角線の長さが84.9cmの正四角錘台形状の電波吸収体を得た。
(Example 2)
The electromagnetic wave absorber sheet material of Example 1 is cut, bent, and craft tape is pasted on the side, and the angle between the bottom surface and the slope is 65.2 °, the height is 40.0 cm, and the top surface A square with a size of 23.2 × 23.2 cm, a diagonal length of the upper bottom surface of 32.9 cm, a lower bottom surface of 60.0 × 60.0 cm square, and a diagonal length of the lower bottom surface of 84.9 cm A frustum-shaped wave absorber was obtained.
この電波吸収体を4体用意し、縦120cm×縦120cm×厚さ5mmのアルミニウム板に上載して電波吸収量を測定した。
結果を表1に示すが、1〜3GHzの周波数帯域において最小19dB、最大36dBの高度な電波吸収量を有していることがわかった。
Four of these radio wave absorbers were prepared and placed on an aluminum plate having a length of 120 cm, a length of 120 cm, and a thickness of 5 mm, and the amount of radio wave absorption was measured.
The results are shown in Table 1. It was found that the radio wave absorption amount was a minimum of 19 dB and a maximum of 36 dB in the frequency band of 1 to 3 GHz.
(実施例3)
実施例1の電波吸収体用シート材を裁断し、折り曲げ、側辺部にクラフトテープを貼って、下底面と斜面との角度が、65.2°で、高さが45.0cm、上底面のサイズが19.4×19.4cm角、上底面の対角線の長さが27.4cm、下底面が60.0×60.0cm角、下底面の対角線の長さが84.9cmの正四角錘台形状の電波吸収体を得た。
(Example 3)
The electromagnetic wave absorber sheet material of Example 1 is cut, bent, and craft tape is pasted on the side, the angle between the bottom surface and the slope is 65.2 °, the height is 45.0 cm, and the top surface A square with a size of 19.4 × 19.4 cm, a diagonal length of the upper base of 27.4 cm, a lower base of 60.0 × 60.0 cm and a diagonal length of the lower base of 84.9 cm A frustum-shaped wave absorber was obtained.
この電波吸収体を4体用意し、縦120cm×縦120cm×厚さ5mmのアルミニウム板に上載して電波吸収量を測定した。
結果を表1に示すが、1〜3GHzの周波数帯域において最小20dB、最大38dBの高度な電波吸収量を有していることがわかった。
Four of these radio wave absorbers were prepared and placed on an aluminum plate having a length of 120 cm, a length of 120 cm, and a thickness of 5 mm, and the amount of radio wave absorption was measured.
The results are shown in Table 1, and it was found that they have a high radio wave absorption amount of 20 dB minimum and 38 dB maximum in the frequency band of 1 to 3 GHz.
(実施例4)
実施例1の電波吸収体用シート材を裁断し、折り曲げ、側辺部にクラフトテープを貼って、下底面と斜面との角度が、66.7°で、高さが45.0cm、上底面のサイズが21.6×21.6cm角、上底面の対角線の長さが30.5cm、下底面が60.0×60.0cm角、下底面の対角線の長さが84.9cmの正四角錘台形状の電波吸収体を得た。
Example 4
The electromagnetic wave absorber sheet material of Example 1 is cut, bent, and craft tape is pasted on the side, and the angle between the bottom surface and the slope is 66.7 °, the height is 45.0 cm, and the top surface A square with a size of 21.6 × 21.6 cm, a diagonal length of the upper bottom surface of 30.5 cm, a lower bottom surface of 60.0 × 60.0 cm square, and a diagonal length of the lower bottom surface of 84.9 cm A frustum-shaped wave absorber was obtained.
この電波吸収体を4体用意し、縦120cm×縦120cm×厚さ5mmのアルミニウム板に上載して電波吸収量を測定した。
結果を表1に示すが、1〜3GHzの周波数帯域において最小16dB、最大32dBの高度な電波吸収量を有していることがわかった。
Four of these radio wave absorbers were prepared and placed on an aluminum plate having a length of 120 cm, a length of 120 cm, and a thickness of 5 mm, and the amount of radio wave absorption was measured.
The results are shown in Table 1, and it was found that they have a high radio wave absorption amount of 16 dB minimum and 32 dB maximum in the frequency band of 1 to 3 GHz.
