JPH0249391B2 - - Google Patents

Info

Publication number
JPH0249391B2
JPH0249391B2 JP59032650A JP3265084A JPH0249391B2 JP H0249391 B2 JPH0249391 B2 JP H0249391B2 JP 59032650 A JP59032650 A JP 59032650A JP 3265084 A JP3265084 A JP 3265084A JP H0249391 B2 JPH0249391 B2 JP H0249391B2
Authority
JP
Japan
Prior art keywords
plating
silver
mol
copper
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59032650A
Other languages
Japanese (ja)
Other versions
JPS60177183A (en
Inventor
Hiroshi Kawakami
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemical Industrial Co Ltd
Original Assignee
Nippon Chemical Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemical Industrial Co Ltd filed Critical Nippon Chemical Industrial Co Ltd
Priority to JP3265084A priority Critical patent/JPS60177183A/en
Publication of JPS60177183A publication Critical patent/JPS60177183A/en
Publication of JPH0249391B2 publication Critical patent/JPH0249391B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/42Coating with noble metals

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemically Coating (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、銀メツキ物品、更に詳しく言えば無
機または有機の基材に無電解ニツケルメツキした
皮膜上に更に無電解銀メツキ皮膜を形成させた銀
メツキ物品およびその工業的に有利な製造方法に
関する。 一般に、無電解銀メツキはニツケルメツキのよ
うに被メツキ体に直接無電解銀メツキ皮膜を形成
させることは技術的に不可能とされている。 従つて、従来は、一般的には無電解銅メツキま
たは無電解ニツケルメツキに引続き、更に金のス
トライクメツキを施した後に無電解銀メツキを形
成させる方法がとられている。 しかしながら、前者の場合、銀メツキ後、時間
の経過に従い下層の銅皮膜と表層の銀との相互拡
散により、銀メツキの本来の諸物性が劣化するの
で、あまり良好な銀メツキ品は得られない。 後者の場合、無電解ニツケルメツキに引続き下
層に金メツキを施したものは、メツキ工程が長い
のみならず、高価となるので経済的ではない。 他方近年アミンボラン系の還元剤を用いた無電
解ニツケルメツキ皮膜上に直接無電解銀メツキが
成長することが見出された。この方法は金メツキ
よりは安価となり銅メツキのように諸物性の劣化
は見られないがアミンボラン系還元剤は非常に高
価なので経済的により安価な下層処理法の出現が
期待されていた。 ところで、本発明者は上記の問題に鑑み、銀の
メツキ方法について鋭意研究を重ねていたところ
有機または無機の粉粒体のような小さな基材につ
いては銀メツキ液を添加する方法を採ることによ
つてリンまたはホウ素含有ニツケルメツキ皮膜上
に直接銀メツキ皮膜を形成することに成功し、既
に出願もしている〔特開昭60−162779号公報(特
願昭59−18475号)。 しかし、この方法は基材が成型物のような場合
は適用され難く、また銀メツキ液中へ被メツキ物
を浸漬して行なつた場合には前記の通り銀メツキ
は形成されない。 従つて、本発明者は更に基材の成型物の大小、
または基材に対するメツキ液の添加方式にしろ、
また浸漬方式にしろ、ニツケル系メツキ皮膜に直
接銀メツキ皮膜を付与し得べき研究を重ねた結
果、本発明を完成した。すなわち、本発明の要旨
とするところは、基材に銅含有ニツケル合金メツ
キ皮膜の下地層上に銀メツキ皮膜を形成してなる
ことを特徴とする銀メツキ物品であり、更にもう
一つの発明の要旨とするところは基材に還元剤と
して次亜リン酸アルカリを用いた銅含有無電解ニ
ツケルメツキ液で銅含有ニツケル合金メツキ皮膜
の下地層被覆処理を行ない、次いで無電解銀メツ
キ液で銀メツキ皮膜を形成させることを特徴とす
る銀メツキ物品の製造方法に関する。 以下に本発明に係る銀メツキ物品及びその製造
方法について詳説する。 本発明において、無電解メツキに供せる基材と
いうのはその大小または形状は特に限定するもの
ではなく、コロイド状微粒子から数cm程度の粒子
まで外観上粉末状態または粒状体の基材から大き
な成型物までいずれでもよい。またその形状は顕
微鏡的観察によつて球状、板状、棒状、針状、中
空状または繊維状等の形状は勿論、成型物の形状
はいずれであつてもよい。要するに被メツキ基材
が外観上粒状または粉状として扱われる芯材から
成型物までをメツキ対象とするものである。また
基材の材質は、有機質または無機質を問わず無電
解メツキ可能な材質は全て包含する。更に、基材
は化学的に均一な組成であることを要しないのは
もちろんであるが、それが結晶質または非晶質の
いずれであつてもよい。重要なことは、基材の表
面がニツケル皮膜の被覆形成能あることである。 かかる基材を例示的に列挙すれば、無機基材と
しては、金属、金属または非金属の酸化物(含水
物も含む)、アルミノ珪酸塩を含む金属珪酸塩、
金属炭化物、金属窒化物、金属炭酸塩、金属硫酸
塩、金属燐酸塩、金属硫化物、金属酸塩、金属ハ
ロゲン化物または炭素などであり、有機基材とし
ては天然繊維木材、天然樹脂、ポリエチレン、ポ
リプロピレン、ポリ塩化ビニル、ポリスチレン、
ポリブテン、ポリアミド、ポリアクリル酸エステ
ル、ポリアクリルニトリル、ポリアセタール、ア
イオノマー、ポリエステルなどの合成熱可塑性樹
脂、アルキツド樹脂、フエノール樹脂、尿素樹
脂、メラミン樹脂、キシレン樹脂、シリコーン樹
脂またはジアリルフタレート樹脂の如き合成熱硬
化性樹脂などがあげられる。それらは、一種また
は二種以上の混合物であつてもよい。この混合物
というのは化学的に組成が不均質のものから基材
として混合物であるいずれの場合も含むものであ
る。 かかる基材に下地のニツケル合金メツキを施す
に際して基材の素地に適応した予備処理を行うこ
とは云うまでもないことであり、これらの予備処
理は無電解メツキの分野においては周知に属す
る。 すなわち、洗浄、エツチング、増感および活性
化処理などがそれにあたる。 例えば洗浄処理は水またはアルカリ剤で行い増
感処理は可溶性第1錫塩水溶液にて行い、更に活
性化処理は可溶性パラジウム塩水溶液でそれぞれ
基材と接触処理することにより前処理すればよい
が、これらは既に公知のことであり、本発明にお
いて格別の前処理を行う必要はない。 なお、これらの予備処理に当り、基材の素地表
面が不安定の場合は所望の安定化処理を行なうこ
とが好ましい。 例えば、アルミニウムまたはアルミニウム合金
を裏地表面とする基材にあつてはジンケート処理
してその表面の改質を行なつて安定化する。 予備処理を行なつた基材について、本発明では
銅含有ニツケルメツキ液による下地層被覆処理を
行なう。 このメツキ処理は、次の銀メツキ処理について
も同様であるが、基材の物性、主として粉粒状物
か成型物かによつて2つの態様が考えられる。 その1つは調製されたメツキ液即ち、メツキ浴
に基材を添加または浸漬することによつてメツキ
反応を行わせてメツキ皮膜を形成させる方法であ
り、これは従来一般的に行なわれているメツキ処
理である。 他の1つは、水、アルカリ剤、その他メツキ反
応が生じ難い程度のメツキ組成液等所望の分散媒
を媒体とする基材の分散体にメツキ液を添加して
メツキ反応を行なわせてメツキ皮膜を形成させる
方法であり、この方法は本発明者が先に開発した
方式で、特に粉粒体の芯材すなわち基材あるいは
小さな成型物のメツキ処理には特に優れていると
いうことができる。 本発明ではいずれの態様でも差支えなく行える
ことが特徴であり、そのために基材の大きさが限
定されないゆえんである。従つて、前記2つの態
様を各メツキ処理における組合わせについて考え
ると、浸漬―浸漬方式、浸漬―添加方式、添加―
浸漬方式および添加―添加方式があるが、特に限
定されることなく、これらは基材の物性、形状、
メツキ品の用途等に応じて適宜所望のメツキ処理
方式を設計すればよい。まず、下地層の被覆処理
である銅含有ニツケル合金メツキ皮膜の形成は次
亜リン酸アルカリを還元剤とする従来のニツケル
メツキ液に更に銅(Cu++)を含有させたメツキ
液で処理することを特徴としている。 このメツキ液は建浴してこれに基材を浸漬する
方式において多くの場合次の割合にある: 表―1 無電解ニツケル―銅―リン合金メツキ浴 ニツケル塩
0.02〜0.2モル/(好ましくは0.05〜0.2モ
ル/) 第二銅塩 0.001〜0.05モル/ 錯 化 剤 0.05〜0.6モル/ 次亜リン酸塩
0.03〜0.4モル/(0.10〜0.3モル/) 促 進 剤 0〜0.5モル/ PH 3.5〜14(好ましくは8〜11) 浴 温 度 50〜98℃ ニツケル塩は水に溶解してニツケルイオンとな
るものでよく、例えば硫酸ニツケル、塩化ニツケ
ル、酢酸ニツケルが使用できる。0.02モル/未
満では反応速度が遅くなり、実用的ではない。ま
た0.2モル/を越えると次亜リン酸塩の酸化に
より生じた亜リン酸塩と結合し沈殿が生じ易く、
それを防止するためには錯化剤の濃度を高くしな
ければならず、経済的でない。実用的には0.05〜
0.2モル/が好ましい。第2銅塩は硫酸銅、塩
化銅、硝酸銅、酢酸等の水に溶解して第2銅イオ
ンを供給できるものであればよい。0.001モル/
未満ではその後の銀メツキが成長しない。また
0.05モル/を越えると、その後の銀メツキ皮膜
と下層の銅との相互拡散が生じ銀皮膜の物性に影
響するので好ましくない。銀皮膜に影響を与えず
銀メツキ皮膜を成長するために必要な銅の最少共
析量となる濃度の0.001〜0.05モル/が好まし
い。錯化剤としてはクエン酸、酒石酸、グルコン
酸、リンゴ酸、ピリリン酸、エチレンジアミン等
無電解ニツケルメツキに一般的に使用されている
錯化剤が使用される。錯化剤濃度は溶液中の金属
イオンを錯化するのに充分な量であればよい。還
元剤としての次亜リン酸塩はナトリウム塩または
カリウム塩が使用される。0.03モル/未満では
反応速度が遅く実用的でなく、一方、0.5モル/
を越えると液が不安定で自己分解し易くなる。
実用的には0.10〜0.4モル/が好ましい。一般
的に知られている促進剤である酢酸、蟻酸、プロ
ピオン酸、マロン酸、コハク酸、アジピン酸、ほ
う酸またはそのアルカリ金属塩(四ほう酸ナトリ
ウム)等を添加することによりメツキ速度を増大
させることは一般の無電解ニツケルメツキと同様
であり、添加量は0〜0.5モル/が適当である。
溶液のPHは特に限定されないが、実用的には8〜
11が好ましい。溶液温度は50℃以下ではメツキ速
度が遅過ぎ実用的ではない。高温度ではメツキ速
度は増大するが沸点近くなると水の蒸発が激しく
保温のための燃料消費量も増大するで98℃程度ま
でが実用上好ましい。被メツキ物とメツキ液との
親和性を高めるために界面活性剤を添加すること
は一般の無電解メツキと同様差支えない。 上記の如く、還元剤として次亜リン酸アルカリ
を用いた銅含有無電解ニツケルメツキ液で基材を
メツキ処理すると銅含有のニツケル合金メツキ皮
膜の下地層が形成される。このニツケル合金メツ
キ皮膜中の銅の含有量は浴組成やメツキ条件によ
つて変化するが、多くの場合、銅は0.1〜10重量
%の範囲にあるのが次の銀メツキを効果的にす
る。なお還元剤として次亜リン酸アルカリを使用
する限り必然的に少量のリンもメツキ皮膜中に含
有させるのは従来のニツケルメツキと同様であ
る。 上記の下地メツキ処理を施した後はメツキ液を
基材と分離し、水洗して次の銀メツキ処理を行な
う。 このメツキ処理において、メツキ液を建浴し
て、これに基材を浸漬または添加して行なう方式
の場合、例えば次の浴組成が適当である。 表―2 無電解銀メツキ浴(モル/) シアン化銀アルカリ(シアン化銀として)
0.01〜0.1 シアン化アルカリ 0.1〜0.2 水酸化アルカリ 0.1〜0.5 硼素化水素アルカリ 0.01〜0.15 浴 温 度 50〜80℃ シアン化銀濃度が0.01モル/未満ではメツキ
速度が遅く、また0.1モル/を越えると液が不
安定となる。シアン化アルカリ濃度は溶中の銀イ
オンを錯化させるに充分であればよく特に限定さ
れないが、0.1〜0.2モル/程度でよい。硼素化
水素アルカリの濃度は0.01モル/未満ではメツ
キ速度が遅過ぎて実用的でない。一方、0.15モ
ル/を越えると析出物表面が粗となり外観がそ
こなわれる。水酸化アルカリ濃度は0.1〜0.5モ
ル/の間でメツキ速度が最も早く、それ以下で
もそれ以上でも低下する。液温は50℃以下ではメ
ツキ速度が遅く実用的でない。また80℃以上にな
ると液が不安定となり分解し易くなる。 上記の如き建浴による銀メツキ液組成は特定成
型基材の代表的例であつて、かならずしも、これ
に限定される必然的理由はない。何故なら銀メツ
キはニツケルメツキに比べてかなり微妙な影響を
受け易いので、特に基材の種類、大きさ、形状等
は勿論、下地メツキ処理や銀メツキ処理の条件等
によつて大巾な変化が生ずるからである。 以上は、いずれも建浴されたメツキ液へ基材を
浸漬または添加する浸漬―浸漬方式であるが、添
