JPH0249470A - Manufacture of thin film transistor - Google Patents

Manufacture of thin film transistor

Info

Publication number
JPH0249470A
JPH0249470A JP63200972A JP20097288A JPH0249470A JP H0249470 A JPH0249470 A JP H0249470A JP 63200972 A JP63200972 A JP 63200972A JP 20097288 A JP20097288 A JP 20097288A JP H0249470 A JPH0249470 A JP H0249470A
Authority
JP
Japan
Prior art keywords
film
gas
silicon nitride
thin film
nitrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63200972A
Other languages
Japanese (ja)
Inventor
Kenichi Yanai
梁井 健一
Kenichi Oki
沖 賢一
Takuya Naito
内藤 卓也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP63200972A priority Critical patent/JPH0249470A/en
Publication of JPH0249470A publication Critical patent/JPH0249470A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent a reverse staggered type transistor from varying in characteristic by a method wherein a hole trap, subsisting near the surface of a silicon nitride film of a gate insulating film, is compensated for with a nitrogen plasma treatment. CONSTITUTION:An gate electrode G is formed on a transparent insulating substrate P, and a silicon nitride film 1 is formed on the substrate P and also on the electrode G. Gas containing nitrogen as an elemental component being introduced into a reaction vessel, the surface of the silicon film 1 is treated with the plasma produced from gas which contains nitrogen as an elemental component. A hole trap near the surface of the silicon film 1 is compensated with nitrogen plasma. Next, the gas introduced into the same reaction vessel is replaced with silane gas, and an amorphous silicon layer 3 is formed through a plasma chemical vapor growth method. By this setup, an reverse staggered type thin film transistor can be prevented from varying in characteristics.

Description

【発明の詳細な説明】 〔概 要〕 液晶駆動用の逆スタガード型薄膜トランジスタの製造方
法に関し、 薄膜トランジスタの特性変動を防止することを目的とし
、 透明絶縁性基板上にゲート電極を形成し、次いで該ゲー
ト電極上を含む前記透明絶縁性基板上に窒化シリコン膜
よりなるゲート絶縁膜を形成した後、該透明絶縁性基板
を載置した反応槽内に窒素を元素成分として含むガスを
導入して、前記窒化シリコン膜の表面を前記窒素を元素
成分として含むガスより生成されるプラズマにより処理
し、次いで、同一反応槽内において、導入するガスをシ
ランガスに切り換え、プラズマ化学気相成長法によりア
モルファスシリコン層よりなる動作半導体層を形成する
工程を含む構成とする。
[Detailed Description of the Invention] [Summary] Regarding a method for manufacturing an inverted staggered thin film transistor for driving a liquid crystal, the purpose is to prevent variations in characteristics of the thin film transistor, and the method involves forming a gate electrode on a transparent insulating substrate, and then forming the gate electrode on a transparent insulating substrate. After forming a gate insulating film made of a silicon nitride film on the transparent insulating substrate including the gate electrode, introducing a gas containing nitrogen as an elemental component into a reaction tank in which the transparent insulating substrate is placed, The surface of the silicon nitride film is treated with plasma generated from the gas containing nitrogen as an elemental component, and then, in the same reaction tank, the introduced gas is switched to silane gas, and an amorphous silicon layer is formed by plasma chemical vapor deposition. The structure includes a step of forming an active semiconductor layer consisting of the following.

〔産業上の利用分野〕[Industrial application field]

本発明は液晶駆動用薄膜トランジスタの製造方法に関す
る。
The present invention relates to a method of manufacturing a thin film transistor for driving a liquid crystal.

液晶表示装置は低消費電力、軽量、カラー表示が容易な
どの特徴を有することから、ボケ・ントT■やOA端末
機器などの平面表示装置として、広範な市場を得つつあ
る。特に大容量で鮮明な階調表示が得られる薄膜トラン
ジスタ駆動のアクティブマトリクス型液晶表示装置に関
しては、一部実用化されるとともに現在盛んに開発・研
究が行われている。
Since liquid crystal display devices have characteristics such as low power consumption, light weight, and easy color display, they are gaining a wide market as flat display devices for use in blur screens and OA terminal equipment. Particularly, active matrix liquid crystal display devices driven by thin film transistors, which have a large capacity and provide clear gradation display, have been partially put into practical use and are currently being actively developed and researched.