(実施例5)
実施例1の電波吸収体用シート材を裁断し、折り曲げ、側辺部にクラフトテープを貼って、下底面と斜面との角度が、68.0°で、高さが45.0cm、上底面のサイズが23.4×23.4cm角、上底面の対角線の長さが33.1cm、下底面が60.0×60.0cm角、下底面の対角線の長さが84.9cmの正四角錘台形状の電波吸収体を得た。
(Example 5)
The electromagnetic wave absorber sheet material of Example 1 is cut, bent, and craft tape is pasted on the side, and the angle between the bottom surface and the slope is 68.0 °, the height is 45.0 cm, and the top surface A square with a size of 23.4 × 23.4 cm, a diagonal length of the upper bottom surface of 33.1 cm, a lower bottom surface of 60.0 × 60.0 cm square, and a diagonal length of the lower bottom surface of 84.9 cm A frustum-shaped wave absorber was obtained.
この電波吸収体を4体用意し、縦120cm×縦120cm×厚さ5mmのアルミニウム板に上載して電波吸収量を測定した。
結果を表1に示すが、1〜3GHzの周波数帯域において最小15dB、最大29dBの高度な電波吸収量を有していることがわかった。
Four of these radio wave absorbers were prepared and placed on an aluminum plate having a length of 120 cm, a length of 120 cm, and a thickness of 5 mm, and the amount of radio wave absorption was measured.
The results are shown in Table 1, and it was found that they have a high radio wave absorption amount of 15 dB minimum and 29 dB maximum in the frequency band of 1 to 3 GHz.
(実施例6)
実施例1の電波吸収体用シート材を裁断し、折り曲げ、側辺部にクラフトテープを貼って、下底面と斜面との角度が、64.3°で、高さが50.0cm、上底面のサイズが11.8×11.8cm角、上底面の対角線の長さが16.7cm、下底面が60.0×60.0cm角、下底面の対角線の長さが84.9cmの正四角錘台形状の電波吸収体を得た。
(Example 6)
The electromagnetic wave absorber sheet material of Example 1 is cut, bent, and craft tape is pasted on the side, and the angle between the bottom surface and the slope is 64.3 °, the height is 50.0 cm, and the top surface A square with a size of 11.8 × 11.8 cm square, a diagonal length of the upper bottom surface of 16.7 cm, a lower bottom surface of 60.0 × 60.0 cm square, and a diagonal length of the lower bottom surface of 84.9 cm A frustum-shaped wave absorber was obtained.
この電波吸収体を4体用意し、縦120cm×縦120cm×厚さ5mmのアルミニウム板に上載して電波吸収量を測定した。
結果を表1に示すが、1〜3GHzの周波数帯域において最小17dB、最大35dBの高度な電波吸収量を有していることがわかった。
Four of these radio wave absorbers were prepared and placed on an aluminum plate having a length of 120 cm, a length of 120 cm, and a thickness of 5 mm, and the amount of radio wave absorption was measured.
The results are shown in Table 1, and it was found that they have a high radio wave absorption amount of 17 dB minimum and 35 dB maximum in the frequency band of 1 to 3 GHz.
(実施例7)
実施例1の電波吸収体用シート材を裁断し、折り曲げ、側辺部にクラフトテープを貼って、下底面と斜面との角度が、65.2°で、高さが50.0cm、上底面のサイズが13.8×13.8cm角、上底面の対角線の長さが19.5cm、下底面が60.0×60.0cm角、下底面の対角線の長さが84.9cmの正四角錘台形状の電波吸収体を得た。
(Example 7)
The electromagnetic wave absorber sheet material of Example 1 is cut, bent, and craft tape is pasted on the side, the angle between the bottom surface and the slope is 65.2 °, the height is 50.0 cm, and the top surface A square with a size of 13.8 × 13.8 cm square, a diagonal length of the upper bottom surface of 19.5 cm, a lower bottom surface of 60.0 × 60.0 cm square, and a diagonal length of the lower bottom surface of 84.9 cm A frustum-shaped wave absorber was obtained.
この電波吸収体を4体用意し、縦120cm×縦120cm×厚さ5mmのアルミニウム板に上載して電波吸収量を測定した。
結果を表2に示すが、1〜3GHzの周波数帯域において最小24dB、最大41dBの高度な電波吸収量を有していることがわかった。
Four of these radio wave absorbers were prepared and placed on an aluminum plate having a length of 120 cm, a length of 120 cm, and a thickness of 5 mm, and the amount of radio wave absorption was measured.