加方式、つまり基材の水性媒体へメツキ薬液を添
加する場合には建浴組成とは根本的に考え方が異
なつてくる。 この理由は、建浴の場合は浴が老化するまでは
繰返し使用することを前提とするのに対しメツキ
液の添加方式では基材の分散体中に添加された後
は液は有効利用されたものとなると共に非常に薄
い老化液となつてそのまま廃液処理するか、必要
に応じて分散媒として一部または全部再利用する
からである。従つて、添加する場合のメツキ液は
いずれのメツキ液であつても建浴濃度の場合に比
べて一般的に高く、メツキ液としての飽和濃度ま
で、あるいは各薬剤の飽和濃度までであつても何
ら差支えなく、下限値は実用上の点から自ずと限
定されるものである。 また、上記の理由から建浴の組成割合と同様で
ある必然性もないからメツキ反応を中心にして変
動することは何ら差支えない。 例えば、銀メツキ処理において、次の反応式: 8KAg(CN)2+KBH4+8KOH →8Ag+KBO2+16KCN+6H2O を基本としてメツキが生じるので、銀メツキ薬液
の組成は上記の反応割合を中心としたものを添加
メツキ液として使用することが適当である。 次に、この添加方式によるメツキ処理で考慮す
べきことは基材の水性懸濁体にメツキ液を制御し
ながら添加することである。添加薬液の均一な拡
散と基材の良好な分散状態を保つために必要に応
じ該懸濁体に撹拌、超音波分散処理などを与えて
おくこと、また、温度も制御できるように設定し
ておくことが望ましい。 ここで無電解メツキ薬液を制御しながら添加す
るというのは液濃度と共に添加速度がメツキ反応
に直接的に影響し、また、この要素は基材の物性
特に表面特性にも著しく関係するのでこれらの要
素を十分に考慮した上で、メツキむらの生じない
よう均一かつ強固なメツキ皮膜を形成させるため
にメツキ薬液の添加速度を設定するということで
あり多くの場合徐々に添加する方がよい。 また、薬液の添加速度は薬液が自己分解を生ぜ
ず、かつ液温が所定の温度に一定に保持される範
囲の速い速度が望ましい。 かくしていずれの方式にせよ、本発明にかかる
方法にて銀メツキ処理を行つた後は常法により成
型物においては洗浄後、粉粒体においては過分
離、洗浄分離後、乾燥することにより銀メツキ物
品を得ることができる。 このように、本発明によれば銅イオンを含有し
たニツケルメツキ薬液にて処理後、浸漬にしろ、
または添加にしろ、直接この下地処理に引続いて
銀メツキ処理を行うことができる。 このメツキ液の添加と共に多くの場合要すれ
ば、水性懸濁体のPH調整のため、アルカリ剤を個
別的かつ同時に添加することが望ましい。この理
由はメツキ液の添加によつてメツキ反応が進行
し、例えば、液中の次亜リン酸ソーダの如き還元
剤が酸化されるに従つて水素イオン濃度が増加
し、次第に水性懸濁体のPHが低下することによ
る。それ故当初に設定したPHを一定に保持するた
めにメツキ液とPH調整剤とを上記の如く併行して
添加するのがよい。添加方法はPH計をコントロー
ルしながら、添加する方法もよいが、還元剤の酸
化還元反応に見合つた量のアルカリ量を所定の濃
度にして添加することでもよい。 このようにして、無電解メツキ液を水性懸濁体
に制御して添加することにより懸濁体中で速やか
なメツキ反応が生じ分散した基材表面に均一かつ
強固なメツキ皮膜が形成されてゆく。従つて、添
加量に応じてメツキ皮膜の膜厚を調節することが
でき、用途に応じて、添加量は設定すればよい。 本発明にかかる銀メツキ物品は基材の物性や使
用目的により様々であるけれども、下層のニツケ
ルメツキおよび上層の銀メツキはそれぞれ基材に
対してメツキ皮膜を形成しうる量以上であればよ
く、上限は特に限定される理由はなく用途と経済
的理由によつて自ずと限定される。 なお、本発明に係る銀メツキ物品において下地
のニツケル合金メツキは銅イオンを含有しかつ還
元剤として次亜リン酸アルカリを用いて形成され
るものであるから、他の還元剤を用いたものと比
べて皮膜のニツケルはほぼ前記のような割合の銅
を含有しているニツケル―銅合金の結晶質又は無
定形のメツキ皮膜となつており、他方上層の銀メ
ツキは実質的に純粋な銀で構成されているもので
ある。 本発明に係る銀メツキ物品は各メツキ皮膜が各
基材に対して均一にかつ強固に形成されており、
基材の形態に応じて自由に形状を設定できるので
銀の安価な代替品としてその用途の拡大が期待で
きる。 例えば粉体を用いた場合は導電性顔料として塗
料や接着剤等に利用できるのみならず、樹脂への
添加により要すれば他の導電材料と併用すること
により、より効果的な導電性樹脂を得ることがで
きる。 また、エレクトロニクスの分野で複雑な形状を
した、しかも高精度を必要とする各種部品を基材
とした銀メツキ品は充分にその要望に答えること
ができる。 他方、本発明にかかる方法において、無電解ニ
ツケル―銅―合金メツキを被覆した表面には無電
解銀メツキが直接成長するので従来のように中間
層に金メツキを付ける必要はない。従つて工程が
短縮され、コストも低減される。またニツケル―
銅合金中の銅は含量も少なく合金中に固定されて
いるため表層の銀との相互拡散が実質的にないた
め銀の諸物性の劣化もない。 また、無電解銀メツキの析出速度も銅及び銅合
金上より無電解ニツケル―銅合金メツキ上の方が
早いなど工業的にみてすぐれた銀メツキ方式であ
ると確信できる。 以下、実施例を掲げて更に具体的に本発明を説
明する。 実施例1〜3および比較例1 清浄なα―Al2O3のセラミツクス板(50mm×50
mm×2mm)を室温の1g/SnF2水容液500mlの入
つたガラスビーカーに30分間浸漬後水洗し、次に
0.1g/PdCl2水溶液および0.1ml/35%HCl水
溶液500mlの入つたガラスビーカーに室温で5分
間浸漬して予備処理を行なつた。次に表―3に示
す各組成の無電解メツキ液(下地メツキ液)に85
℃で30分間浸漬して無電解ニツケルメツキ処理を
行なつてニツケル―銅合金メツキ皮膜の下地層を
得た。
The present invention relates to silver-plated articles, more specifically, to silver-plated articles in which an electroless silver plating film is further formed on an electroless nickel-plated film on an inorganic or organic base material, and an industrially advantageous manufacturing method thereof. Generally, in electroless silver plating, unlike nickel plating, it is technically impossible to directly form an electroless silver plating film on the plated object. Therefore, conventionally, a method has generally been adopted in which, following electroless copper plating or electroless nickel plating, gold strike plating is further applied, and then electroless silver plating is formed. However, in the former case, after silver plating, as time passes, the original physical properties of the silver plating deteriorate due to mutual diffusion between the underlying copper film and the surface silver, so it is not possible to obtain a very good silver plating product. . In the latter case, electroless nickel plating followed by gold plating on the lower layer is not economical because the plating process is not only long but also expensive. On the other hand, it has recently been discovered that electroless silver plating can be grown directly on electroless nickel plating using an amine borane reducing agent. This method is cheaper than gold plating and does not cause deterioration of physical properties like copper plating, but since amine borane reducing agents are very expensive, it was hoped that an economically cheaper lower layer treatment method would emerge. By the way, in view of the above-mentioned problems, the inventor of the present invention has been conducting intensive research on silver plating methods and has decided to adopt a method of adding a silver plating liquid to small base materials such as organic or inorganic powder particles. As a result, we succeeded in forming a silver plating film directly on a nickel plating film containing phosphorus or boron, and have already filed an application [Japanese Unexamined Patent Publication No. 162779/1983 (Japanese Patent Application No. 18475/1983). However, this method is difficult to apply when the base material is a molded article, and as described above, no silver plating is formed when the object to be plated is immersed in a silver plating solution. Therefore, the present inventor further determined the size of the molded product of the base material,
Or, whether it is a method of adding plating liquid to the base material,
Moreover, as a result of repeated research on whether it is possible to directly apply a silver plating film to a nickel-based plating film using the dipping method, the present invention was completed. That is, the gist of the present invention is a silver-plated article characterized in that a silver plating film is formed on a base layer of a copper-containing nickel alloy plating film on a base material, and yet another aspect of the invention is The gist is that the base material of the copper-containing nickel alloy plating film is coated with a copper-containing electroless nickel plating solution using alkali hypophosphite as a reducing agent, and then the silver plating film is coated with an electroless silver plating solution. The present invention relates to a method for manufacturing a silver-plated article, which comprises forming a silver-plated article. The silver-plated article and its manufacturing method according to the present invention will be explained in detail below. In the present invention, the size or shape of the base material that can be subjected to electroless