JPH07302991A - Porous ferrite radio-wave absorber - Google Patents

Porous ferrite radio-wave absorber

Info

Publication number
JPH07302991A
JPH07302991A JP11343694A JP11343694A JPH07302991A JP H07302991 A JPH07302991 A JP H07302991A JP 11343694 A JP11343694 A JP 11343694A JP 11343694 A JP11343694 A JP 11343694A JP H07302991 A JPH07302991 A JP H07302991A
Authority
JP
Japan
Prior art keywords
radio
ferrite
radio wave
wave absorber
porous ferrite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11343694A
Other languages
Japanese (ja)
Inventor
Toshikatsu Hayashi
利勝 林
Hiroshi Kawamoto
博 河本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Riken Corp
Original Assignee
Riken Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Riken Corp filed Critical Riken Corp
Priority to JP11343694A priority Critical patent/JPH07302991A/en
Publication of JPH07302991A publication Critical patent/JPH07302991A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a radio-wave absorber which is provided with a radio-wave absorption characteristic at 20dB in a high-frequency region of 1 to 20GHz and which is nonflammable, small and lightweight by a method wherein the shape of a porous ferrite is formed to be a pyramid shape or a triangular prism shape. CONSTITUTION:The frequency characteristic of the permeability of an Ni-Zn ferrite becomes a higher-frequency characteristic the more an Ni ratio is increased. Consequently, when a composition whose Ni ratio is increased is used as a material, the radio- wave absorption characteristic in a high-frequency region of a porous ferrite can be improved. For example, when NixZn1-xFe2O4 (where x=0.36 to 1.00) is used as the material of a porous ferrite, its radio-wave absorption characteristic in a high-frequency region can be increased. In addition, pyramid-shaped radio-wave absorbers 1 whose bottom face is 100X100mm and whose height is 100mm are formed of a porous ferrite at a porosity of 60%, they are attached to one face of a reflection board 2 without leaving any gap, radio waves are made to impinge, and an absorption factor is measured. As a result, it is possible to obtain a radio-wave absorber whose absorption band at 20dB in a Ni ratio of x=0.36 or higher is 1 to 20GHz and which is small and excellent.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高周波数帯域で優れた
電波吸収特性を有し、軽量、小型、不燃性の電波吸収体
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lightweight, compact, nonflammable electromagnetic wave absorber having excellent electromagnetic wave absorption characteristics in a high frequency band.

【0002】[0002]

【従来の技術】電波吸収体としては、磁気損失を利用し
たフェライトや、誘電損失を持つカーボンなどをウレタ
ンなどに含浸させたものや、それをピラミッド状または
三角プリズム状に形成したもの(以後「カーボン含浸タ
イプ」と呼ぶ)などが製品化されている。その電波吸収
体を反射板面に隙間なく並べて構成した電波吸収壁は、
電波の反射がない電波暗室などに応用されている。
2. Description of the Related Art As an electromagnetic wave absorber, a ferrite that uses magnetic loss, carbon that has a dielectric loss, or the like is impregnated in urethane, or one that is formed into a pyramid shape or a triangular prism shape. We call it "carbon impregnated type"). The electromagnetic wave absorbing wall, which is constructed by arranging the electromagnetic wave absorbers on the reflector surface without any gap,
It is applied to anechoic chambers where there is no reflection of radio waves.

【0003】上述のカーボン含浸タイプは、ウレタンを
ピラミッド状または三角プリズム状に成形しているた
め、経時的に先端部が変形したり、簡単に燃える等の問
題点がある。耐燃性を増すために難燃剤を塗布すること
も行なわれてはいるが、経時変化が大きく数年で交換が
必要となる。
The above-mentioned carbon impregnated type has a problem in that the tip portion is deformed with time and is easily burned because urethane is molded into a pyramid shape or a triangular prism shape. Although a flame retardant has been applied to increase the flame resistance, the change over time is large and replacement is required within several years.