このアクティブマトリクス型液晶表示装置は、各画素(
液晶セル)に逆スタガード型の薄膜トランジスタがセル
駆動用として付加されている。従ってアクティブマトリ
クス型液晶表示装置を製造するには、数方何から数十方
何に及ぶ薄膜トランジスタを、無欠陥且つ高歩留で製造
することが必要である。
This active matrix liquid crystal display device has each pixel (
An inverted staggered thin film transistor is added to the liquid crystal cell to drive the cell. Therefore, in order to manufacture an active matrix type liquid crystal display device, it is necessary to manufacture thin film transistors ranging from several directions to several tens of directions without defects and at a high yield.

〔従来の技術〕[Conventional technology]

薄膜トランジスタ(TPT)マトリクスを高歩留で製造
するために、第4図に示すような、データバスラインD
Bを対向基板P′側に設け、薄膜トランジスタ基板(以
後TPT基板と略記する)P側には、ドレイン電極りを
走査順位が次位のスキャンパスラインSBに接続してコ
モンパスラインを不要化し、パスライン交差部を無くし
たゲート接続方式液晶表示装置が提案されている〔特願
昭61−212696参照〕。
In order to manufacture thin film transistor (TPT) matrices with high yield, data bus lines D as shown in FIG.
B is provided on the opposite substrate P' side, and on the P side of the thin film transistor substrate (hereinafter abbreviated as TPT substrate), the drain electrode is connected to the scan path line SB having the next scanning order, thereby eliminating the need for a common path line. A gate-connection type liquid crystal display device that eliminates pass line intersections has been proposed (see Japanese Patent Application No. 61-212696).

この方式では、前述の如<TFTのドレイン電極りは次
位のスキャンパスラインSBに接続されているため、ス
キャンパスラインSBの非選択時(液晶印加電圧を蓄積
状態)に、ドレインとゲートが同電位となり、ドレイン
に対してゲートバイアスを負に設定することができない
。そのため、ゲートバイアスが0■の時のオフ電流が、
十分に低いことが必要である。
In this method, as mentioned above, the drain electrode of the TFT is connected to the next scan path line SB, so when the scan path line SB is not selected (liquid crystal applied voltage is stored), the drain and gate are connected. The potentials are the same, and the gate bias cannot be set negative with respect to the drain. Therefore, the off-state current when the gate bias is 0■ is
It needs to be sufficiently low.

〔発明が解決しようとする課題] ”FFTのゲートバイアスがO■の時のオフ電流は、第
5図の特性曲線Iに示すように、TPTの使用開始初期
においては十分に低くても、長時間使用していると特性
曲線■で示す方に特性が変化するため、オフ電流が増大
し、液晶印加電圧を保持できなくなり、正常な表示がで
きなくなる場合があった。
[Problems to be Solved by the Invention] ``The off-state current when the gate bias of the FFT is O, as shown in characteristic curve I in Figure 5, is sufficiently low at the beginning of the use of the TPT, but it remains When used for a period of time, the characteristics change as shown by the characteristic curve (■), so the off-state current increases, making it impossible to maintain the voltage applied to the liquid crystal, which sometimes makes it impossible to display normally.

これは、スキャンパスラインSBの非選択時には、ソー
スに対してゲートが実効的に0、にバイアスされており
、このため絶縁膜中ヘホールが注入・トラップされ、T
PTの特性が負の方向にシフトすることにより生じてい
た。
This is because when the scan path line SB is not selected, the gate is effectively biased to 0 with respect to the source, so holes are injected and trapped in the insulating film, and T
This was caused by a shift in the PT characteristics in the negative direction.