plating is not particularly limited, and can range from colloidal fine particles to particles of several centimeters in size, from base materials that are powdery or granular in appearance to large molded materials. Any item is fine. The shape of the molded product may be determined by microscopic observation to be spherical, plate-like, rod-like, needle-like, hollow, or fibrous. In short, the object of plating is the base material to be plated, which is treated as granular or powdery in appearance, from the core material to the molded product. Furthermore, the material of the base material includes all materials that can be electrolessly plated, regardless of whether they are organic or inorganic. Furthermore, the base material need not have a chemically uniform composition, but may be either crystalline or amorphous. What is important is that the surface of the substrate is capable of forming a nickel film coating. Examples of such base materials include metals, metal or non-metal oxides (including hydrated materials), metal silicates including aluminosilicates,
Metal carbides, metal nitrides, metal carbonates, metal sulfates, metal phosphates, metal sulfides, metal salts, metal halides, or carbon, and organic base materials include natural fiber wood, natural resin, polyethylene, polypropylene, polyvinyl chloride, polystyrene,
Synthetic thermoplastic resins such as polybutene, polyamide, polyacrylic acid ester, polyacrylonitrile, polyacetal, ionomer, polyester, synthetic thermoplastic resin such as alkyd resin, phenolic resin, urea resin, melamine resin, xylene resin, silicone resin or diallyl phthalate resin. Examples include curable resins. They may be one type or a mixture of two or more types. The term "mixture" includes anything from chemically heterogeneous compositions to mixtures used as base materials. It goes without saying that when applying nickel alloy plating to such a base material, pretreatment appropriate to the material of the base material is performed, and these pretreatments are well known in the field of electroless plating. That is, cleaning, etching, sensitization and activation treatments are included. For example, the cleaning treatment may be performed with water or an alkaline agent, the sensitization treatment may be performed with a soluble tin salt aqueous solution, and the activation treatment may be pretreated by contacting the base material with a soluble palladium salt aqueous solution. These are already known, and there is no need for special pretreatment in the present invention. In addition, in these preliminary treatments, if the surface of the base material is unstable, it is preferable to perform a desired stabilization treatment. For example, in the case of a base material having a backing surface made of aluminum or an aluminum alloy, the surface is modified and stabilized by zincate treatment. In the present invention, the pretreated base material is coated with a base layer using a copper-containing nickel plating solution. This plating treatment is the same as the next silver plating treatment, but two modes can be considered depending on the physical properties of the base material, mainly whether it is a powdered product or a molded product. One method is to form a plating film by adding or immersing the base material in a prepared plating solution, i.e., a plating bath, to cause a plating reaction, and this is a method that has been commonly used in the past. This is a plating process. The other method is to perform plating by adding a plating liquid to a dispersion of a base material using a desired dispersion medium such as water, an alkaline agent, or other plating composition liquid that does not cause a plating reaction, and causing a plating reaction. This is a method of forming a film, and this method was previously developed by the present inventor, and can be said to be particularly excellent for plating core materials or base materials of powder or granular materials or small molded objects. The present invention is characterized in that it can be carried out without any problem, and this is why the size of the base material is not limited. Therefore, when considering the combinations of the above two aspects in each plating process, there are dipping-immersion method, dipping-addition method, and addition-
There are immersion methods and addition-addition methods, but these are not particularly limited and depend on the physical properties, shape, and
A desired plating method may be appropriately designed depending on the use of the plated product. First, the formation of a copper-containing nickel alloy plating film, which is the coating treatment for the base layer, is performed using a plating solution that further contains copper (Cu ++ ) in addition to the conventional nickel plating solution that uses alkali hypophosphite as a reducing agent. It is characterized by In most cases, the plating solution is prepared in a bath and the substrate is immersed in it, and the ratio is as follows: Table 1 Electroless nickel-copper-phosphorus alloy plating bath nickel salt
0.02-0.2 mol/(preferably 0.05-0.2 mol/) Cupric salt 0.001-0.05 mol/Complexing agent 0.05-0.6 mol/Hypophosphite
0.03-0.4 mol/(0.10-0.3 mol/) Accelerator 0-0.5 mol/PH 3.5-14 (preferably 8-11) Bath temperature 50-98°C Nickel salt dissolves in water and becomes nickel ion For example, nickel sulfate, nickel chloride, and nickel acetate can be used. If it is less than 0.02 mol/mol, the reaction rate will be slow and it is not practical. In addition, if the amount exceeds 0.2 mol/min, it is likely to combine with phosphite produced by oxidation of hypophosphite and cause precipitation.
In order to prevent this, the concentration of the complexing agent must be increased, which is not economical. Practically 0.05~
0.2 mol/ is preferred. The cupric salt may be one such as copper sulfate, copper chloride, copper nitrate, acetic acid, etc., as long as it can dissolve in water and supply cupric ions. 0.001 mol/
If it is less than that, the subsequent silver plating will not grow. Also
