JPH0249480B2 - DENKAIKENMAEKI - Google Patents

DENKAIKENMAEKI

Info

Publication number
JPH0249480B2
JPH0249480B2 JP22989182A JP22989182A JPH0249480B2 JP H0249480 B2 JPH0249480 B2 JP H0249480B2 JP 22989182 A JP22989182 A JP 22989182A JP 22989182 A JP22989182 A JP 22989182A JP H0249480 B2 JPH0249480 B2 JP H0249480B2
Authority
JP
Japan
Prior art keywords
polishing
electrolytic polishing
hydrochloric acid
electrolytic
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP22989182A
Other languages
Japanese (ja)
Other versions
JPS59118900A (en
Inventor
Toshinori Murao
Masamichi Kowaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Uemera Kogyo Co Ltd
Original Assignee
Uemera Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Uemera Kogyo Co Ltd filed Critical Uemera Kogyo Co Ltd
Priority to JP22989182A priority Critical patent/JPH0249480B2/en
Publication of JPS59118900A publication Critical patent/JPS59118900A/en
Publication of JPH0249480B2 publication Critical patent/JPH0249480B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はステンレス鋼、軟鋼、炭素鋼、或いは
アルミニウムやアルミニウム合金等に対する電解
研摩液に関し、更に詳述すると、ピツチングを生
じることなく、高い研摩効率においてこれら金属
を良好に電解研摩し得る電解研摩液に関する。 近年、原子力産業の発展に伴ない、その廃棄物
の処理が問題視されており、放射線で汚染された
金属部品の廃棄処理も同様に問題となつている。 従来、このような放射線で汚染された金属部品
の処理法としては、金属部品の放射線汚染部分が
通常その表面から十数μm〜数十μmの部分に集
中しているため、該金属部品に対して電解研摩を
行ない、表面十数μm〜数十μmの部分を電解的
に溶解除去することにより、放射線汚染部分を金
属部品から除染する方法が知られている。 しかしながら、従来のこの種の電解研摩法に用
いられている電解研摩液はリン酸−硫酸系のもの
が多いが、このリン酸−硫酸系の電解研摩液は酸
濃度が高く、廃液処理上、液管理上などに問題が
ある上、研摩効率が低く、また研摩速度も小さい
ため、経済的にかつ能率良く処理を行なうことが
困難である等の問題を有する。 本発明者は上記事情に鑑み、研摩効率が高く、
研摩速度の大きい電解研摩液につき鋭意検討を行
なつた結果、塩酸を主剤とし、これにエチレング
リコール、ポリエチレングリコール、グリセリン
等の多価アルコールを添加した電解研摩液が上記
目的を達成するものであることを知見した。 即ち、塩酸と単独で用いたものは、特に低温、
高電流密度において電解研摩処理した場合、金属
部品表面にピツチングが生じ易く、また電解研摩
面がかなり荒れたものになるが、塩酸にエチレン
グリコール、ポリエチレングリコール、グリセリ
ンといつた多価アルコールを添加すると、電解研
摩面の荒れが軽減し、良好な研摩面が得られると
共に、低温或いは高電流密度で処理を行なつても
ピツチングが生ぜず、かつ通常90%以上という高
い研摩効率を有し、研摩速度も大きく、このため
能率良く経済的に電解研摩作業を行なうことがで
き、更に廃液処理、液管理などの面でも問題が少
ないことを知見し、従つて塩酸に前記多価アルコ
ールを添加した電解研摩液が放射線汚染された金
属部品の処理などに好適に用いることができるこ
とを見い出したものである。 以下、本発明につき更に詳しく説明する。 本発明に係る電解研摩液は、塩酸と多価アルコ
ールとを含有してなるものであり、ステンレス
鋼、軟鋼、炭素鋼やアルミニウム、アルミニウム
合金などの電解研摩に好適に使用することができ
る。 ここで、電解研摩液中の塩酸濃度は特に制限さ
れないが、塩酸濃度が低すぎたり高すぎたりする
とピツチングが生じる場合があるので、濃塩酸
(36%HCl)として25〜90%(容量%、以下同
じ)、より望ましくは30〜50%とすることが好ま
しい。 また、多価アルコールとしては、エチレングリ
コール、ポリエチレングリコール、グリセリン等
が好適に使用でき、またプロピレングリコール、
ポリプロピレングリコールなども使用し得、これ
らの1種又は2種以上を組み合せて用いることが
できる。多価アルコールの濃度は必ずしも制限さ
れないが、0.1〜20%、より望ましくは0.2〜5%
とすることが好ましく、多価アルコール量が少な
いとその効果が有効に発揮されない。また、多価
アルコール量が多すぎても特に問題はないが、コ
スト面から上記範囲とすることが好適である。 本発明の電解研摩液を用いて電解研摩する場
合、浴温度は室温でもよく、加熱してもよい。本
発明の電解研摩液は、塩酸に多価アルコールを添
加してあることにより、室温でもピツチングを生
ぜず、支障なく研摩し得るものである。しかしな
がら、室温で操作した場合、その研摩効率は従来
のリン酸−硫酸系電解研摩液に比べて十分高いも
のであるが、更に研摩効率を高める上からは30℃
以上で操作することがより望ましい。なお、液温
の上限は特に制限されないが、塩化水素ガスの発
生等の点から80℃、特に60℃とすることが望まし
い。 また、陽極電流密度も制限されないが、通常
5A/dm2以上であり、陽極電流密度が低いと電
解研摩時間が長くなるため好ましくない。なお、
塩酸を単独で用いた場合、陽極電流密度が高すぎ
るとピツチングが生じ易いが、本発明の電解研摩
液は陽極電流密度が高くてもピツチングが生じ難
く、20〜30A/dm2の高電流密度でも支障なく操
作し得る。 而して、本発明に係る電解研摩液によれば、ピ
ツチングの発生が抑止され、ざらつきの少ない良
好な電解研摩面を与える。従つて、放射線で汚染
された金属部品を処理するような場合、ピツチン
グが生じると表面数十μの汚染部分を越えて除去
不要な部分までも電解的に溶解することになる
が、本発明の電解研摩液はピツチングが抑制され
るので、除去が必要な表面汚染部分のみを効果的
に電解研摩し得るものである。 更に、本発明の電解研摩液は、研摩効率が高
く、研摩速度も大きいので、能率的に電解研摩作
業を行なうことができる。しかも、本発明によれ
ば高電流密度で研摩を行なうことができるため、
この点でも有利なものである。また、上記したよ
うに研摩効率が高いので、同一の金属溶解量を達
成するのに必要な電気量が少なくなり、経済的メ
リツトが大きいものである。更に、本発明の電解
研摩液は比較的低温でも操作でき、作業性の良い
ものであると共に、リン酸−硫酸系の電解研摩液
に比較して酸濃度が低く、廃水処理や液管理など
での問題も少ない上、種々の金属素材に対する適
応範囲も広い等の特長を有するものである。 以下、実施例と比較例を示し、本発明を具体的
に説明するが、本発明は下記の実施例に限定され
るものではない。 実施例1〜8、比較例1、2 下記組成の電解研摩液を調製し、下記条件にお
いて試料(SUS−316、1dm2)を電解研摩し、研
摩量、研摩速度、研摩厚、研摩効率、研摩面の状
態を調べた。その結果を第1表に示す。 液組成 濃塩酸(36%) 240ml 第1表に示す添加物 第1表に示す量水 残 1000ml 研摩条件 浴 温 40℃ 陽極電流密度 10A/dm2 研摩時間 10分