【0004】ところで、電波吸収体は、通常、電波吸収
特性として、20dB以上の吸収率を要求されるが、カー
ボン含浸タイプのみでの場合、電波吸収特性は低周波帯
域(30M〜50MHz)での吸収特性が低く、電波吸収
体の厚さが1m以上となるなどの問題点を持っている。
フェライトタイルの場合、6〜8mmの厚さで、20dB以
上の吸収率を示す周波数帯域幅は、最多でも30M〜6
00MHz前後であり、フェライトとカーボン含浸タイプ
とを組合せた場合でも、厚さが60cm以上となる問題点
がある。
By the way, a radio wave absorber is usually required to have an absorption rate of 20 dB or more as a radio wave absorption characteristic. However, in the case of only a carbon impregnated type, the radio wave absorption characteristic has a low frequency band (30 M to 50 MHz). It has problems such as low absorption characteristics and a thickness of the electromagnetic wave absorber of 1 m or more.
In the case of ferrite tile, the frequency bandwidth showing the absorption rate of 20 dB or more at a thickness of 6 to 8 mm is 30 M to 6 at the maximum.
The frequency is around 00 MHz, and there is a problem that the thickness becomes 60 cm or more even when the ferrite and the carbon-impregnated type are combined.

【0005】電波暗室は、電子機器から放射される電磁
波ノイズを測定する半無響室と電子機器等の耐ノイズ性
を試験する全無響室とに大別される。耐ノイズ性試験で
は、高電界を掛けるため、電波吸収体が発熱するという
問題があり、電波吸収体が不燃性であることは極めて重
要である。
An anechoic chamber is roughly classified into a semi-anechoic chamber for measuring electromagnetic noise emitted from electronic devices and a fully anechoic chamber for testing noise resistance of electronic devices. In the noise resistance test, since a high electric field is applied, there is a problem that the radio wave absorber generates heat, and it is extremely important that the radio wave absorber is nonflammable.

【0006】また、電波吸収体の厚さが厚くなること
は、電波暗室等の室内の有効面積が狭くなることであ
り、建屋の大きさが大きくなり、敷地、建造費が増大す
るという大きな欠点がある。
Further, the increase in the thickness of the electromagnetic wave absorber means that the effective area in the room such as the anechoic chamber is narrowed, the size of the building is increased, and the site and the construction cost are increased. There is.

【0007】さらに近年においては、電波利用の多様化
は電子レンジや移動無線に代表されるようにマイクロ波
領域に迄及び、電波公害対策の一つとして、10GHz以
上20GHz程度までのマイクロ波領域においても有効な
電波吸収体、さらには電波暗室の必要性が高まってきて
いる。
Further, in recent years, the diversification of the use of radio waves has spread to the microwave range as represented by microwave ovens and mobile radio, and as one of the measures against radio wave pollution, in the microwave range from 10 GHz to about 20 GHz. The need for effective electromagnetic wave absorbers and anechoic chambers is increasing.

【0008】[0008]

【発明が解決しようとする課題】本発明は、上記の実情
にかんがみ、1G〜20GHzの高周波帯域において20
dBの電波吸収特性を有し、不燃性で、小型、軽量、耐久
性に優れた電波吸収体を提供することを課題とする。
SUMMARY OF THE INVENTION In consideration of the above-mentioned circumstances, the present invention has been proposed in the high frequency band of 1 to 20 GHz.
It is an object of the present invention to provide a non-flammable, small-sized, lightweight, and excellent radio wave absorber having a radio wave absorption characteristic of dB.

【0009】[0009]

【課題を解決するための手段】上記の課題を解決するた
め、本発明の電波吸収体は、フェライトを多孔質化した
材料で形成し、1G〜20GHzの周波数帯域で20dB以
上の電波吸収特性を持たせるようにした。
In order to solve the above problems, the electromagnetic wave absorber of the present invention is made of a material in which ferrite is made porous, and has an electromagnetic wave absorption characteristic of 20 dB or more in the frequency band of 1 GHz to 20 GHz. I tried to have it.

【0010】上記の多孔質フェライトの形状は、ピラミ
ッド状、または三角プリズム状とするのが有利である。
The above-mentioned porous ferrite is advantageously shaped like a pyramid or a triangular prism.

【0011】上記の多孔質フェライトの材質は、Nix Zn
1-x Fe2O4(X=0.36〜1.00)の組成から成るフェラ
イトとすることが、高周波帯域での電波吸収特性を高め
る上で好ましい。
The material of the above-mentioned porous ferrite is Ni x Zn.
It is preferable to use ferrite having a composition of 1-x Fe 2 O 4 (X = 0.36 to 1.00) in order to improve radio wave absorption characteristics in a high frequency band.