If it exceeds 0.05 mol/l, interdiffusion between the subsequent silver plating film and the underlying copper will occur, which will affect the physical properties of the silver film, which is not preferable. The concentration is preferably 0.001 to 0.05 mol/mole, which is the minimum eutectoid amount of copper necessary to grow a silver plating film without affecting the silver film. As the complexing agent, those commonly used in electroless nickel plating, such as citric acid, tartaric acid, gluconic acid, malic acid, pyriphosphoric acid, and ethylenediamine, are used. The concentration of the complexing agent may be an amount sufficient to complex the metal ions in the solution. Hypophosphite as a reducing agent is used in the form of sodium or potassium salt. If it is less than 0.03 mol/mol, the reaction rate is too slow to be practical; on the other hand, if it is less than 0.5 mol/
If it exceeds this, the liquid becomes unstable and tends to self-decompose.
Practically speaking, it is preferably 0.10 to 0.4 mol/. Increasing plating speed by adding commonly known accelerators such as acetic acid, formic acid, propionic acid, malonic acid, succinic acid, adipic acid, boric acid or its alkali metal salt (sodium tetraborate). is the same as general electroless nickel plating, and the appropriate amount of addition is 0 to 0.5 mol/.
The pH of the solution is not particularly limited, but is practically 8-8.
11 is preferred. If the solution temperature is below 50°C, the plating speed will be too slow to be practical. At high temperatures, the plating speed increases, but when the temperature approaches the boiling point, water evaporates rapidly and fuel consumption for heat retention increases, so a temperature of up to about 98°C is practically preferable. As with general electroless plating, there is no problem in adding a surfactant to increase the affinity between the object to be plated and the plating solution. As described above, when a substrate is plated with a copper-containing electroless nickel plating solution using alkali hypophosphite as a reducing agent, a base layer of a copper-containing nickel alloy plating film is formed. The copper content in this nickel alloy plating film varies depending on the bath composition and plating conditions, but in most cases, the copper content is in the range of 0.1 to 10% by weight to make the next silver plating effective. . As long as alkali hypophosphite is used as a reducing agent, a small amount of phosphorus is necessarily included in the plating film, as in conventional nickel plating. After performing the above-mentioned undercoat plating treatment, the plating solution is separated from the base material, washed with water, and the next silver plating treatment is performed. In this plating process, in the case of a method in which a plating solution is prepared and the substrate is immersed or added thereto, the following bath composition is suitable, for example. Table-2 Electroless silver plating bath (mol/) Silver cyanide alkali (as silver cyanide)
0.01 to 0.1 Alkali cyanide 0.1 to 0.2 Alkali hydroxide 0.1 to 0.5 Alkali hydrogen bororide 0.01 to 0.15 Bath temperature 50 to 80℃ If the silver cyanide concentration is less than 0.01 mol/, the plating speed will be slow, and if it exceeds 0.1 mol/ and the liquid becomes unstable. The alkali cyanide concentration is not particularly limited as long as it is sufficient to complex silver ions in the solution, and may be about 0.1 to 0.2 mol/concentration. If the concentration of the alkali borohydride is less than 0.01 mol/mol, the plating speed will be too slow to be practical. On the other hand, if the amount exceeds 0.15 mol/mol, the surface of the precipitate will become rough and the appearance will be impaired. The plating rate is fastest when the alkali hydroxide concentration is between 0.1 and 0.5 mol/, and decreases when it is lower or higher than that. If the liquid temperature is below 50℃, the plating speed will be slow and it is not practical. Furthermore, if the temperature exceeds 80°C, the liquid becomes unstable and easily decomposes. The composition of the silver plating solution prepared by preparing the bath as described above is a typical example of a specific molded substrate, and there is no inevitable reason to limit it to this. This is because silver plating is more susceptible to subtle effects than nickel plating, so there can be large changes depending on the type, size, shape, etc. of the base material, as well as the conditions of the base plating treatment and silver plating treatment. This is because it occurs. All of the above are immersion-immersion methods in which the base material is immersed or added to the plating solution that has been prepared, but when using the addition method, that is, adding the plating chemical solution to the aqueous medium of the base material, the bath preparation composition is The way of thinking is fundamentally different. The reason for this is that in the case of pre-prepared baths, it is assumed that the bath will be used repeatedly until it ages, whereas in the method of adding plating liquid, the liquid is effectively used after being added to the base material dispersion. This is because it becomes a very thin aged liquid and is either treated as waste liquid or reused in part or in whole as a dispersion medium if necessary. Therefore, the plating solution used when adding any plating solution is generally higher than the concentration in the prepared bath, and even up to the saturation concentration of the plating solution or the saturation concentration of each drug. There is no problem, and the lower limit value is naturally limited from a practical point of view. Furthermore, for the above-mentioned reasons, there is no necessity for the composition ratio to be the same as that of the prepared bath, so there is no problem in varying it centering on the plating reaction. For example, in silver plating treatment, plating occurs based on the following reaction formula: 8KAg(CN) 2 +KBH 4 +8KOH →8Ag+KBO 2 +16KCN+6H 2 O, so the composition of the silver plating chemical solution should be based on the above reaction ratio. It is suitable for use as an additive plating solution. Next, what should be considered in the plating process using this addition method is that the plating solution is added to the aqueous