The present invention relates to an electrolytic polishing liquid for stainless steel, mild steel, carbon steel, aluminum, aluminum alloys, etc., and more specifically, an electrolytic polishing liquid that can electrolytically polish these metals with high polishing efficiency without causing pitting. Regarding. In recent years, with the development of the nuclear power industry, the disposal of its waste has become a problem, and the disposal of metal parts contaminated with radiation has also become a problem. Conventionally, as a treatment method for metal parts contaminated with such radiation, since the radiation-contaminated portion of metal parts is usually concentrated in the area within tens of micrometers to several tens of micrometers from the surface of the metal parts, There is a known method for decontaminating radiation-contaminated parts from metal parts by electrolytically polishing the metal parts and electrolytically dissolving and removing a surface area of 10-10 μm to several tens of μm. However, most of the electrolytic polishing liquids used in conventional electrolytic polishing methods are phosphoric acid-sulfuric acid-based, but this phosphoric acid-sulfuric acid-based electrolytic polishing liquid has a high acid concentration, and it is difficult to treat waste liquid. In addition to problems in liquid management, the polishing efficiency is low and the polishing speed is also slow, so it is difficult to process economically and efficiently. In view of the above circumstances, the present inventor has achieved high polishing efficiency,
As a result of intensive research into electrolytic polishing liquids with high polishing speeds, we found that an electrolytic polishing liquid containing hydrochloric acid as the main ingredient and polyhydric alcohols such as ethylene glycol, polyethylene glycol, and glycerin was added to achieve the above objectives. I found out that. That is, when used alone with hydrochloric acid, especially at low temperatures,
When electrolytically polished at high current density, pitting tends to occur on the surface of metal parts, and the electrolytically polished surface becomes quite rough. However, when polyhydric alcohols such as ethylene glycol, polyethylene glycol, and glycerin are added to hydrochloric acid, , the roughness of the electrolytically polished surface is reduced, a good polished surface is obtained, pitting does not occur even when processed at low temperatures or high current density, and the polishing efficiency is usually over 90%. The speed is high, and therefore electrolytic polishing can be performed efficiently and economically, and it has been found that there are fewer problems in terms of waste liquid treatment and liquid management. It has been discovered that the polishing liquid can be suitably used for processing radiation-contaminated metal parts. The present invention will be explained in more detail below. The electrolytic polishing liquid according to the present invention contains hydrochloric acid and polyhydric alcohol, and can be suitably used for electrolytic polishing of stainless steel, mild steel, carbon steel, aluminum, aluminum alloy, etc. Here, the concentration of hydrochloric acid in the electrolytic polishing solution is not particularly limited, but pitting may occur if the concentration of hydrochloric acid is too low or too high, so concentrated hydrochloric acid (36% HCl) is 25 to 90% (volume %, (the same applies hereinafter), more preferably 30 to 50%. In addition, as the polyhydric alcohol, ethylene glycol, polyethylene glycol, glycerin, etc. can be suitably used, and propylene glycol,
Polypropylene glycol and the like may also be used, and one or more of these may be used in combination. The concentration of polyhydric alcohol is not necessarily limited, but is 0.1 to 20%, more preferably 0.2 to 5%.