The results are shown in Table 2. It was found that the radio wave absorption amount was a minimum of 24 dB and a maximum of 41 dB in the frequency band of 1 to 3 GHz.
(実施例8)
実施例1の電波吸収体用シート材を裁断し、折り曲げ、側辺部にクラフトテープを貼って、下底面と斜面との角度が、66.7°で、高さが50.0cm、上底面のサイズが17.2×17.2cm角、上底面の対角線の長さが24.3cm、下底面が60.0×60.0cm角、下底面の対角線の長さが84.9cmの正四角錘台形状の電波吸収体を得た。
(Example 8)
The electromagnetic wave absorber sheet material of Example 1 is cut, bent, and craft tape is pasted on the side, and the angle between the bottom surface and the slope is 66.7 °, the height is 50.0 cm, and the top surface A square with a size of 17.2 × 17.2 cm, a diagonal length of the upper bottom surface of 24.3 cm, a lower bottom surface of 60.0 × 60.0 cm square, and a diagonal length of the lower bottom surface of 84.9 cm A frustum-shaped wave absorber was obtained.
この電波吸収体を4体用意し、縦120cm×縦120cm×厚さ5mmのアルミニウム板に上載して電波吸収量を測定した。
結果を表2に示すが、1〜3GHzの周波数帯域において最小15dB、最大37dBの高度な電波吸収量を有していることがわかった。
Four of these radio wave absorbers were prepared and placed on an aluminum plate having a length of 120 cm, a length of 120 cm, and a thickness of 5 mm, and the amount of radio wave absorption was measured.
The results are shown in Table 2, and it was found that the radio wave absorption amount was a minimum of 15 dB and a maximum of 37 dB in the frequency band of 1 to 3 GHz.
(実施例9)
実施例1の電波吸収体用シート材を裁断し、折り曲げ、側辺部にクラフトテープを貼って、下底面と斜面との角度が、68.0°で、高さが50.0cm、上底面のサイズが19.4×19.4cm角、上底面の対角線の長さが27.4cm、下底面が60.0×60.0cm角、下底面の対角線の長さが84.9cmの正四角錘台形状の電波吸収体を得た。
Example 9
The electromagnetic wave absorber sheet material of Example 1 is cut, bent, and craft tape is pasted on the side portion. The angle between the bottom surface and the slope is 68.0 °, the height is 50.0 cm, and the top surface. A square with a size of 19.4 × 19.4 cm, a diagonal length of the upper base of 27.4 cm, a lower base of 60.0 × 60.0 cm and a diagonal length of the lower base of 84.9 cm A frustum-shaped wave absorber was obtained.
この電波吸収体を4体用意し、縦120cm×縦120cm×厚さ5mmのアルミニウム板に上載して電波吸収量を測定した。
結果を表2に示すが、1〜3GHzの周波数帯域において最小15dB、最大31dBの高度な電波吸収量を有していることがわかった。
Four of these radio wave absorbers were prepared and placed on an aluminum plate having a length of 120 cm, a length of 120 cm, and a thickness of 5 mm, and the amount of radio wave absorption was measured.
The results are shown in Table 2, and it was found that the radio wave absorption amount was a minimum of 15 dB and a maximum of 31 dB in the frequency band of 1 to 3 GHz.
(実施例10)
(電波吸収体用シート材)
実施例1と同様にして、平均繊維長3mmのポリアクリロニトリル系炭素繊維(東レ株式会社製“トレカ”(登録商標))、平均繊維長4mmのガラス繊維を、それぞれ0.6質量%、19.4質量%に変更した以外は、難燃紙Iと同様にして、厚み130μm、坪量100g/m2の難燃紙IIIを得た。
(Example 10)
(Radio wave absorber sheet material)
In the same manner as in Example 1, polyacrylonitrile-based carbon fiber having an average fiber length of 3 mm (“Torayca” (registered trademark) manufactured by Toray Industries, Inc.) and glass fiber having an average fiber length of 4 mm were each 0.6 mass% and 19. A flame retardant paper III having a thickness of 130 μm and a basis weight of 100 g / m 2 was obtained in the same manner as the flame retardant paper I except that the content was changed to 4% by mass.
続いて、実施例1で用いた難燃紙IIを熱プレスロールで波形に加工し、段ボール3層構造の波状中芯部とし、その両側を平面状の難燃紙IIIと貼り合わせることによって、厚み3.0mmの段ボールシート材とした。 Subsequently, by processing the flame retardant paper II used in Example 1 into a corrugated shape with a hot press roll, forming a corrugated core portion of a corrugated cardboard three-layer structure, and laminating both sides thereof with the planar flame retardant paper III, A corrugated sheet material having a thickness of 3.0 mm was used.