suspension of the base material in a controlled manner. In order to maintain uniform diffusion of the additive chemical solution and a good dispersion state of the base material, the suspension should be subjected to agitation, ultrasonic dispersion treatment, etc. as necessary, and the temperature should also be set so as to be controllable. It is desirable to leave it there. The reason why the electroless plating chemical solution is added in a controlled manner is that the addition rate as well as the solution concentration directly affect the plating reaction, and this element is also significantly related to the physical properties, particularly the surface properties, of the base material. After fully considering the factors, the rate of addition of the plating chemical solution is determined in order to form a uniform and strong plating film without causing uneven plating, and in many cases it is better to add it gradually. Further, the addition rate of the chemical solution is desirably fast enough that the chemical solution does not self-decompose and the temperature of the solution is kept constant at a predetermined temperature. Regardless of the method used, after silver plating using the method according to the present invention, molded products are washed and powdered products are subjected to over-separation, washing separation, and drying to remove silver plating. Goods can be obtained. In this way, according to the present invention, after treatment with a nickel metal chemical solution containing copper ions, immersion is performed.
Alternatively, even if it is added, silver plating treatment can be performed directly following this surface treatment. Along with this addition of the plating solution, it is often desirable to separately and simultaneously add an alkaline agent to adjust the pH of the aqueous suspension, if necessary. The reason for this is that the plating reaction progresses with the addition of the plating liquid, and as the reducing agent such as sodium hypophosphite in the liquid is oxidized, the hydrogen ion concentration increases, and the aqueous suspension gradually increases. Due to a decrease in pH. Therefore, in order to maintain the initially set pH constant, it is preferable to add the plating solution and the pH adjuster simultaneously as described above. The addition method may be one in which the alkali is added while controlling the PH meter, but it is also possible to add the alkali in an amount commensurate with the redox reaction of the reducing agent at a predetermined concentration. In this way, by controlling and adding the electroless plating solution to the aqueous suspension, a rapid plating reaction occurs in the suspension, forming a uniform and strong plating film on the surface of the dispersed substrate. . Therefore, the thickness of the plating film can be adjusted depending on the amount added, and the amount added can be set depending on the application. Although the silver-plated articles according to the present invention vary depending on the physical properties of the base material and the purpose of use, the amount of nickel plating on the lower layer and the silver plating on the upper layer may be at least in an amount that can form a plating film on the base material, and the upper limit is There is no particular reason to limit this, and it is naturally limited depending on usage and economic reasons. In addition, in the silver-plated article according to the present invention, the underlying nickel alloy plating contains copper ions and is formed using alkali hypophosphite as a reducing agent, so it is different from those using other reducing agents. In comparison, the nickel film is a crystalline or amorphous plating film of a nickel-copper alloy containing approximately the proportion of copper described above, while the upper layer of silver plating is essentially pure silver. It is configured. In the silver-plated article according to the present invention, each plating film is uniformly and firmly formed on each base material,
Since the shape can be freely set depending on the form of the base material, its use can be expected to expand as an inexpensive alternative to silver. For example, when powder is used, it can not only be used as a conductive pigment in paints and adhesives, but it can also be added to resins and used in combination with other conductive materials to create more effective conductive resins. Obtainable. In addition, silver-plated products that are used as base materials for various parts that have complex shapes and require high precision in the electronics field can fully meet the demand. On the other hand, in the method according to the present invention, since electroless silver plating is directly grown on the surface coated with electroless nickel-copper alloy plating, there is no need to apply gold plating to the intermediate layer as in the conventional method. Therefore, the process is shortened and costs are also reduced. Nickel again
Since the content of copper in the copper alloy is small and it is fixed in the alloy, there is virtually no interdiffusion with the silver on the surface layer, so there is no deterioration of the physical properties of silver. Furthermore, the deposition rate of electroless silver plating is faster on electroless nickel-copper alloy plating than on copper and copper alloys, so we can be confident that it is an excellent silver plating method from an industrial perspective. Hereinafter, the present invention will be explained in more detail with reference to Examples. Examples 1 to 3 and Comparative Example 1 A clean α-Al 2 O 3 ceramic plate (50 mm x 50
mm x 2 mm) in a glass beaker containing 500 ml of 1 g/SnF 2 aqueous solution at room temperature for 30 minutes, then washed with water.
Pretreatment was performed by immersing the sample in a glass beaker containing 500 ml of 0.1 g/PdCl 2 aqueous solution and 0.1 ml/35% HCl aqueous solution for 5 minutes at room temperature. Next, add 85% to the electroless plating solution (base plating solution) of each composition shown in Table 3.
℃ for 30 minutes and electroless nickel plating treatment to obtain a base layer of a nickel-copper alloy plating film.