It is preferable that the amount of polyhydric alcohol is small, and the effect will not be effectively exhibited. Although there is no particular problem if the amount of polyhydric alcohol is too large, it is preferable to keep it within the above range from the viewpoint of cost. When performing electrolytic polishing using the electrolytic polishing solution of the present invention, the bath temperature may be at room temperature or may be heated. Since the electrolytic polishing liquid of the present invention has a polyhydric alcohol added to hydrochloric acid, it does not cause pitting even at room temperature and can be polished without any trouble. However, when operated at room temperature, its polishing efficiency is sufficiently high compared to conventional phosphoric acid-sulfuric acid-based electrolytic polishing liquids, but in order to further increase polishing efficiency, it is necessary to use a polishing solution of 30°C.
It is more desirable to operate with the above. Note that the upper limit of the liquid temperature is not particularly limited, but from the viewpoint of generation of hydrogen chloride gas, etc., it is desirable to set it to 80°C, particularly 60°C. Also, the anode current density is not limited, but is usually
If the anode current density is 5 A/dm 2 or more and the anode current density is low, the electrolytic polishing time becomes longer, which is not preferable. In addition,
When hydrochloric acid is used alone, pitting tends to occur if the anode current density is too high, but the electrolytic polishing solution of the present invention does not easily cause pitting even if the anode current density is high, and has a high current density of 20 to 30 A/ dm2. However, it can be operated without any problems. According to the electrolytic polishing liquid according to the present invention, occurrence of pitting is suppressed and a good electrolytically polished surface with less roughness is provided. Therefore, when processing metal parts contaminated with radiation, if pitting occurs, areas that do not need to be removed beyond the contaminated area of several tens of micrometers on the surface will be electrolytically dissolved. Since the electrolytic polishing liquid suppresses pitting, it is possible to effectively electropolish only the surface contaminated portions that need to be removed. Further, the electrolytic polishing liquid of the present invention has high polishing efficiency and high polishing speed, so that electrolytic polishing work can be carried out efficiently. Moreover, according to the present invention, polishing can be performed at high current density.
It is also advantageous in this respect. Furthermore, as described above, since the polishing efficiency is high, the amount of electricity required to achieve the same amount of metal melting is reduced, which is a great economic advantage. Furthermore, the electrolytic polishing liquid of the present invention can be operated even at relatively low temperatures, has good workability, and has a lower acid concentration compared to phosphoric acid-sulfuric acid-based electrolytic polishing liquids, making it suitable for wastewater treatment, liquid management, etc. In addition to having fewer problems, it has the advantage of being applicable to a wide variety of metal materials. EXAMPLES Hereinafter, the present invention will be specifically explained by showing examples and comparative examples, but the present invention is not limited to the following examples. Examples 1 to 8, Comparative Examples 1 and 2 An electrolytic polishing solution with the following composition was prepared, and a sample (SUS-316, 1 dm 2 ) was electrolytically polished under the following conditions, and the polishing amount, polishing speed, polishing thickness, polishing efficiency, The condition of the polished surface was examined. The results are shown in Table 1. Liquid composition Concentrated hydrochloric acid (36%) 240ml Additives shown in Table 1 Volume shown in Table 1 Water Remaining 1000ml Polishing conditions Bath temperature 40℃ Anode current density 10A/dm 2 Polishing time 10 minutes

