JPH0249338A - Diaphragm for charged particle beam - Google Patents

Diaphragm for charged particle beam

Info

Publication number
JPH0249338A
JPH0249338A JP33138088A JP33138088A JPH0249338A JP H0249338 A JPH0249338 A JP H0249338A JP 33138088 A JP33138088 A JP 33138088A JP 33138088 A JP33138088 A JP 33138088A JP H0249338 A JPH0249338 A JP H0249338A
Authority
JP
Japan
Prior art keywords
substrate
film
charged particle
particle beam
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33138088A
Other languages
Japanese (ja)
Inventor
Kenichi Yamamoto
健一 山本
Katsuhiro Kuroda
勝広 黒田
Tokuo Kure
久礼 得男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP33138088A priority Critical patent/JPH0249338A/en
Publication of JPH0249338A publication Critical patent/JPH0249338A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a diaphragm sized to a micron or less order by forming a desired hole on a substrate using a drilling technique used in the manufacture process of a semiconductor and applying a metallic coat to both surfaces of the substrate. CONSTITUTION:An insulation film comprising an SiO2 films 3 and 5, and an Si3N4 films 2 and 4 is formed on the surface of a silicon substrate to a thickness of a sub-micron order. Then, a resist is coated to one of the surfaces and a desired hole 6 is patterned thereon. The aforesaid surface is etched to obtain such depth as penetrating the film 3, using a dry etching process and the resist is thereby removed. Thereafter, a sufficiently large region 7 near the position of the hole 6 is applied with the etching process from the rear side of the substrate and the films 4 and 5 are thereby removed. Thereafter, silicon is selectively etched only from the rear side with a KOH solution and the substrate is immersed in a hydrofluoric acid solution when the thickness of the remaining silicon film 9 becomes about 10mum. As a result, the diaphragm hole 6 is made through while the film 9 having a thickness of a micron order remains. Thereafter both surfaces of the substrate are coated with a metal 8 such as gold and platinum and the diaphragm of a micron order size can be obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、荷電粒子線の応用装置に係り、特に〔従来の
技術〕 荷電粒子線応用装置一般に用いられている荷電記載され
ているように、モリブデンや白金のような高融点金属に
穴をあけたものが用いられている(本願図面第5図参照
)にのような材質に対して現在の技術では数μmより小
さな穴をあけることは困難である。その理白は、現在行
われている絞りの製作方法にある。すなわち、金属に所
望の↓ 大きにパターンニングしたマスクを用いて直接エツチン
グして穴をあけるためである。この場合、μmオーダの
穴径を精度良くあけるためにはこの穴径と同等かもしく
は薄い金属を用いる必要がある。しかし、現在絞りとし
て用いられている金属の厚みを10μm以下にすること
は困難である。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a charged particle beam applied device, and particularly [Prior Art] Charged particle beam applied devices generally used as described above. With current technology, it is impossible to drill holes smaller than a few μm in materials such as (see Figure 5 of the drawings of this application), which are made by drilling holes in high-melting point metals such as molybdenum and platinum. Have difficulty. The reason behind this lies in the current method of manufacturing iris. That is, the hole is made by directly etching the metal using a mask patterned to a desired size. In this case, in order to accurately drill a hole diameter on the order of μm, it is necessary to use a metal that is equal to or thinner than the hole diameter. However, it is difficult to reduce the thickness of the metal currently used as the aperture to 10 μm or less.

従って、現在のところ数μmより小さな穴の絞りμmオ
ーダ以下の穴で荷電粒子線を制限し超τいう要求が生じ
てきている。そのために従来技術では対応が困難となっ
てきた。
Therefore, at present, there is a demand for limiting the charged particle beam by using holes smaller than a few micrometers, with holes on the order of micrometers or less, and exceeding τ. For this reason, it has become difficult to deal with this problem using conventional technology.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明の目的は、数μm以下、特にμmオーダ以下の穴
をもつ絞りを提供することにある。
An object of the present invention is to provide a diaphragm having holes of several μm or less, particularly on the μm order or less.