本発明は逆スタガード型薄膜トランジスタの特性変動を
防止することを目的とする。
An object of the present invention is to prevent variations in characteristics of an inverted staggered thin film transistor.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は第1図(a)に示す如(、絶縁性基板からなる
TPT基板P上に所定のパターンに従ってゲート電極G
を形成し、シランとアンモニアを原料ガスとするプラズ
マ化学気相成長(P−CVD)法により、ゲート絶縁膜
であるSiN:H膜1を形成した後、第1図(b)に示
すNZ(窒素)プラズマ2による上記SiN:H膜1の
表面処理と、第1図(C)に示すシランを原料ガスとす
るP−CVD法による動作半導体層であるa−3i:H
層3の形成とを、同一反応槽内にて使用する反応ガスを
切り換えることにより連続して行う。
In the present invention, as shown in FIG.
After forming a SiN:H film 1 as a gate insulating film by plasma chemical vapor deposition (P-CVD) using silane and ammonia as source gases, the NZ( The surface treatment of the SiN:H film 1 with (nitrogen) plasma 2 and the a-3i:H which is an operational semiconductor layer by the P-CVD method using silane as a raw material gas shown in FIG. 1(C)
Formation of layer 3 is performed continuously by switching the reaction gas used in the same reaction tank.

〔作 用〕[For production]

本発明ではホールトラップの起源である界面近傍のS 
i N : H膜1中の弱いS i −1(結合を一度
解離した後、始めから存在していたSiダングリングボ
ンドとともに、窒素プラズマ中の窒素ラジカルにより結
合補償するものと解される。
In the present invention, S near the interface, which is the origin of hole traps,
It is understood that after the weak Si -1 bond in the i N :H film 1 is once dissociated, the bond is compensated by the nitrogen radicals in the nitrogen plasma together with the Si dangling bond that existed from the beginning.

このような窒素プラズマ処理を行なった結果を第2図に
示す。未処理の場合にくらべ、負ゲートバイアスに対し
てトランジスタ特性のシフトが約1/2以下に減少する
。このトランジスタ特性のシフトの時間依存性(長時間
;1時間以上)は、log tに比例するので、本発明
により作成したTPTの特性変動は、従来のTPTに比
して著しく減少する。例えば従来のTPTで約100時
間使用後の闇値の変動量1ΔVいlは、本発明を用いて
作成したTPTを、凡そ10000時間使用した時の変
動量に相当する。このように本発明によれば、TPTの
信頼性が大幅に向上する。
The results of such nitrogen plasma treatment are shown in FIG. Compared to the untreated case, the shift in transistor characteristics with respect to negative gate bias is reduced to about 1/2 or less. Since the time dependence (long time; one hour or more) of this shift in transistor characteristics is proportional to log t, the characteristic fluctuations of the TPT made according to the present invention are significantly reduced compared to the conventional TPT. For example, the amount of variation 1ΔV1 in the dark value after using the conventional TPT for about 100 hours corresponds to the amount of variation when using the TPT prepared using the present invention for about 10,000 hours. As described above, according to the present invention, the reliability of TPT is significantly improved.

〔実 施 例〕〔Example〕

実施例を第3図(a)〜(d)を用いて説明する。 An example will be described using FIGS. 3(a) to 3(d).

第3図(a)に見られるように、ガラス基板のような透
明絶縁性のTPT基板P上に、Ti膜をスパッタ法によ
り約70nmの厚さに成膜した後、これをパターニング
してゲート電極Gを形成する。
As shown in FIG. 3(a), a Ti film is formed to a thickness of about 70 nm by sputtering on a transparent insulating TPT substrate P such as a glass substrate, and then patterned to form a gate. Electrode G is formed.

次いで、反応槽内に上記TFT基板Pを入れ、シランと
アンモニアを原料ガスとするP−CVD法により、同図
(b)に見られる如ぐSiN:H膜1を約300 nm
の厚さに形成する。
Next, the TFT substrate P is placed in a reaction tank, and a SiN:H film 1 as shown in FIG.
Form to a thickness of .