【表】 また、濃塩酸350ml/に第2表に示す添加物
を添加した電解研摩液を用い、上記と同様にして
電解研摩を行つた場合の試料(SUS−316)研摩
面の荒さを測定した。結果を第2表に示す。
[Table] In addition, the roughness of the polished surface of the sample (SUS-316) was measured when electrolytic polishing was performed in the same manner as above using an electrolytic polishing solution containing 350 ml of concentrated hydrochloric acid and the additives listed in Table 2. did. The results are shown in Table 2.

【表】 実施例9〜13、比較例3〜7 下記組成の電解研摩液を用い、第3表に示す
種々の素材(1dm2)に下記条件において電解研
摩を施し、陽極溶出量、研摩速度、研摩厚、研摩
効率を調べた。 液組成 濃塩酸(36%) 350ml エチレングリコール 4ml水 残 1000ml 研摩条件 浴 温 40℃ 陽極電流密度 10A/dm2 研摩時間 10分 比較のため、リン酸75%、硫酸25%の組成の電
解研摩液を用い、同様の電解研摩試験を行なつ
た。 結果を第3表に示す。
[Table] Examples 9 to 13, Comparative Examples 3 to 7 Using an electrolytic polishing solution with the following composition, various materials (1 dm 2 ) shown in Table 3 were subjected to electrolytic polishing under the following conditions, and the amount of anode elution and polishing speed were measured. , polishing thickness, and polishing efficiency were investigated. Liquid composition Concentrated hydrochloric acid (36%) 350ml Ethylene glycol 4ml Water Remaining 1000ml Polishing conditions Bath temperature 40℃ Anode current density 10A/dm 2 Polishing time 10 minutes For comparison, an electrolytic polishing solution with a composition of 75% phosphoric acid and 25% sulfuric acid. A similar electrolytic polishing test was conducted using The results are shown in Table 3.

【表】【table】

【表】 なお、実施例に係る電解研摩液でアルミニウム
5083を処理した場合、浸漬だけで0.990g溶出
(研摩厚12μm)した。 実施例14、15、比較例8、9 第4表及び第5表にそれぞれ示す組成の電解研
摩液を用いて前記実施例と同様の実験を行なつ
た。 なお、第4表の結果は電解条件が浴温20℃、陽
極電流密度10A/dm2であり、第5表の結果は電
解条件が浴温40℃、陽極電流密度32.5A/dm2
ある。
[Table] Note that the electrolytic polishing liquid according to the example
When 5083 was treated, 0.990g was eluted just by immersion (polishing thickness: 12 μm). Examples 14 and 15, Comparative Examples 8 and 9 Experiments similar to those in the above Examples were conducted using electrolytic polishing liquids having the compositions shown in Tables 4 and 5, respectively. The results in Table 4 are for electrolytic conditions of bath temperature 20°C and anode current density of 10 A/ dm2 , and the results in Table 5 are for electrolytic conditions of bath temperature of 40°C and anode current density of 32.5 A/ dm2 . .