〔課題を解決するための手段〕 上記課題を解決するためには、従来から用いられている
金属に直接穴をあける代わりに、半導体プロセスで行わ
れているSi基板の穴あけ技術を利用する。すなわち、
現在の半導体プロセス技術を用いるとμmオーダの深さ
で直径0.1  μm程度までの溝穴をSi基板にあ番
プることができる。
[Means for Solving the Problems] In order to solve the above problems, instead of directly drilling holes in metal, which has been conventionally used, a Si substrate drilling technique used in a semiconductor process is used. That is,
Using current semiconductor process technology, it is possible to form slots in a Si substrate with a depth on the μm order and a diameter of up to about 0.1 μm.

本発明はこの技術を利用するものである。The present invention utilizes this technique.

〔作用〕[Effect]

まず、Si基板の上に異なる材質の薄膜を形成しておき
、この薄膜に半導体プロセスで行われている穴あけ技術
を応用して所望の穴をあける。この後、この穴の近傍の
Si基板を除去すれば絞りとして用いることができる。
First, a thin film of a different material is formed on a Si substrate, and a desired hole is drilled in this thin film using a drilling technique used in a semiconductor process. Thereafter, by removing the Si substrate near this hole, it can be used as an aperture.

μmオーダ以下の簿膜形成は極めて容易であるし、0.
1 μm程度までのバターニングも現状技術では問題な
く行えるので、サブμmオーダまでの絞りは容易に製作
することかできる。
It is extremely easy to form a film on the order of μm or less.
Since patterning up to about 1 .mu.m can be performed without any problem with the current technology, apertures down to the sub-.mu.m order can be easily manufactured.

本発明は、このような作用を基本にしてなされたもので
ある。
The present invention has been made based on such an effect.

〔実施例〕〔Example〕

以下、本発明の一実施例を説明する。第1図は一実施例
の断面図で、第2図は第1図の裏面からみた図(ただし
金属コーティングしていない状態)である。この絞りは
以下のプロセスにより製作されたものである。(1)ま
ず厚さ0.5 amのSi基板1の両面に絶縁膜をサブ
ミクロンオーダつける。絶縁膜はSi基板1との間に生
ずる応力除去のため、厚さ0.12  pmの酸化膜(
SiOz)3゜5と厚さ0.35  μmの窒化膜(S
iaNa)2゜4の二層で形成する。(2)この片面(
表面)にレジストを塗布して所望の六6の大きさにバタ
ートを除去すると、Si基板上に穴をもつ絶縁膜(窒化
膜2および酸化膜3)が形成される6(3)一方、裏面
の絶縁膜(窒化膜4および酸化膜5)に対しては、この
六6のある位置付近を十分大きい領域7で同様にして絶
縁膜をエツチングして取り除く。(4)このようにバタ
ーニングされたSi基板1表面を耐酸性ワックスあるい
は耐酸テープなど汐で保護する。その後、Siのみ選択
的にエツチングできる水酸化ナトリウム(KOH)溶液
中に浸し、Si基板1の裏面からのみエツチングする。
An embodiment of the present invention will be described below. FIG. 1 is a sectional view of one embodiment, and FIG. 2 is a view from the back side of FIG. 1 (without metal coating). This aperture was manufactured by the following process. (1) First, insulating films are formed on both sides of a Si substrate 1 having a thickness of 0.5 am to a submicron order. The insulating film is an oxide film with a thickness of 0.12 pm (
SiOz) 3°5 and 0.35 μm thick nitride film (S
Formed with two layers of iaNa)2°4. (2) This one side (
When resist is applied to the front surface) and the batt is removed to the desired size, an insulating film (nitride film 2 and oxide film 3) with holes is formed on the Si substrate. Regarding the insulating film (nitride film 4 and oxide film 5), the insulating film is removed by etching in the vicinity of the position of this 66 in a sufficiently large area 7 in the same manner. (4) The surface of the Si substrate 1 thus patterned is protected with acid-resistant wax or acid-resistant tape. Thereafter, it is immersed in a sodium hydroxide (KOH) solution that can selectively etch only Si, and etching is performed only from the back surface of the Si substrate 1.