次に上記反応槽内に導入するガスをN2 (窒素)に切
り換えて、窒素プラズマにより上記SiN:H膜10表
面処理を行う。
Next, the gas introduced into the reaction tank is switched to N2 (nitrogen), and the surface of the SiN:H film 10 is treated with nitrogen plasma.

更に同図(C)に示すように、動作半導体層であるa−
3i:H層3をシランガスを用いて形成し、保護膜であ
るStow膜4をシランガスと亜酸化窒素(N20)ガ
スを用いて形成する。
Furthermore, as shown in the same figure (C), the active semiconductor layer a-
3i: The H layer 3 is formed using silane gas, and the Stow film 4 as a protective film is formed using silane gas and nitrous oxide (N20) gas.

次に同図(d)に示す如く、上記SiO□膜4上にポジ
型のレジスト膜(図示せず)を塗布し、これをTPT基
板Pの背面から露光して、ゲート電極Gに位置整合した
レジスト膜を形成し、これをマスクとして上記SiO□
膜4の露出部を除去し、次いで、n’a−3t:H層5
とその上にTi膜6を形成した後、リフトオフ法により
上記n” a−3i:H層5とTi膜6の不要部を除去
して、ソース電極Sとドレイン電極りを形成し、本実施
例による逆スタガード型のTPTが完成する。
Next, as shown in FIG. 4(d), a positive resist film (not shown) is coated on the SiO□ film 4 and exposed from the back side of the TPT substrate P to align the position with the gate electrode G. A resist film was formed using the above SiO□ as a mask.
The exposed portion of the film 4 is removed, and then the n'a-3t:H layer 5 is removed.
After forming a Ti film 6 thereon, unnecessary parts of the n''a-3i:H layer 5 and Ti film 6 are removed by a lift-off method to form a source electrode S and a drain electrode. The inverted staggered TPT according to the example is completed.

以上説明した本実施例では、SiN膜1の形成工程から
n″a−3i層5の形成工程までを、同一反応槽内にて
反応ガスを切り換えることにより連続的に実行した。こ
のうち、SiN膜1に対するN2プラズマ処理とこれに
引き続(a−3i層3の形成工程は、同一反応槽内にて
反応ガスを切り換えて連続して行うことが必要である。
In this example described above, the steps from forming the SiN film 1 to forming the n''a-3i layer 5 were performed continuously in the same reaction tank by switching the reaction gas. The N2 plasma treatment on the film 1 and the subsequent formation process of the a-3i layer 3 must be performed in succession in the same reaction tank by switching the reaction gas.

上記−連の工程のうち、他の工程は必ずしも同一反応槽
内で連続的に実行しなくてもよいが、なるべく本実施例
のように同一反応槽内で連続的に処理することが望まし
い。
Among the above-mentioned series of steps, the other steps do not necessarily have to be performed continuously in the same reaction tank, but it is preferable that they be performed continuously in the same reaction tank as in this example.

N2プラズマ処理とa−3i層3の形成工程を連続して
同一反応槽内で行うことにより、前述のN2プラズマ処
理の効果を保持することができ、前記第2図に見られる
ように、実際の使用時間の経過に伴う闇値変動が小さく
なる。
By continuously performing the N2 plasma treatment and the formation process of the a-3i layer 3 in the same reaction tank, the effect of the N2 plasma treatment described above can be maintained, and as seen in FIG. Darkness value fluctuations over time will be reduced.

前記N2プラズマ処理とa−3i層3形成工程の間で、
被処理基板を反応槽間で移動させた場合に、特性変動が
太き(なるのは、SiN:H膜1の表面が他の雰囲気に
曝されることより、SiN:H膜1の表面に望ましくな
いガス分子の吸着等が生じて、N2プラズマ処理による
結合補償の効果が失われるためと解される。
Between the N2 plasma treatment and the a-3i layer 3 formation step,
When the substrate to be processed is moved between reaction vessels, the characteristics change greatly (this is because the surface of the SiN:H film 1 is exposed to other atmospheres, It is understood that this is because undesirable gas molecules are adsorbed and the effect of bond compensation by the N2 plasma treatment is lost.