【表】【table】

【表】 得られた下地層のある各試料を水洗した後、下
記組成の無電解銀メツキ液500mlの入つたガラス
ビーカに80℃で10分間浸漬し、無電解銀メツキ処
理を行つた。 銀メツキ液組成 シアン化銀カリウム 0.05モル/ シアン化銀ナトリウム 0.1モル/ 水酸化ナトリウム 0.4モル/ 硼素化水素カリウム 0.1モル/ 上記で得られた各銀メツキ物品の試料は水洗、
乾燥後、硝酸にてメツキ皮膜を溶解し、溶液中の
銀をボロハード法により、またニツケル及び銅を
キレート滴定法により析出量を測定して各組成物
の物性を調べたところ表―4の結果が得られた。
[Table] After washing each sample with the obtained underlayer with water, it was immersed in a glass beaker containing 500 ml of electroless silver plating solution having the following composition at 80°C for 10 minutes to perform electroless silver plating treatment. Silver plating liquid composition Potassium silver cyanide 0.05 mol / Sodium silver cyanide 0.1 mol / Sodium hydroxide 0.4 mol / Potassium borohydride 0.1 mol / Samples of each silver-plated article obtained above were washed with water,
After drying, the plating film was dissolved in nitric acid, and the amount of silver precipitated in the solution was measured by the Borohard method, and the amount of nickel and copper precipitated by the chelate titration method was measured to examine the physical properties of each composition. The results are shown in Table 4. was gotten.