エツチングされたSi基板1のS1残膜9が10μm程
度になったらワックスあるいは耐酸テープを除去しフン
硝酸(HF/HN○8)溶液中に浸す。このとき、裏面
からだけでなく表面の絞りの穴6からもSi基板1が等
方的にエツチングされるため、Si残膜9がミクロンオ
ーダ残った状態で絞りの六6が貫通する。この状態でエ
ツチングをストップすると、RrHJをミクロンオーダ
のSi残膜9で支えられた所望の穴サイズをもつサブミ
クロン厚の絶縁膜ができる。第1図に分かるように穴の
周辺にはSi基板はそのまま残っており、ハンドリング
には問題がないようになっている。(5)この後1両面
から金、白金等の金属8をコーティングする。これは荷
電粒子線の絞りとして用いるために、絶縁膜にチャージ
アップするのを防ぐためである。以上の方法により、0
.5閣の厚みのSi基板に膜厚4μmのSi残膜で支え
られた最小穴径0.1μm、膜厚0.12μmの窒化膜
、0.35 μmの酸化膜から成る絶縁膜を形成するこ
とができた。
When the remaining S1 film 9 on the etched Si substrate 1 reaches about 10 μm, the wax or acid-resistant tape is removed and the substrate is immersed in a fluorine-nitric acid (HF/HN◯8) solution. At this time, the Si substrate 1 is isotropically etched not only from the back surface but also from the aperture hole 6 on the front surface, so that the aperture hole 6 passes through with the residual Si film 9 remaining on the order of microns. When etching is stopped in this state, an insulating film with a submicron thickness and a desired hole size in which the RrHJ is supported by the remaining Si film 9 on the order of microns is formed. As can be seen in Figure 1, the Si substrate remains as it is around the hole, so there is no problem in handling it. (5) After this, metal 8 such as gold or platinum is coated from one both sides. This is to prevent the insulating film from being charged up since it is used as a diaphragm for the charged particle beam. By the above method, 0
.. To form an insulating film consisting of a minimum hole diameter of 0.1 μm, a nitride film with a thickness of 0.12 μm, and an oxide film with a thickness of 0.35 μm, supported by a Si remaining film with a thickness of 4 μm, on a Si substrate with a thickness of 5 cm. was completed.

もちろんこれは−例であり、穴径やその数、さらに絶縁
膜の厚みや膜質等はこれに限るものではない。例えば、
穴の形状においても、円状ではなく電子線描画装置の成
形ビーム用絞りに用いている角形やICパターンの一部
のような特殊パターンでも可能である。これらが複数種
2M1数個あってもよい。
Of course, this is just an example, and the diameter of the holes, the number of holes, the thickness and quality of the insulating film, etc. are not limited to these. for example,
As for the shape of the hole, it is also possible to use a special pattern such as a rectangular shape used in a shaped beam diaphragm of an electron beam drawing device or a part of an IC pattern instead of a circular shape. There may be a plurality of 2M1 types of these.

また、5iaNa/5iOz (7)代わりに、−層の
5iaN4やPSG、さらにPやBをドープしたP型や
N型Si等の半導体であってもよい。すなわちSiとの
選択エツチングができるものであればよい。例えばBを
約10”/CM8以上ドープすると、Siとのエツチン
グ速度は約1/1000となり、Siとの選択エツチン
グができる。またこれらをサンドインチ構造とした膜で
もよい。例えば、SiO2,S i sNa、 S i
 Ozの三層構造とすると、5iOzの膨張と5isN
hの収縮とのバランスがとれ、エツチング時の応力を小
さくでき、膜の破損防止が容易にできる。
Further, instead of 5iaNa/5iOz (7), a negative layer of 5iaN4 or PSG, or a semiconductor such as P-type or N-type Si doped with P or B may be used. That is, any material that can be selectively etched with Si may be used. For example, if B is doped at about 10"/CM8 or more, the etching rate with Si will be about 1/1000, and selective etching with Si will be possible.Also, a film with a sandwich structure of these may be used. For example, SiO2, Si sNa, S i
Assuming a three-layer structure of Oz, the expansion of 5iOz and 5isN
This balances h with shrinkage, reduces stress during etching, and easily prevents damage to the film.

また、エツチングに関してはドライ、ウェットいずれの
エツチングで行ってもできることはいうまでもない。要
はSiとの選択エツチングができるものであればよい。
As for etching, it goes without saying that either dry or wet etching can be used. In short, any material that can be selectively etched with Si may be used.

例えばSiのエツチングには水酸化カリウム溶液の他に
、水酸化ナトリウム。
For example, for Si etching, use sodium hydroxide in addition to potassium hydroxide solution.