〔発明の効果〕〔Effect of the invention〕

以上説明した如く本発明によれば、ゲート絶縁膜である
SiN:H表面近傍のホールトラップが窒素プラズマ処
理により補償されるため、負ゲートバイアスに対するT
PT特性のシフトを低減することができる。その結果、
長時間駆動後もゲートバイアスが0■の時のオフ電流を
、十分に低く保つことができ、従ってゲート接続方式液
晶表示装置における液晶駆動用素子として適用した場合
、同装置の信頼性が向上する。
As explained above, according to the present invention, the hole traps near the surface of SiN:H, which is the gate insulating film, are compensated for by nitrogen plasma treatment.
Shifts in PT characteristics can be reduced. the result,
Even after long-term driving, the off-state current when the gate bias is 0 can be kept sufficiently low. Therefore, when applied as a liquid crystal driving element in a gate-connected liquid crystal display device, the reliability of the device is improved. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)〜(C)は本発明の薄膜トランジスタの構
成説明図、 第2図は本発明の効果示す特性変動説明図、第3図(a
)〜(d)は本発明一実施例説明図、第4図(a)、 
(b)はゲート接続方式液晶表示装置の説明図、 第5図は従来の薄膜トランジスタの問題点説明図である
。 図ニオイて、1はゲート絶縁膜としてのSiN:H膜、
3は動作半導体層としてのa’−3i:H層、4は保護
膜としてのSin、膜、5はコンタクト層としてのn”
a−3i:H層、6はTi膜、PはTFT基板、Gはゲ
ート電極、Sはソース電極、Dはドレイン電極を示す。
FIGS. 1(a) to (C) are diagrams explaining the structure of the thin film transistor of the present invention, FIG.
) to (d) are explanatory diagrams of one embodiment of the present invention, FIG. 4(a),
(b) is an explanatory diagram of a gate connection type liquid crystal display device, and FIG. 5 is an explanatory diagram of problems with a conventional thin film transistor. In the figure, 1 is a SiN:H film as a gate insulating film,
3 is an a'-3i:H layer as an active semiconductor layer, 4 is a Sin film as a protective film, and 5 is an n'' as a contact layer.
a-3i: H layer, 6 a Ti film, P a TFT substrate, G a gate electrode, S a source electrode, and D a drain electrode.

Claims (1)

【特許請求の範囲】 透明絶縁性基板(P)上に、ゲート電極(G)と、窒化
シリコン膜(1)からなるゲート絶縁膜と、アモルファ
スシリコン層(3)からなる動作半導体層とをその順に
積層してなる薄膜トランジスタを製造するに際し、 前記透明絶縁性基板(P)上にゲート電極(G)を形成
し、次いで該ゲート電極上を含む前記透明絶縁性基板上
に窒化シリコン膜(1)を形成した後、 該透明絶縁性基板(P)を載置した反応槽内に窒素を元
素成分として含むガスを導入して、前記窒化シリコン膜
(1)の表面を前記窒素を元素成分として含むガスより
生成されるプラズマにより処理し、次いで、同一反応槽
内において、導入するガスをシランガスに切り換え、プ
ラズマ化学気相成長法により前記アモルファスシリコン
層(3)を形成する工程を含む ことを特徴とする薄膜トランジスタの製造方法。
[Claims] A gate electrode (G), a gate insulating film made of a silicon nitride film (1), and an active semiconductor layer made of an amorphous silicon layer (3) are formed on a transparent insulating substrate (P). When manufacturing a thin film transistor formed by sequentially laminating layers, a gate electrode (G) is formed on the transparent insulating substrate (P), and then a silicon nitride film (1) is formed on the transparent insulating substrate including on the gate electrode. After forming the silicon nitride film (1), a gas containing nitrogen as an elemental component is introduced into a reaction tank in which the transparent insulating substrate (P) is placed, so that the surface of the silicon nitride film (1) contains nitrogen as an elemental component. It is characterized by including a step of processing with plasma generated from a gas, and then, in the same reaction tank, changing the introduced gas to silane gas and forming the amorphous silicon layer (3) by plasma chemical vapor deposition. A method for manufacturing thin film transistors.
JP63200972A 1988-08-10 1988-08-10 Manufacture of thin film transistor Pending JPH0249470A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63200972A JPH0249470A (en) 1988-08-10 1988-08-10 Manufacture of thin film transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63200972A JPH0249470A (en) 1988-08-10 1988-08-10 Manufacture of thin film transistor