【表】 実施例 4〜7 異なる基材をそれぞれに適した前処理を行なつ
た後、硫酸ニツケル濃度を0.1モル/とした以
外は実施例3と同一の条件でニツケル―銅合金メ
ツキ及び銀メツキの処理を行なつた。得られた銀
メツキ物品について前記と同様の方法で析出量を
測定した結果を表―5に示す。
[Table] Examples 4 to 7 After performing appropriate pretreatment on different substrates, nickel-copper alloy plating and silver were applied under the same conditions as in Example 3 except that the nickel sulfate concentration was 0.1 mol/. I did the treatment for the wood. Table 5 shows the results of measuring the amount of precipitation on the obtained silver-plated article in the same manner as described above.

【表】 実施例 8 平均粒径5μのα―Al2O3粉末100gについてニツ
ケルメツキおよび銀メツキの処理を次の方法で行
つて、粉末銀メツキ物品を製造した。 前処理操作:塩化第1錫1g/および塩酸1
ml/の水溶液1に試料粉末を添加し、常温で
5分間撹拌する。次いで過洗浄して増感処理し
た。次いで塩化パラジウム0.1g/、塩酸0.1
ml/水溶液1に前記処理物を投入して常温で
5分間撹拌して基材(芯材)の活性化処理を行つ
た後過洗浄して前処理を行つた。次いでこの前
処理を行つた試料を65℃に加温した脱塩水200ml
に添加して充分にアグロメレートの分散が達成さ
れるように撹拌して水性懸濁体を調製した。 次いで硫酸ニツケル0.65モル/、硫酸銅0.05
モル/、エチレンジアミン0.5モル/、次亜
リン酸ナトリウム1.95モル/の混合溶液300ml
を50ml/分およびPH調整剤として3.9モル/の
水酸化ナトリウム水溶液150mlを25ml/分の割合
で撹拌下の上記懸濁体に個別かつ同時に添加し、
添加終了後は水素の発生が停止するまで65℃に保
持して銅含有ニツケルメツキ下地処理を行なつ
た。 次いで、0.5g/(0.008モル/)のシアン
化カリウムおよび0.4g/(0.01モル/)の水
酸化ナトリウムからなる混合溶液200mlに上記処
理後の基材α―Al2O3を均一に分散させ温度80℃
に設定してスラリーを調製した。 このスラリーに150g/(0.75モル/)のシ
アン化銀カリウム溶液2と5g/(0.09モル/
)の硼素水素化カリウムおよび30g/(0.75
モル/)の水酸化ナトリウムからなる無電解銀
メツキ液2をそれぞれ20ml/分の添加速度で撹
拌下の分散スラリーに添加した。添加終了後30分
間80℃に保持した状態で撹拌を続けた。次いで
過、洗浄、分離およ乾燥してα―Al2O3を芯材と
する銀メツキ粉体を得た。なお、この銀メツキ物
品について顕微鏡で観察したところ銀メツキが均
一かつ強固な皮膜として形成されていることが認
められた。 実施例 9 平均粒径20μのフエノール系樹脂粉末(商品
名:ベルバールR―800鐘紡株式会社製)100gを
実施例8と同様の操作と条件とにより前処理およ
び銅含有のニツケルメツキ下地処理を行なつた。 次いで、70℃に加温した5g/(0.1モル/)
のシアン化ナトリウムおよび0.8g/(0.02モ
ル/)の水酸化ナトリウムの水溶液からなる分
散媒200mlに銅含有のニツケルメツキした上記試
料を添加し撹拌して充分に分散させてスラリーを
調製した。 次いで、300g/(1.5モル/)のシアン化
銀カリウム水溶液1および15g/(0.28モ
ル/)の硼素化水素カリウムおよび90g/
(2.24モル/)の水酸化ナトリウムからなる無
電解銀メツキ液1をそれぞれ20ml/分の添加速
度で撹拌下の上記スラリーに添加した。 添加終了後60分間スラリーを70℃に保持させな
がら撹拌を続けた。次いで、スラリーを過、洗
浄および乾燥して銀メツキ物品を得た。
[Table] Example 8 100 g of α-Al 2 O 3 powder with an average particle size of 5 μm was nickel-plated and silver-plated in the following manner to produce a powder-silver-plated article. Pre-treatment operation: 1g of stannous chloride/and 1g of hydrochloric acid
Add the sample powder to 1 ml of aqueous solution and stir for 5 minutes at room temperature. Then, it was overwashed and sensitized. Next, palladium chloride 0.1g/, hydrochloric acid 0.1
The treated product was added to 1 ml/aqueous solution and stirred at room temperature for 5 minutes to activate the base material (core material), followed by pretreatment by over-washing. Next, add 200 ml of demineralized water heated to 65°C to the pretreated sample.
An aqueous suspension was prepared by stirring to achieve sufficient agglomerate dispersion. Next, nickel sulfate 0.65 mol/, copper sulfate 0.05
300ml mixed solution of 0.5 mol/mol/ethylenediamine, 1.95 mol/sodium hypophosphite
and 150 ml of an aqueous solution of 3.9 mol/min of sodium hydroxide as a pH regulator at a rate of 25 ml/min, separately and simultaneously added to the above-mentioned suspension under stirring,
After the addition was completed, the temperature was maintained at 65° C. until the generation of hydrogen ceased, and a copper-containing nickel plating surface treatment was performed. Next, the base material α-Al 2 O 3 after the above treatment was uniformly dispersed in 200 ml of a mixed solution consisting of 0.5 g/(0.008 mol/) potassium cyanide and 0.4 g/(0.01 mol/) sodium hydroxide at a temperature of 80°C. ℃
A slurry was prepared using the following settings. Add 150g/(0.75mol/) of potassium cyanide solution 2 and 5g/(0.09mol/) of this slurry.
) of potassium boron hydride and 30g/(0.75
Electroless silver plating solution 2 consisting of sodium hydroxide (mol/) was added to the stirred dispersion slurry at a rate of 20 ml/min, respectively. After the addition was completed, stirring was continued while maintaining the temperature at 80°C for 30 minutes. The powder was then filtered, washed, separated and dried to obtain a silver-plated powder having α-Al 2 O 3 as a core material. When this silver-plated article was observed under a microscope, it was found that the silver plating was formed as a uniform and strong film. Example 9 100 g of phenolic resin powder with an average particle size of 20 μm (trade name: Bellbar R-800 manufactured by Kanebo Co., Ltd.) was subjected to pretreatment and copper-containing nickel plating base treatment using the same operations and conditions as in Example 8. Ta. Then, 5 g/(0.1 mol/) heated to 70°C
The copper-containing nickel-plated sample was added to 200 ml of a dispersion medium consisting of an aqueous solution of sodium cyanide and 0.8 g/(0.02 mol/) sodium hydroxide, and was stirred to thoroughly disperse the sample to prepare a slurry. Then, 300 g/(1.5 mol/) of potassium cyanide aqueous solution 1 and 15 g/(0.28 mol/) of potassium borohydride and 90 g/
Electroless silver plating solution 1 consisting of (2.24 mol/) sodium hydroxide was each added to the above slurry under stirring at a rate of 20 ml/min. After the addition was complete, stirring was continued while maintaining the slurry at 70°C for 60 minutes. The slurry was then filtered, washed and dried to obtain a silver plated article.