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】 1 塩酸と多価アルコールとを含有してなること
を特徴とする電解研摩液。 2 多価アルコールがエチレングリコール、ポリ
エチレングリコール、又はグリセリンである特許
請求の範囲第1項記載の電解研摩液。 3 塩酸濃度が濃塩酸として25〜90容量%であ
り、多価アルコール濃度が0.1〜20容量%である
特許請求の範囲第1項又は第2項記載の電解研摩
液。
[Claims] 1. An electrolytic polishing liquid characterized by containing hydrochloric acid and a polyhydric alcohol. 2. The electrolytic polishing liquid according to claim 1, wherein the polyhydric alcohol is ethylene glycol, polyethylene glycol, or glycerin. 3. The electrolytic polishing liquid according to claim 1 or 2, wherein the hydrochloric acid concentration is 25 to 90% by volume as concentrated hydrochloric acid, and the polyhydric alcohol concentration is 0.1 to 20% by volume.
JP22989182A 1982-12-27 1982-12-27 DENKAIKENMAEKI Expired - Lifetime JPH0249480B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22989182A JPH0249480B2 (en) 1982-12-27 1982-12-27 DENKAIKENMAEKI

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22989182A JPH0249480B2 (en) 1982-12-27 1982-12-27 DENKAIKENMAEKI

Publications (2)

Publication Number Publication Date
JPS59118900A JPS59118900A (en) 1984-07-09
JPH0249480B2 true JPH0249480B2 (en) 1990-10-30

Family

ID=16899334

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22989182A Expired - Lifetime JPH0249480B2 (en) 1982-12-27 1982-12-27 DENKAIKENMAEKI

Country Status (1)

Country Link
JP (1) JPH0249480B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10240249B2 (en) * 2016-12-02 2019-03-26 Pacesetter, Inc. Use of nonafluorobutanesulfonic acid in a low pH etch solution to increase aluminum foil capacitance
CN107904652A (en) * 2017-12-01 2018-04-13 马鞍山市鑫龙特钢有限公司 A kind of method of carbon steel electropolishing
CN110318091B (en) * 2019-07-03 2021-06-22 中广核核电运营有限公司 Decontamination composition, preparation method thereof and decontamination method of piece to be decontaminated
CN110373707B (en) * 2019-07-03 2021-06-22 岭东核电有限公司 Decontamination method and application thereof

Also Published As

Publication number Publication date
JPS59118900A (en) 1984-07-09

Similar Documents

Publication Publication Date Title
US20050045491A1 (en) Electropolishing solution and methods for its use and recovery
JP4592683B2 (en) Electrolyte for electrochemical polishing of metal surfaces
US3666580A (en) Chemical milling method and bath
JP2008095192A (en) Electropolishing process for niobium and tantalum
JPH0249480B2 (en) DENKAIKENMAEKI
US3627654A (en) Electrolytic process for cleaning high-carbon steels
JPS6013061A (en) Chromium-containing alloy
BE1004452A3 (en) Baths and method for chemically polishing stainless steel surfaces.
US3378669A (en) Method of making non-porous weld beads
Cabiguen Jr et al. Reduction of water hardness from groundwater in Puerto Princesa City, Palawan, Philippines using electrocoagulation
US3088889A (en) Electrolytic machining of metal surfaces
KR20170138575A (en) Electrolyte solution and electrochemical surface modification methods
US4711707A (en) Method for removal of scale from hot rolled steel
US2282351A (en) Electrolyte for and method of polishing metal surfaces anodically
US2997429A (en) Electropolishing of titanium and titanium alloys
US2348359A (en) Method of extending the life of electrolytic polishing baths
US4169027A (en) Method of electrochemically processing the surface of a workpiece of molybdenum or of an alloy containing a high proportion of molybdenum
US3230160A (en) Electrolyte for electrochemical material removal
JPH03111600A (en) Electropolishing bath for ni-ti alloy
JP4497438B2 (en) Electrolytic machining liquid for aluminum and electrolytic machining method using the same
US2986499A (en) Electropolishing steel
US3751352A (en) Method of deoxidizing stainless steel and electropolishing of molybdenum
US3679559A (en) Method of electropolishing molybdenum
US3756931A (en) Electrolytic cleaning and corrosi on removal process
SU863729A1 (en) Method and solution for removing aluminium coatings from metallic articles