水酸化リチウム、水酸化アンモニウムあるいはフッ硝酸
等の溶液、51gNa、5iOzにはフッ酸やフッ化ア
ンモニウム等いずれを用いてもよい。
Any solution such as lithium hydroxide, ammonium hydroxide or fluoronitric acid, hydrofluoric acid or ammonium fluoride may be used for 51 g Na and 5 iOz.

また、本実施例では代表例としてSi基板について述べ
ているが、 G a A sやInPのような化合物半
導体でも可能である。
Further, in this embodiment, a Si substrate is described as a representative example, but a compound semiconductor such as GaAs or InP may also be used.

また、上記製作方法も一例であり、これに限るものでは
ない。例えば、裏面の絶縁膜4,5を大きな領域で除去
する場合、機械的にSi基板とともに表面の絶縁膜近傍
まで削ったり、超音波で削ったりし、残ったSi部分を
エツチングで取り除いてもよい。
Moreover, the above manufacturing method is also an example, and is not limited to this. For example, when removing a large area of the insulating films 4 and 5 on the back surface, it may be mechanically scraped together with the Si substrate to the vicinity of the insulating film on the front surface, or it may be scraped using ultrasonic waves, and the remaining Si portion may be removed by etching. .

第3図は他の実施例の断面図で、第1図と同一部分には
同一符号が付しである。第4図は第3図の裏面からみた
図(金属コーティング前)である。
FIG. 3 is a sectional view of another embodiment, in which the same parts as in FIG. 1 are given the same reference numerals. FIG. 4 is a view from the back side of FIG. 3 (before metal coating).

この絞りの製作手順は、第一実施例とはプロセス(4)
のみが次の様に異なる。すなわち、Si基板1をSiの
み選択的にエツチングできるエツチング液に浸し、第1
図のSi残膜9が無くなるまでエツチングする。その結
果、所望の穴サイズをもつ膜厚サブミクロンの窒化膜2
.酸化膜3から成る絶縁膜層のみができる。
The manufacturing procedure of this aperture is the process (4) of the first embodiment.
The only difference is as follows. That is, the Si substrate 1 is immersed in an etching solution that can selectively etch only Si.
Etching is performed until the remaining Si film 9 shown in the figure disappears. As a result, a submicron-thick nitride film 2 with the desired hole size was obtained.
.. Only the insulating film layer consisting of the oxide film 3 is formed.

以上の実施例では絞りに使用する部分を絶縁膜とし、チ
ャージアップ防止のために金属をコーティングしたもの
を示したが、これに限るものではない。例えば、絶縁膜
のかわりにW、Au、Ptのような金属をコーティング
し、同様の手順により製作してもよい。この場合、チャ
ージアップ防止のための金属コーティングは不用となる
。一般に金属をウェットエツチングする場合Siとの選
択性があまりよくない。そこで、絞りとして用いる金属
膜と基板の間に5iC)zや5iaNt等の絶縁膜を形
成しておき、裏面側からのエツチングの際にはこれで金
属膜を保護し、表面側はワックスやレジストで覆って保
護してエツチングする。所望の膜ができた後にこのワッ
クスやレジストを溶かせば所望の絞りができる。もちろ
んこの後SiO2や5isNa等の保護膜を除去しても
よい。この手法は金属膜のみならず選択性の悪い膜の製
作一般に用いることができる。
In the above embodiments, the part used for the aperture is made of an insulating film and coated with metal to prevent charge-up, but the invention is not limited to this. For example, instead of the insulating film, a metal such as W, Au, or Pt may be coated and manufactured using the same procedure. In this case, a metal coating to prevent charge-up is unnecessary. Generally, when wet etching metals, selectivity with Si is not very good. Therefore, an insulating film such as 5iC)z or 5iaNt is formed between the metal film used as the aperture and the substrate, and this protects the metal film when etching from the back side, and the front side is coated with wax or resist. Cover, protect and etch. After the desired film is formed, the wax or resist is melted to create the desired aperture. Of course, the protective film such as SiO2 or 5isNa may be removed after this. This method can be used not only for the production of metal films but also for the production of films with poor selectivity in general.