Claims (1)

【特許請求の範囲】 1 基材上の銅含有ニツケル合金メツキ皮膜下地
層上に銀メツキ皮膜を有することを特徴とする銀
メツキ物品。 2 基材が成型物である特許請求の範囲第1項記
載の銀メツキ物品。 3 基材が粉粒体である特許請求の範囲第1項記
載のメツキ物品。 4 基材に還元剤として次亜リン酸アルカリを用
いた銅含有無電解ニツケルメツキ液で銅含有ニツ
ケル合金メツキ皮膜の下地層被覆処理を行い、次
いで無電解銀メツキ液で銀メツキ皮膜を形成させ
ることを特徴とする銀メツキ物品の製造方法。 5 無電解メツキ処理において、少なくともいず
れかの無電解メツキ液を被処理物に対し添加して
メツキ反応を行わせることを特徴とする特許請求
の範囲第4項記載の銀メツキ物品の製造方法。
[Scope of Claims] 1. A silver-plated article comprising a silver plating film on a base layer of a copper-containing nickel alloy plating film on a base material. 2. The silver-plated article according to claim 1, wherein the base material is a molded product. 3. The plated article according to claim 1, wherein the base material is a granular material. 4. Coat the substrate with a base layer of a copper-containing nickel alloy plating film using a copper-containing electroless nickel plating solution using alkali hypophosphite as a reducing agent, and then forming a silver plating film using an electroless silver plating solution. A method for producing a silver-plated article characterized by: 5. The method for producing a silver-plated article according to claim 4, characterized in that in the electroless plating process, at least one of the electroless plating solutions is added to the object to be treated to cause a plating reaction.
JP3265084A 1984-02-24 1984-02-24 Silver plated composition and its manufacture Granted JPS60177183A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3265084A JPS60177183A (en) 1984-02-24 1984-02-24 Silver plated composition and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3265084A JPS60177183A (en) 1984-02-24 1984-02-24 Silver plated composition and its manufacture

Publications (2)

Publication Number Publication Date
JPS60177183A JPS60177183A (en) 1985-09-11
JPH0249391B2 true JPH0249391B2 (en) 1990-10-30

Family

ID=12364728

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3265084A Granted JPS60177183A (en) 1984-02-24 1984-02-24 Silver plated composition and its manufacture

Country Status (1)

Country Link
JP (1) JPS60177183A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0797717B2 (en) * 1986-02-21 1995-10-18 三菱マテリアル株式会社 Cu powder coated with Ag and Ni
JPS63266076A (en) * 1987-04-22 1988-11-02 Kawasaki Kasei Chem Ltd Electroless nickel-copper-phosphorus alloy plating solution

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5918475A (en) * 1982-07-23 1984-01-30 Fujiya:Kk Freezing and frosting damage forecaster

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5918475A (en) * 1982-07-23 1984-01-30 Fujiya:Kk Freezing and frosting damage forecaster

Also Published As

Publication number Publication date
JPS60177183A (en) 1985-09-11

Similar Documents

Publication Publication Date Title
US4234628A (en) Two-step preplate system for polymeric surfaces
US3958048A (en) Aqueous suspensions for surface activation of nonconductors for electroless plating
US4199623A (en) Process for sensitizing articles for metallization and resulting articles
JP6201153B2 (en) Nickel colloidal catalyst solution for electroless nickel or nickel alloy plating and electroless nickel or nickel alloy plating method
EP1343921A1 (en) Method for electroless nickel plating
JP2004502871A (en) Electroless silver plating
US4780342A (en) Electroless nickel plating composition and method for its preparation and use
US3723078A (en) Electroless alloy coatings having metallic particles dispersed therethrough
US3562000A (en) Process of electrolessly depositing metal coatings having metallic particles dispersed therethrough
JPH0613753B2 (en) Method for producing solution containing fine metal body used for electroless plating
US4151311A (en) Post colloid addition of catalytic promoters to non noble metal principal catalytic compounds in electroless plating catalysts
JP4189532B2 (en) Method for activating catalyst for electroless plating
US4082557A (en) Silver base activating solutions for electroless copper deposition
US4259113A (en) Composition for sensitizing articles for metallization
US4762560A (en) Copper colloid and method of activating insulating surfaces for subsequent electroplating
US3697296A (en) Electroless gold plating bath and process
US4297397A (en) Catalytic promoters in electroless plating catalysts in true solutions
JPH0249391B2 (en)
EP0044878B1 (en) A stable aqueous colloid for the activation of non-conductive substrates and the method of activating
JPH0225431B2 (en)
US4681630A (en) Method of making copper colloid for activating insulating surfaces
US4450190A (en) Process for sensitizing articles for metallization and resulting articles
US20030039754A1 (en) Preactivation of plastic surfaces to be metallized
US4440805A (en) Stabilized dispersion for electroless plating catalysts using corrosion inhibitors as stabilizers
US2836510A (en) Nickel plating by chemical reduction