この電波吸収体用シート材の、3GHzにおける複素比誘電率を測定した結果、実部εr’=6.0、虚部εr”=3.5であった。 As a result of measuring the complex relative dielectric constant at 3 GHz of the sheet material for radio wave absorber, the real part εr ′ = 6.0 and the imaginary part εr ″ = 3.5.
(電波吸収体)
上記の電波吸収体用シート材を裁断し、折り曲げ、側辺部にクラフトテープを貼って、下底面と斜面との角度が、65.2°で、高さが50.0cm、上底面のサイズが13.8×13.8cm角、上底面の対角線の長さが19.5cm、下底面が60.0×60.0cm角、下底面の対角線の長さが84.9cmの正四角錘台形状の電波吸収体を得た。
(Radio wave absorber)
The above electromagnetic wave absorber sheet material is cut, bent, and craft tape is attached to the sides. The angle between the bottom surface and the slope is 65.2 °, the height is 50.0 cm, and the size of the top surface. Is a square square frustum with 13.8 × 13.8 cm square, diagonal length of the upper bottom surface of 19.5 cm, lower bottom surface of 60.0 × 60.0 cm square, and diagonal length of the lower bottom surface of 84.9 cm A shaped wave absorber was obtained.
この電波吸収体を4体用意し、縦120cm×縦120cm×厚さ5mmのアルミニウム板に上載して電波吸収量を測定した。
結果を表2に示すが、1〜3GHzの周波数帯域において最小14dB、最大27dBの吸収量を有しており、他の実施例に比べやや劣るが、高い電波吸収量を有していることがわかった。
Four of these radio wave absorbers were prepared and placed on an aluminum plate having a length of 120 cm, a length of 120 cm, and a thickness of 5 mm, and the amount of radio wave absorption was measured.
The results are shown in Table 2, and have a minimum 14 dB and a maximum 27 dB absorption in the frequency band of 1 to 3 GHz, which is slightly inferior to the other examples, but has a high radio wave absorption. all right.
(実施例11)
実施例1の電波吸収体用シート材を裁断し、折り曲げ、側辺部にクラフトテープを貼って、下底面と斜面との角度が、65.2°で、高さが55.0cm、上底面のサイズが9.2×9.2cm角、上底面の対角線の長さが13.0cm、下底面が60.0×60.0cm角、下底面の対角線の長さが84.9cmの正四角錘台形状の電波吸収体を得た。
(Example 11)
The electromagnetic wave absorber sheet material of Example 1 is cut, bent, and craft tape is pasted on the side, the angle between the bottom surface and the slope is 65.2 °, the height is 55.0 cm, and the top surface A square with a size of 9.2 × 9.2 cm square, a diagonal length of the upper bottom surface of 13.0 cm, a lower bottom surface of 60.0 × 60.0 cm square, and a diagonal length of the lower bottom surface of 84.9 cm A frustum-shaped wave absorber was obtained.
この電波吸収体を4体用意し、縦120cm×縦120cm×厚さ5mmのアルミニウム板に上載して電波吸収量を測定した。
結果を表2に示すが、1〜3GHzの周波数帯域において最小21dB、最大39dBの高度な電波吸収量を有していることがわかった。
Four of these radio wave absorbers were prepared and placed on an aluminum plate having a length of 120 cm, a length of 120 cm, and a thickness of 5 mm, and the amount of radio wave absorption was measured.
The results are shown in Table 2, and it was found that they have a high level of radio wave absorption of a minimum of 21 dB and a maximum of 39 dB in the frequency band of 1 to 3 GHz.
(実施例12)
実施例1の電波吸収体用シート材を裁断し、折り曲げ、側辺部にクラフトテープを貼って、下底面と斜面との角度が、65.2°で、高さが64.0cm、上底面のサイズが0.9×0.9cm角、上底面の対角線の長さが1.3cm、下底面が60.0×60.0cm角、下底面の対角線の長さが84.9cmの正四角錘台形状の電波吸収体を得た。
(Example 12)
The electromagnetic wave absorber sheet material of Example 1 is cut, bent, and craft tape is pasted on the side, the angle between the bottom surface and the slope is 65.2 °, the height is 64.0 cm, and the top surface A square with a size of 0.9 × 0.9 cm square, a diagonal length of the upper bottom surface of 1.3 cm, a lower bottom surface of 60.0 × 60.0 cm square and a diagonal length of the lower bottom surface of 84.9 cm A frustum-shaped wave absorber was obtained.