【0012】上記の多孔質フェライトの気孔率は重量及
び加工上の見地から30〜90%とする必要がある。
The porosity of the above porous ferrite must be 30 to 90% from the viewpoint of weight and processing.

【0013】[0013]

【作用】一般に、複素比透磁率μr=μ′−jμ″(ま
たは損失角 tanδ=μ″/μ′)及び複素比誘電率εr
=ε′−jε″(または損失角 tanδ=ε″/ε′)
は、高周波における物質の基本特性である。複素比透磁
率及び複素比誘電率が分れば、その物質の反射率(入射
電波が物質に垂直入射した場合に物質表面で反射される
割合)が求められ、また物質の吸収特性として知ること
ができる。
In general, complex relative permeability μr = μ'-jμ "(or loss angle tan δ = μ" / μ ') and complex relative permittivity εr
= Ε′-jε ″ (or loss angle tanδ = ε ″ / ε ′)
Is the basic property of a material at high frequencies. If the complex relative permeability and complex relative permittivity are known, the reflectance of the substance (the ratio of the incident radio wave reflected by the surface of the substance when vertically incident on the substance) can be obtained, and also known as the absorption characteristics of the substance. You can

【0014】多孔質フェライトは、フェライトの磁気特
性を利用して吸収効果を向上させるため、その電波吸収
特性は材料となるフェライトの比透磁率の周波数特性に
依存する。従って、マイクロ波以上の周波数帯で吸収効
果を得るには、比透磁率の損失項のピークが高い周波数
であるほど向上する。また、多孔質化により比誘電率を
下げることができ、高周波での電波吸収特性を改善して
いる。
Since the porous ferrite utilizes the magnetic characteristics of ferrite to improve the absorption effect, its radio wave absorption characteristics depend on the frequency characteristics of the relative permeability of the material ferrite. Therefore, in order to obtain the absorption effect in the frequency band higher than the microwave, the higher the frequency is, the higher the peak of the loss term of the relative permeability is. In addition, the relative permittivity can be lowered by making it porous, and the radio wave absorption characteristics at high frequencies are improved.

【0015】本発明は、高周波特性のNi−Znフェライト
を材質とした多孔質フェライトで電波吸収体を形成した
ことにより、高周波での電波吸収特性を改善したもので
ある。さらに、電波吸収体の形状をピラミッド状、又は
三角プリズム状にしたことにより、高周波での電波吸収
特性がさらに改善され、小型、軽量化を図ることができ
る。
The present invention improves radio wave absorption characteristics at high frequencies by forming a radio wave absorber with porous ferrite made of Ni-Zn ferrite having high frequency characteristics. Furthermore, by making the shape of the radio wave absorber into a pyramid shape or a triangular prism shape, the radio wave absorption characteristics at high frequencies can be further improved, and the size and weight can be reduced.

【0016】Ni−Zn系フェライトの比透磁率の周波数特
性は、組成により変化し、図1に示すように、Ni比を多
くした組成ほど高周波特性となる。従って、Ni比を多く
した組成を材料とすることにより、多孔質フェライトの
高周波域の電波吸収特性を改善できる。したがって、電
波吸収体を形成する多孔質フェライトの材質をNix Zn
1-x Fe2O4(X=0.36〜1.00)とすることにより、高
周波域での電波吸収効果を高めることができる。Ni比が
0.36以下では、低周波域の電波吸収特性はよいが、高
周波域での特性は悪い。
The frequency characteristic of the relative permeability of the Ni-Zn ferrite changes depending on the composition. As shown in FIG. 1, the composition having a higher Ni ratio has a higher frequency characteristic. Therefore, by using a material having a high Ni ratio as a material, it is possible to improve the radio wave absorption characteristics of the porous ferrite in the high frequency range. Therefore, the material of the porous ferrite forming the electromagnetic wave absorber should be Ni x Zn.
By using 1-x Fe 2 O 4 (X = 0.36 to 1.00), it is possible to enhance the radio wave absorption effect in the high frequency range. Ni ratio is
Below 0.36, the electromagnetic wave absorption characteristics in the low frequency range are good, but the characteristics in the high frequency range are poor.