Publications (1)

Publication Number Publication Date
JPH0249470A true JPH0249470A (en) 1990-02-19

Family

ID=16433380

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63200972A Pending JPH0249470A (en) 1988-08-10 1988-08-10 Manufacture of thin film transistor

Country Status (1)

Country Link
JP (1) JPH0249470A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06291044A (en) * 1993-01-28 1994-10-18 Applied Materials Inc Piling of amorphous silicon thin film at high piling speed on glass substrate of large area by cvd
JP2007180511A (en) * 2005-12-28 2007-07-12 Samsung Electronics Co Ltd Thin-film transistor substrate, manufacturing method therefor, and display panel having the same
CN100442532C (en) * 1992-07-06 2008-12-10 株式会社半导体能源研究所 Semiconductor device and method for forming the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100442532C (en) * 1992-07-06 2008-12-10 株式会社半导体能源研究所 Semiconductor device and method for forming the same
JPH06291044A (en) * 1993-01-28 1994-10-18 Applied Materials Inc Piling of amorphous silicon thin film at high piling speed on glass substrate of large area by cvd
JP2007180511A (en) * 2005-12-28 2007-07-12 Samsung Electronics Co Ltd Thin-film transistor substrate, manufacturing method therefor, and display panel having the same
TWI414868B (en) * 2005-12-28 2013-11-11 Samsung Display Co Ltd Display panel, thin film transistor substrate, and method of manufacturing the same
US8647928B2 (en) 2005-12-28 2014-02-11 Samsung Display Co., Ltd. Method for manufacturing thin film transistor and liquid crystal by treating a surface layer
US8785934B2 (en) 2005-12-28 2014-07-22 Samsung Display Co., Ltd. Thin film transistor substrate for display panel

Similar Documents

Publication Publication Date Title
KR0168692B1 (en) Method for forming the semiconductor device
JP2001109014A (en) Active matrix liquid crystal display device
JP2003037270A (en) Thin film transistor and manufacturing method therefor
US6521950B1 (en) Ultra-high resolution liquid crystal display on silicon-on-sapphire
JPH01144682A (en) Manufacture of thin-film transistor
JPH0249470A (en) Manufacture of thin film transistor
US6954235B1 (en) Silicon-on-sapphire display apparatus and method of fabricating same
JPH01309378A (en) Thin-film semiconductor element
JPS63177472A (en) Thin-film transistor
JPH0543095B2 (en)
JPH0738111A (en) Thin film transistor forming method
JP2996025B2 (en) Method of manufacturing insulating film and thin film transistor device using the same
JPS5922361A (en) Semiconductor device
JP2505662B2 (en) Method for manufacturing thin film transistor
JP3283919B2 (en) Method for manufacturing thin film transistor
JPH01162375A (en) Thin film transistor
JPS63155766A (en) Thin film transistor
JPS60224278A (en) N type transistor
JPS63172469A (en) Thin film transistor
JP2002190604A (en) Thin-film transistor, liquid crystal display device using the thin-film transistor and electroluminescence display device
JPH0570824B2 (en)
JPS62140465A (en) Manufacture of thin-film transistor
JPH0385767A (en) Thin-film transistor matrix and its manufacture
JPS62288883A (en) Manufacture of thin film transistor
JPH02215162A (en) Thin film transistor