この電波吸収体を4体用意し、縦120cm×縦120cm×厚さ5mmのアルミニウム板に上載して電波吸収量を測定した。
結果を表2に示すが、1〜3GHzの周波数帯域において最小19dB、最大38dBの高度な電波吸収量を有していることがわかった。
(比較例1)
実施例1の電波吸収体用シート材を裁断し、折り曲げ、側辺部にクラフトテープを貼って、下底面と斜面との角度が、63.4°で、高さが45.0cm、上底面のサイズが15.0×15.0cm角、上底面の対角線の長さが21.2cm、下底面が60.0×60.0cm角、下底面の対角線の長さが84.9cmの正四角錘台形状の電波吸収体を得た。
Four of these radio wave absorbers were prepared and placed on an aluminum plate having a length of 120 cm, a length of 120 cm, and a thickness of 5 mm, and the amount of radio wave absorption was measured.
The results are shown in Table 2, and it was found that the radio wave absorption amount was a minimum of 19 dB and a maximum of 38 dB in the frequency band of 1 to 3 GHz.
(Comparative Example 1)
The electromagnetic wave absorber sheet material of Example 1 is cut, bent, and craft tape is pasted on the side, and the angle between the bottom surface and the slope is 63.4 °, the height is 45.0 cm, and the top surface A square with a size of 15.0 × 15.0 cm square, a diagonal length of the upper bottom surface of 21.2 cm, a lower bottom surface of 60.0 × 60.0 cm square, and a diagonal length of the lower bottom surface of 84.9 cm A frustum-shaped wave absorber was obtained.
この電波吸収体を4体用意し、縦120cm×縦120cm×厚さ5mmのアルミニウム板に上載して電波吸収量を測定した。
結果を表3に示すが、1〜3GHzの周波数帯域において最小11dB、最大24dBの電波吸収量であり、実施例の電波吸収体に比べ電波吸収性能に劣るものであった。
Four of these radio wave absorbers were prepared and placed on an aluminum plate having a length of 120 cm, a length of 120 cm, and a thickness of 5 mm, and the amount of radio wave absorption was measured.
The results are shown in Table 3, and the radio wave absorption amount is a minimum of 11 dB and a maximum of 24 dB in the frequency band of 1 to 3 GHz, which is inferior to the radio wave absorber of the example.
(比較例2)
実施例1の電波吸収体用シート材を裁断し、折り曲げ、側辺部にクラフトテープを貼って、下底面と斜面との角度が、63.4°で、高さが50.0cm、上底面のサイズが10.0×10.0cm角、上底面の対角線の長さが14.1cm、下底面が60.0×60.0cm角、下底面の対角線の長さが84.9cmの正四角錘台形状の電波吸収体を得た。
(Comparative Example 2)
The electromagnetic wave absorber sheet material of Example 1 is cut, bent, and craft tape is pasted on the side, the angle between the bottom surface and the slope is 63.4 °, the height is 50.0 cm, and the top surface A square with a size of 10.0 × 10.0 cm square, a diagonal length of the upper bottom surface of 14.1 cm, a lower bottom surface of 60.0 × 60.0 cm square and a diagonal length of the lower bottom surface of 84.9 cm A frustum-shaped wave absorber was obtained.
この電波吸収体を4体用意し、縦120cm×縦120cm×厚さ5mmのアルミニウム板に上載して電波吸収量を測定した。
結果を表3に示すが、1〜3GHzの周波数帯域において最小10dB、最大26dBの電波吸収量であり、実施例の電波吸収体に比べ電波吸収性能に劣るものであった。
Four of these radio wave absorbers were prepared and placed on an aluminum plate having a length of 120 cm, a length of 120 cm, and a thickness of 5 mm, and the amount of radio wave absorption was measured.
The results are shown in Table 3, and the radio wave absorption amount is 10 dB minimum and 26 dB maximum in the frequency band of 1 to 3 GHz, which is inferior to the radio wave absorber of the example.