【0017】これらの材質による多孔質フェライトは、
100mm以下の厚さで、20dB以上の吸収帯域幅は1G
〜20GHzであり、小型で優れた電波吸収体を得ること
ができる。
The porous ferrite made of these materials is
Absorption bandwidth of 20 dB or more is 1G with a thickness of 100 mm or less
Since the frequency is up to 20 GHz, it is possible to obtain a compact and excellent electromagnetic wave absorber.

【0018】多孔質フェライトの気孔率は30%以下で
は重量が重くなり、90%以上では成形できない。した
がって、気孔率を30〜90%とすれば、軽量で成形可
能な多孔質フェライトとなる。
If the porosity of the porous ferrite is 30% or less, the weight becomes heavy, and if it is 90% or more, it cannot be formed. Therefore, when the porosity is 30 to 90%, the porous ferrite becomes lightweight and can be formed.

【0019】本発明の電波吸収体は多孔質化したフェラ
イトの焼結体であるから、不燃性であることはもとよ
り、充分な強度を有し、経時的変形も少ない。
Since the radio wave absorber of the present invention is a sintered body of porous ferrite, it has not only incombustibility but also sufficient strength and little deformation over time.

【0020】また、本発明による多孔質フェライトは、
フェライトタイルと組合わせた場合、30M〜20GHz
の周波数帯域で20dB以上の吸収特性を示し、広周波数
帯域対応の電波暗室用吸収体としても利用可能である。
Further, the porous ferrite according to the present invention is
30M-20GHz when combined with ferrite tile
It exhibits an absorption characteristic of 20 dB or more in the frequency band, and can be used as an absorber for an anechoic chamber compatible with a wide frequency band.

【0021】[0021]

【実施例】以下に、本発明の実施例を、図面に基づいて
詳細に説明する。
Embodiments of the present invention will be described below in detail with reference to the drawings.

【0022】<実施例1>先に図1により説明したよう
に、Ni−Znフェライトの透磁率の周波数特性は、Ni比が
多くなるほど、高周波特性となる。これらのNi比の異な
るNi−Znフェライトを材料とした気孔率60%の多孔質
材料で、図3に示す如く、底面100mm×100mm、高
さ100mmのピラミッド形状の電波吸収体1を形成し、
これを反射板2の一方の面に隙間なく取り付け、反射板
2の面に垂直に電波を入射させ、吸収率を測定した。そ
の測定結果に基づく電波吸収特性曲線を図2に示す。図
には、Ni比Xが0.30、0.36、0.64及び1.00の4
種の場合について、横軸に周波数、縦軸に電波吸収率を
とって、電波吸収特性曲線を示した。この図より明らか
なように、Ni比を多くした組成ほど高周波域の吸収特性
が向上し、Ni比X=0.36以上での20dBの吸収帯域
は、1G〜20GHzと広帯域であり、優れた電波吸収特
性を示す。なお、Ni比が0.36未満では、低周波域の特
性はよいが、高周波域の特性が悪化する。
<Example 1> As described above with reference to FIG. 1, the frequency characteristic of the magnetic permeability of the Ni-Zn ferrite becomes the higher frequency characteristic as the Ni ratio increases. As shown in FIG. 3, a pyramid-shaped radio wave absorber 1 having a bottom surface of 100 mm × 100 mm and a height of 100 mm is formed from a porous material having a porosity of 60% using Ni-Zn ferrites having different Ni ratios,
This was attached to one surface of the reflection plate 2 without any gap, and radio waves were made to enter the surface of the reflection plate 2 perpendicularly to measure the absorption rate. A radio wave absorption characteristic curve based on the measurement result is shown in FIG. In the figure, the Ni ratio X is 0.30, 0.36, 0.64 and 1.00 4
Regarding the case of seeds, the abscissa indicates the frequency and the ordinate indicates the radio wave absorption rate, and the radio wave absorption characteristic curve is shown. As is clear from this figure, the higher the Ni ratio, the better the absorption characteristics in the high frequency range, and the absorption band of 20 dB at the Ni ratio X = 0.36 or more is a wide band of 1 G to 20 GHz, which is excellent. Shows the radio wave absorption characteristics. When the Ni ratio is less than 0.36, the characteristics in the low frequency range are good, but the characteristics in the high frequency range deteriorate.