また、以上の実施例では基板を残す構造の絞りについて
述べたが、例えば基板はすべて取り除いて薄膜のみとし
、これを、メツシュのようなものの上に接着しても所望
の絞りを作ることができる。
Furthermore, in the above embodiments, we have described an aperture with a structure in which the substrate remains, but for example, the desired aperture can also be created by removing the entire substrate, leaving only a thin film, and gluing this onto something like a mesh. .

〔発明の効果〕〔Effect of the invention〕

以上に述べたごとく、本発明によれば、金属で製作して
いた絞り径よりも十分小さな絞り径を形成できる効果が
ある。言い換えれば、絞りのエツジの精度が従来よりよ
いものができるということである。すなわち、この絞り
のパターンを投影や転写する荷電粒子線光学系に用いて
もきわめて精度のよい絞りを提供できる効果がある。ま
た、これらの膜は極めて薄くすることができるので荷電
粒子線の絞りとして用いると自己加熱が起こり、絞りの
汚染防止ができる効果も生じる。
As described above, according to the present invention, it is possible to form a sufficiently smaller aperture diameter than the aperture diameter made of metal. In other words, the precision of the aperture edge is better than that of the conventional method. That is, even if this aperture pattern is used in a charged particle beam optical system that projects or transfers the aperture pattern, it is possible to provide an extremely accurate aperture. In addition, since these films can be made extremely thin, self-heating occurs when used as a diaphragm for charged particle beams, resulting in the effect of preventing contamination of the diaphragm.

【図面の簡単な説明】[Brief explanation of the drawing]

シ 第1図は、本発明一実施例を示す絞りの基本断面図。第
2図は、第1図の裏面からみた図(金属コーティング前
)。第3図は、本発明の他の実施、シ 例を示す絞り基本断面図。第4図は、第3図の裏面から
みた図(金属コーティング前)。第5図は、従来方式の
基本構成図。 1・・・Si基板、2・・・窒化膜、3・・・酸化膜、
4・・・窒化膜、5・・・酸化膜、6・・・絞りの穴、
7・・・Si基板エツチング用穴、8・・・金属コーテ
イング膜、9・・・Si残膜、10・・・金属板絞り。
FIG. 1 is a basic sectional view of a diaphragm showing one embodiment of the present invention. Figure 2 is a view from the back of Figure 1 (before metal coating). FIG. 3 is a basic sectional view of an aperture showing another embodiment of the present invention. Figure 4 is a view from the back of Figure 3 (before metal coating). FIG. 5 is a basic configuration diagram of the conventional system. 1... Si substrate, 2... Nitride film, 3... Oxide film,
4...Nitride film, 5...Oxide film, 6...Aperture hole,
7... Hole for Si substrate etching, 8... Metal coating film, 9... Si remaining film, 10... Metal plate aperture.

Claims (1)

【特許請求の範囲】 1、穴を有する基板の上に該穴より小さな穴を有する薄
膜が形成されていることを特徴とする荷電粒子線用絞り
。 2、上記基板の穴は2段以上になつた断面構造であるこ
とを特徴とする第1項記載の荷電粒子線用絞り。 3、上記基板はSiやGaAs等の半導体であることを
特徴とする第1項もしくは第2項のいずれかに記載の荷
電粒子線用絞り。 4、上記薄膜はSiO_2やSi_3N_4、PSG等
の絶縁膜、あるいはこれらを二層以上重ねた構造の絶縁
膜であり、これらは金属でコーティングされた構造であ
ることを特徴とする第1項から第3項のいずれかに記載
の荷電粒子線用絞り。 5、上記薄膜はPやBをドープしたP型やN型Si等の
半導体であるか、または該半導体に金属でコーティング
された構造であることを特徴とする第1項から第3項ま
でのいずれかに記載の荷電粒子線用絞り。 6、上記薄膜は金属であることを特徴とする第1項から
第3項のいずれかに記載の荷電粒子線用絞り。 7、上記の小さな穴は、荷電粒子線源から出た荷電粒子
ビームの通路に配置したことを特徴とする第1項から第
6項までのいずれかに記載の荷電粒子線用絞り。 8、第1項ら第7項までのいずれかに記載の荷電粒子線
用絞りを搭載したことを特徴とする荷電粒子線装置。
[Claims] 1. An aperture for a charged particle beam, characterized in that a thin film having a hole smaller than the hole is formed on a substrate having a hole. 2. The charged particle beam aperture according to item 1, wherein the hole in the substrate has a cross-sectional structure of two or more stages. 3. The aperture for charged particle beams according to either of item 1 or item 2, wherein the substrate is a semiconductor such as Si or GaAs. 4. Items 1 to 4, wherein the thin film is an insulating film such as SiO_2, Si_3N_4, PSG, or an insulating film having a structure in which two or more layers of these are stacked, and these are coated with metal. The charged particle beam aperture according to any one of Item 3. 5. Items 1 to 3, wherein the thin film is a semiconductor such as P-type or N-type Si doped with P or B, or has a structure in which the semiconductor is coated with a metal. The charged particle beam aperture according to any one of the above. 6. The charged particle beam aperture according to any one of items 1 to 3, wherein the thin film is made of metal. 7. The charged particle beam aperture according to any one of items 1 to 6, wherein the small hole is arranged in the path of the charged particle beam emitted from the charged particle beam source. 8. A charged particle beam device equipped with the charged particle beam aperture according to any one of items 1 to 7.
JP33138088A 1988-04-28 1988-12-28 Diaphragm for charged particle beam Pending JPH0249338A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33138088A JPH0249338A (en) 1988-04-28 1988-12-28 Diaphragm for charged particle beam