(比較例3)
実施例1の電波吸収体用シート材を裁断し、折り曲げ、側辺部にクラフトテープを貼って、下底面と斜面との角度が、68.5°で、高さが45.0cm、上底面のサイズが24.4×24.4cm角、上底面の対角線の長さが34.5cm、下底面が60.0×60.0cm角、下底面の対角線の長さが84.9cmの正四角錘台形状の電波吸収体を得た。
(Comparative Example 3)
The electromagnetic wave absorber sheet material of Example 1 is cut, bent, and craft tape is pasted on the side, the angle between the bottom surface and the slope is 68.5 °, the height is 45.0 cm, and the top surface Is a square having a size of 24.4 × 24.4 cm, a diagonal length of the upper bottom surface of 34.5 cm, a lower bottom surface of 60.0 × 60.0 cm square, and a diagonal length of the lower bottom surface of 84.9 cm A frustum-shaped wave absorber was obtained.
この電波吸収体を4体用意し、縦120cm×縦120cm×厚さ5mmのアルミニウム板に上載して電波吸収量を測定した。
結果を表3に示すが、1〜3GHzの周波数帯域において最小10dB、最大24dBの電波吸収量であり、実施例の電波吸収体に比べ電波吸収性能に劣るものであった。
Four of these radio wave absorbers were prepared and placed on an aluminum plate having a length of 120 cm, a length of 120 cm, and a thickness of 5 mm, and the amount of radio wave absorption was measured.
The results are shown in Table 3, and the radio wave absorption amount is 10 dB minimum and 24 dB maximum in the frequency band of 1 to 3 GHz, which is inferior to the radio wave absorber of the example.
(比較例4)
実施例1の電波吸収体用シート材を裁断し、折り曲げ、側辺部にクラフトテープを貼って、下底面と斜面との角度が、68.5°で、高さが50.0cm、上底面のサイズが20.5×20.5cm角、上底面の対角線の長さが29.0cm、下底面が60.0×60.0cm角、下底面の対角線の長さが84.9cmの正四角錘台形状の電波吸収体を得た。
(Comparative Example 4)
The electromagnetic wave absorber sheet material of Example 1 is cut, bent, and craft tape is pasted on the side, the angle between the bottom surface and the slope is 68.5 °, the height is 50.0 cm, and the top surface A square with a size of 20.5 × 20.5 cm, a diagonal length of the upper bottom surface of 29.0 cm, a lower bottom surface of 60.0 × 60.0 cm square, and a diagonal length of the lower bottom surface of 84.9 cm A frustum-shaped wave absorber was obtained.
この電波吸収体を4体用意し、縦120cm×縦120cm×厚さ5mmのアルミニウム板に上載して電波吸収量を測定した。
結果を表3に示すが、1〜3GHzの周波数帯域において最小11dB、最大25dBの電波吸収量であり、実施例の電波吸収体に比べ電波吸収性能に劣るものであった。
Four of these radio wave absorbers were prepared and placed on an aluminum plate having a length of 120 cm, a length of 120 cm, and a thickness of 5 mm, and the amount of radio wave absorption was measured.
The results are shown in Table 3, and the radio wave absorption amount is a minimum of 11 dB and a maximum of 25 dB in the frequency band of 1 to 3 GHz, which is inferior to the radio wave absorber of the example.
(比較例5)
実施例1の電波吸収体用シート材を裁断し、折り曲げ、側辺部にクラフトテープを貼って、下底面と斜面との角度が、65.2°で、高さが30.0cm、上底面のサイズが32.4×32.4cm角、上底面の対角線の長さが45.8cm、下底面が60.0×60.0cm角、下底面の対角線の長さが84.9cmの正四角錘台形状の電波吸収体を得た。
(Comparative Example 5)
The electromagnetic wave absorber sheet material of Example 1 is cut, bent, and craft tape is pasted on the side, the angle between the bottom surface and the slope is 65.2 °, the height is 30.0 cm, and the top surface A square with a size of 32.4 × 32.4 cm square, a diagonal length of the upper bottom surface of 45.8 cm, a lower bottom surface of 60.0 × 60.0 cm square, and a diagonal length of the lower bottom surface of 84.9 cm A frustum-shaped wave absorber was obtained.
この電波吸収体を4体用意し、縦120cm×縦120cm×厚さ5mmのアルミニウム板に上載して電波吸収量を測定した。
結果を表3に示すが、1〜3GHzの周波数帯域において最小9dB、最大25dBの電波吸収量であり、実施例の電波吸収体に比べ電波吸収性能に劣るものであった。
Four of these radio wave absorbers were prepared and placed on an aluminum plate having a length of 120 cm, a length of 120 cm, and a thickness of 5 mm, and the amount of radio wave absorption was measured.