【0023】<実施例2>実施例1のNi比X=0.36組
成のピラミッド形多孔質体1を、図4に示す如く、フェ
ライトタイル3と組合せて反射板2の一方の面に取付
け、その面に垂直に電波を入射させて電波吸収率を測定
した。その結果を図5に示す。この図に示された電波吸
収特性曲線を図2のX=0.36の電波吸収特性曲線と比
較すれば明らかなように、フェライトタイルによって、
1GHz以下の低周波域の吸収特性が向上し、20dBの吸
収帯域は30M〜20GHzに亘っている。
<Embodiment 2> A pyramid-shaped porous body 1 having a Ni ratio X = 0.36 composition of Embodiment 1 is attached to one surface of a reflector 2 in combination with a ferrite tile 3 as shown in FIG. The radio wave absorption rate was measured by injecting radio waves perpendicularly to the surface. The result is shown in FIG. As can be seen by comparing the electromagnetic wave absorption characteristic curve shown in this figure with the electromagnetic wave absorption characteristic curve of X = 0.36 in FIG.
The absorption characteristics in the low frequency region of 1 GHz or less are improved, and the absorption band of 20 dB extends from 30 MHz to 20 GHz.

【0024】[0024]

【発明の効果】以上説明した如く、本発明によれば、1
G〜20GHzの高周波帯域において20dBの電波吸収特
性を有し、不燃性、小型、軽量、耐久性に優れた電波吸
収体を得ることができ、高周波帯域に対する電波暗室を
経済的に建造することができる。
As described above, according to the present invention, 1
In the high frequency band of G to 20 GHz, it is possible to obtain a non-combustible, small-sized, lightweight, and excellent radio wave absorber having a radio wave absorption characteristic of 20 dB, and to economically construct an anechoic chamber for the high frequency band. it can.

【図面の簡単な説明】[Brief description of drawings]

【図1】Ni−Zn系フェライトの種々のNi比に対する複素
比透磁率の周波数特性を示す曲線図である。
FIG. 1 is a curve diagram showing frequency characteristics of complex relative permeability with respect to various Ni ratios of Ni-Zn ferrite.

【図2】本発明の実施例1の各電波吸収体の電波吸収特
性を示す曲線図である。
FIG. 2 is a curve diagram showing a radio wave absorption characteristic of each radio wave absorber according to the first embodiment of the present invention.

【図3】本発明の一実施例の構成を示す断面図である。FIG. 3 is a cross-sectional view showing the configuration of an example of the present invention.

【図4】本発明の他の実施例の構成を示す断面図であ
る。
FIG. 4 is a cross-sectional view showing the configuration of another embodiment of the present invention.

【図5】本発明の図4に示す実施例の構成による電波吸
収特性を示す曲線図である。
5 is a curve diagram showing a radio wave absorption characteristic according to the configuration of the embodiment shown in FIG. 4 of the present invention.

【符号の説明】[Explanation of symbols]

1 ピラミッド状多孔質フェライト電波吸収体 2 反射板 3 フェライトタイル 1 Pyramid porous ferrite wave absorber 2 Reflector 3 Ferrite tile

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 フェライトを多孔質化した材料で形成さ
れ、1G〜20GHzの周波数帯域で20dB以上の電波吸
収特性を有することを特徴とする電波吸収体。
1. A radio wave absorber formed of a material in which ferrite is made porous and having a radio wave absorption characteristic of 20 dB or more in a frequency band of 1 GHz to 20 GHz.
【請求項2】 上記の多孔質フェライトの形状がピラミ
ッド形又は三角プリズム形であることを特徴とする請求
項1に記載の電波吸収体。
2. The radio wave absorber according to claim 1, wherein the shape of the porous ferrite is a pyramid shape or a triangular prism shape.
【請求項3】 上記の多孔質フェライトの材質がNix Zn
1-x Fe2O4(X=0.36〜1.00)の組成から成るフェラ
イトであることを特徴とする請求項1又は2に記載の電
波吸収体。
3. The material of the porous ferrite is Ni x Zn.
The radio wave absorber according to claim 1 or 2, which is a ferrite having a composition of 1-x Fe 2 O 4 (X = 0.36 to 1.00).
【請求項4】 上記の多孔質フェライトの気孔率が30
%以上90%以下であることを特徴とする請求項1乃至
3のいずれか1項に記載の電波吸収体。
4. The porosity of the porous ferrite is 30.
% Or more and 90% or less, The radio wave absorber according to any one of claims 1 to 3, wherein.
JP11343694A 1994-05-02 1994-05-02 Porous ferrite radio-wave absorber Pending JPH07302991A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11343694A JPH07302991A (en) 1994-05-02 1994-05-02 Porous ferrite radio-wave absorber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11343694A JPH07302991A (en) 1994-05-02 1994-05-02 Porous ferrite radio-wave absorber