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP63-103908 1988-04-28
JP10390888 1988-04-28
JP33138088A JPH0249338A (en) 1988-04-28 1988-12-28 Diaphragm for charged particle beam

Publications (1)

Publication Number Publication Date
JPH0249338A true JPH0249338A (en) 1990-02-19

Family

ID=26444487

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33138088A Pending JPH0249338A (en) 1988-04-28 1988-12-28 Diaphragm for charged particle beam

Country Status (1)

Country Link
JP (1) JPH0249338A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000046830A1 (en) * 1999-02-08 2000-08-10 Daiwa Tecthno Systems Co., Ltd. Diaphragm plate and its processing method
JP2012209207A (en) * 2011-03-30 2012-10-25 Dainippon Printing Co Ltd Iris device to be used for electron microscope and method for manufacturing iris device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000046830A1 (en) * 1999-02-08 2000-08-10 Daiwa Tecthno Systems Co., Ltd. Diaphragm plate and its processing method
JP2012209207A (en) * 2011-03-30 2012-10-25 Dainippon Printing Co Ltd Iris device to be used for electron microscope and method for manufacturing iris device

Similar Documents

Publication Publication Date Title
US6465158B1 (en) Semiconductor wafer dividing method
EP1419990B1 (en) Method of forming a via hole through a glass wafer
Burger et al. High-resolution shadow-mask patterning in deep holes and its application to an electrical wafer feed-through
US6752931B2 (en) Method for using DRIE with reduced lateral etching
JPH0249338A (en) Diaphragm for charged particle beam
JP2003115536A (en) Semiconductor component inside wafer assembly and method of manufacturing the same
JP2625362B2 (en) Method for manufacturing semiconductor device
JP4465090B2 (en) Manufacturing method of mask member
JPS63237408A (en) Substrate for semiconductor device
JP3271390B2 (en) Transmission mask for charged beam exposure and method of manufacturing the same
KR100327326B1 (en) Method for fabricating silicon-on-insulator wafer
JPH04182911A (en) Production of thin-magnetic film
JPH08176799A (en) Selective film forming mask and production thereof
JPH06221945A (en) Semiconductor pressure sensor and manufacture thereof
JPH10284378A (en) Alignment mark and electron beam exposing mask employing the same
JP2002004034A (en) Mask for vapor deposition and its production method
JP2003158069A (en) Reticle for electron beam exposure, reticle blank for electron beam exposure and its manufacturing method
JP2000243977A (en) Manufacture of semiconductor mechanical mass sensor
JPH04148546A (en) Beam dimension measurement element and its manufacture
JPH0262939B2 (en)
JP2660024B2 (en) Method for manufacturing semiconductor device
JPH01224671A (en) Manufacture of semiconductor acceleration sensor
JPH03205565A (en) Electrostatic servo type acceleration sensor and production thereof
JPS61184831A (en) Manufacture of semiconductor device
JPH05203519A (en) Manufacture of pressure sensor