The results are shown in Table 3, and the radio wave absorption amount is 9 dB minimum and 25 dB maximum in the frequency band of 1 to 3 GHz, which is inferior to the radio wave absorber of the example.
(比較例6)
実施例1の電波吸収体用シート材を裁断し、折り曲げ、側辺部にクラフトテープを貼って、下底面と斜面との角度が、65.2°で、高さが115.0cm、上底面のサイズが13.8×13.8cm角、上底面の対角線の長さが19.5cm、下底面が120.0×120.0cm角、下底面の対角線の長さが169.7cmの正四角錘台形状の電波吸収体を得た。
(Comparative Example 6)
The electromagnetic wave absorber sheet material of Example 1 is cut, bent, and craft tape is pasted on the side, and the angle between the bottom surface and the slope is 65.2 °, the height is 115.0 cm, and the top surface A square with a size of 13.8 × 13.8 cm square, a diagonal length of the upper bottom surface of 19.5 cm, a lower bottom surface of 120.0 × 120.0 cm square, and a diagonal length of the lower bottom surface of 169.7 cm A frustum-shaped wave absorber was obtained.
この電波吸収体を4体用意し、縦240cm×縦240cm×厚さ5mmのアルミニウム板に上載して電波吸収量を測定した。
結果を表3に示すが、1〜3GHzの周波数帯域において最小12dB、最大26dBの電波吸収量であり、実施例の電波吸収体に比べ電波吸収性能に劣るものであった。
Four of these radio wave absorbers were prepared and placed on an aluminum plate having a length of 240 cm x length of 240 cm and a thickness of 5 mm, and the amount of radio wave absorption was measured.
The results are shown in Table 3. The radio wave absorption amount is 12 dB minimum and 26 dB maximum in the frequency band of 1 to 3 GHz, which is inferior to the radio wave absorber of the example.
(比較例7)
実施例1の電波吸収体用シート材を裁断し、折り曲げ、側辺部にクラフトテープを貼って、下底面と斜面との角度が、63.4°で、高さが30.0cm、上底面のサイズが30.0×30.0cm角、上底面の対角線の長さが42.4cm、下底面が60.0×60.0cm角、下底面の対角線の長さが84.9cmの正四角錘台形状の電波吸収体を得た。
(Comparative Example 7)
The electromagnetic wave absorber sheet material of Example 1 is cut, bent, and craft tape is pasted on the side, and the angle between the bottom surface and the slope is 63.4 °, the height is 30.0 cm, and the top surface A square with a size of 30.0 × 30.0 cm, a diagonal length of the upper bottom surface of 42.4 cm, a lower bottom surface of 60.0 × 60.0 cm square, and a diagonal length of the lower bottom surface of 84.9 cm A frustum-shaped wave absorber was obtained.
この電波吸収体を4体用意し、縦120cm×縦120cm×厚さ5mmのアルミニウム板に上載して電波吸収量を測定した。
結果を表3に示すが、1〜3GHzの周波数帯域において最小7dB、最大18dBの電波吸収量であり、実施例の電波吸収体に比べ電波吸収性能に非常に劣るものであった。
Four of these radio wave absorbers were prepared and placed on an aluminum plate having a length of 120 cm, a length of 120 cm, and a thickness of 5 mm, and the amount of radio wave absorption was measured.
The results are shown in Table 3, and the radio wave absorption amount is 7 dB minimum and 18 dB maximum in the frequency band of 1 to 3 GHz, which is very inferior to the radio wave absorber of the example.
本発明の電波吸収体は、高度な電波吸収性能、特に1GHz〜3GHzの高周波帯域の電波に対し優れた電波吸収性能を有し、たとえば、電波暗室等で好適に用いられる。 The radio wave absorber of the present invention has high radio wave absorption performance, particularly excellent radio wave absorption performance for radio waves in a high frequency band of 1 GHz to 3 GHz, and is preferably used in, for example, an anechoic chamber.