Publications (1)

Publication Number Publication Date
JPH07302991A true JPH07302991A (en) 1995-11-14

Family

ID=14612180

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11343694A Pending JPH07302991A (en) 1994-05-02 1994-05-02 Porous ferrite radio-wave absorber

Country Status (1)

Country Link
JP (1) JPH07302991A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09181475A (en) * 1995-07-14 1997-07-11 Korea Res Inst Of Standard Sci Composite type wide band electromagnetic wave absorber
US5892188A (en) * 1996-07-24 1999-04-06 Kabushiki Kaisha Riken Porous ferrite wave absorber
DE19949631B4 (en) * 1998-10-15 2004-02-19 Kabushiki Kaisha Riken Composite absorber for electromagnetic waves, method for arranging the composite absorber and reflection-free space with this composite absorber
JP2008230902A (en) * 2007-03-20 2008-10-02 Nagoya Institute Of Technology Ferrite porous body and method of manufacturing the same, and radio wave absorber

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09181475A (en) * 1995-07-14 1997-07-11 Korea Res Inst Of Standard Sci Composite type wide band electromagnetic wave absorber
US5892188A (en) * 1996-07-24 1999-04-06 Kabushiki Kaisha Riken Porous ferrite wave absorber
DE19949631B4 (en) * 1998-10-15 2004-02-19 Kabushiki Kaisha Riken Composite absorber for electromagnetic waves, method for arranging the composite absorber and reflection-free space with this composite absorber
JP2008230902A (en) * 2007-03-20 2008-10-02 Nagoya Institute Of Technology Ferrite porous body and method of manufacturing the same, and radio wave absorber

Similar Documents

Publication Publication Date Title
CN104993249B (en) Single-pass band bilateral inhales ripple and is combined Meta Materials and its antenna house and antenna system
US4972191A (en) Wave absorber, and an anechoic chamber using the same
US6359581B2 (en) Electromagnetic wave abosrber
KR0158081B1 (en) Complex broadband electromagnetic wave absorber
JPH09186484A (en) Wide band electronic waves absorber
JPH07302991A (en) Porous ferrite radio-wave absorber
US5892188A (en) Porous ferrite wave absorber
KR101134202B1 (en) anechoic chamber having ferrite resonator
JPH07302993A (en) Porous ferrite radio-wave absorber
JPH07302992A (en) Porous ferrite radio-wave absorber
Gupta et al. Broad band thin sheet absorbers for S-; C-; X-and Ku-bands
JPH07193388A (en) Micro wave and millimeter wave absorber
JP2000277972A (en) Wide band electromagnetic wave absorber
JPH0222130A (en) Nickel-zinc-based ferrite material
RU2110122C1 (en) Superwide-band electromagnetic wave absorber
JP2706772B2 (en) Magnesium-zinc ferrite material for radio wave absorber
RU97103691A (en) SUPERWIDE-BAND ELECTROMAGNETIC WAVE DETECTOR
JPH0722769A (en) Composite radio wave absorber
JPH06275983A (en) Radio wave absorbing body
Mighani et al. New UWB Shielding with frequency selective surfaces
Ngah et al. Absorbers analysis for anechoic chamber
JPH10224078A (en) Radio wave absorber
Shimada et al. Fully compact anechoic chamber using the pyramidal ferrite absorber for immunity test
JP4420253B2 (en) Radio wave absorber and anechoic chamber
JPH09307268A (en) Radio wave absorbing material