1:上面
2:下面
3:斜面
4:電波吸収体用シート材
5:入射電波
6:第1の電波吸収体
7:第2の電波吸収体
8:反射電波
9:反射電波
10:放射電波
A:下面と斜面との角度
B:電波吸収体の高さ
M:入射角
N:反射角
1: upper surface 2: lower surface 3: slope 4: sheet material for radio wave absorber 5: incident radio wave 6: first radio wave absorber 7: second radio wave absorber 8: reflected radio wave 9: reflected radio wave 10: radiated radio wave A : Angle B between bottom surface and slope B: Height of radio wave absorber M: Incident angle N: Reflection angle
Claims (4)
前記下面と前記斜面との角度が64°以上68°以下であり、
高さが35cm以上105cm以下である電波吸収体。 A quadrangular pyramid shaped wave absorber having an upper surface, a lower surface and four inclined surfaces;
The angle between the lower surface and the slope is 64 ° or more and 68 ° or less,
A radio wave absorber having a height of 35 cm to 105 cm.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015021846A JP2016146374A (en) | 2015-02-06 | 2015-02-06 | Electromagnetic wave absorber |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015021846A JP2016146374A (en) | 2015-02-06 | 2015-02-06 | Electromagnetic wave absorber |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2016146374A true JP2016146374A (en) | 2016-08-12 |
Family
ID=56686412
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015021846A Pending JP2016146374A (en) | 2015-02-06 | 2015-02-06 | Electromagnetic wave absorber |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2016146374A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020167349A (en) * | 2019-03-29 | 2020-10-08 | 日東電工株式会社 | Cover, covered component and radar device |
CN112986934A (en) * | 2021-02-18 | 2021-06-18 | 南京航天波平电子科技有限公司 | Low scattering characteristic wave-absorbing pyramid structure |
CN114142246A (en) * | 2021-11-24 | 2022-03-04 | 中国人民解放军空军工程大学 | Broadband wide-angle metamaterial wave absorber based on gradual impedance and preparation method |
-
2015
- 2015-02-06 JP JP2015021846A patent/JP2016146374A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020167349A (en) * | 2019-03-29 | 2020-10-08 | 日東電工株式会社 | Cover, covered component and radar device |
CN112986934A (en) * | 2021-02-18 | 2021-06-18 | 南京航天波平电子科技有限公司 | Low scattering characteristic wave-absorbing pyramid structure |
CN114142246A (en) * | 2021-11-24 | 2022-03-04 | 中国人民解放军空军工程大学 | Broadband wide-angle metamaterial wave absorber based on gradual impedance and preparation method |
CN114142246B (en) * | 2021-11-24 | 2023-06-23 | 中国人民解放军空军工程大学 | Broadband wide-angle metamaterial wave absorber based on gradual change impedance and preparation method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4346360B2 (en) | Sheet material for radio wave absorber and radio wave absorber | |
JP5496879B2 (en) | Composite wave absorber | |
JP2016146374A (en) | Electromagnetic wave absorber | |
US6359581B2 (en) | Electromagnetic wave abosrber | |
US3234549A (en) | Absorber for radio waves | |
WO2011016109A1 (en) | Wave absorber | |
KR102213841B1 (en) | Electro-magnetic wave absorber and manufacturing method thereof | |
JP2009088107A (en) | Radio wave absorber, its accommodating method, and radio wave dark room | |
JP4684699B2 (en) | Radio wave absorbing sheet material and radio wave absorber using the same | |
JP6519317B2 (en) | Radio wave absorber | |
JP2012191183A (en) | Sheet material for radio wave absorber and radio wave absorber | |
JP6089625B2 (en) | Sheet material for radio wave absorber and radio wave absorber using the same | |
JPS61189699A (en) | Radio wave absorbent element | |
JPH07193388A (en) | Micro wave and millimeter wave absorber | |
KR101787845B1 (en) | Method of preparing Sound absorption Korean Paper board | |
TWI374007B (en) | Electromagnetic wave absorbing sheet material and electromagnetic wave absorbin body using it | |
JP5221178B2 (en) | Radio wave absorber | |
JP7445912B2 (en) | radio wave absorber | |
JP2001244686A (en) | Radio wave absorber, radio wave dark box, radio wave darkroom, radio wave absorption panel, and radio wave absorbing screen | |
JP5953798B2 (en) | Sheet material for radio wave absorber and radio wave absorber | |
JP5953799B2 (en) | Sheet material for radio wave absorber and radio wave absorber | |
JP4422980B2 (en) | Radio wave absorber | |
JPH09275295A (en) | Radio wave absorbent | |
CN206267337U (en) | A kind of absorbing material structure suitable for low-frequency range darkroom | |
RU2510951C1 (en) | Multifunctional electromagnetic wave absorber |