JPH0249245B2 - - Google Patents

Info

Publication number
JPH0249245B2
JPH0249245B2 JP56078714A JP7871481A JPH0249245B2 JP H0249245 B2 JPH0249245 B2 JP H0249245B2 JP 56078714 A JP56078714 A JP 56078714A JP 7871481 A JP7871481 A JP 7871481A JP H0249245 B2 JPH0249245 B2 JP H0249245B2
Authority
JP
Japan
Prior art keywords
crystalline
silicate
source
ions
crystalline silicate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56078714A
Other languages
Japanese (ja)
Other versions
JPS57196718A (en
Inventor
Korehiko Nishimoto
Tetsuya Imai
Hiroshi Fujita
Minoru Koikeda
Takashi Suzuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHINNENRYOYU KAIHATSU GIJUTSU KENKYU KUMIAI
Original Assignee
SHINNENRYOYU KAIHATSU GIJUTSU KENKYU KUMIAI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHINNENRYOYU KAIHATSU GIJUTSU KENKYU KUMIAI filed Critical SHINNENRYOYU KAIHATSU GIJUTSU KENKYU KUMIAI
Priority to JP56078714A priority Critical patent/JPS57196718A/en
Publication of JPS57196718A publication Critical patent/JPS57196718A/en
Publication of JPH0249245B2 publication Critical patent/JPH0249245B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は新規な結晶性ビスマスシリケート及び
その製造方法に関するものである。 モレキユラシーブ型の結晶性ゼオライトは周知
であつて重要商品である。化合物の群としてはモ
レキユラシーブゼオライトは全アルミニウム及び
けい素原子は酸素原子の比率が1:2となるよう
に酸素原子の共有によつて結合されたSiO4及び
AlO4 -四面体の硬質三次元網目構造からなるアル
ミノシリケートである。AlO4 -四面体は陽イオン
との結合によつて通常原子価的に平衡化され、そ
して陽イオンはたいていの天然産ゼオライトで
は、アルカリ又はアルカリ土類金属陽イオンであ
るが、しかし合成ゼオライト又はイオン交換処理
を受けたものでは本質上任意の金属陽イオン、水
素、アンモニウム又は適当な原子若しくは分子寸
法の有機陽イオンでありうる。これらのゼオライ
ト組成物のすべてにおいて、AlO4 -四面体は結晶
構造を持つ結晶学上有意義な部分でありそして明
らかに全構造の酸性特性の一因となる。 最近まで12以上のSiO2/Al2O3比をもつゼオラ
イトを合成することは不可能であつた。そして天
然のゼオライトが12以上のSiO2/Al2O3比を有す
ることはない。しかしこの問題は最近になつて克
服され、そして高SiO2/Al2O3比、高安定性及び
極めて高い酸性点を有し、かつメタノールやその
他の含酸素有機化合物の芳香族炭化水素への変換
反応に対して触媒能力を有する一連のゼオライト
が得られるようになつた。このようなことは、テ
トラアルキルアンモニウムの如き有機カチオンを
ゼオライト合成時に添加することにより達成され
た。 例えば、有機カチオンとして第4級アンモニウ
ムを含むもの(特公昭46−10064号、特開昭51−
67298、67299号)、第3級アミンを含むもの(特
開昭47−25097号)、炭素数2〜10の第1アミンを
含むもの(特開昭50−54598号)、アルコールを含
むもの(特開昭52−43800号)、アルコール及びア
ンモニアを含むもの(特開昭54−151600号)、モ
ノエタノールアミン、モノプロパノールアミン又
は誘導体を含むもの(特開昭54−107499号)及び
有機硫黄化合物を含むもの(特開昭54−137500
号)などを使用する方法が知られている。 ゼオライトは前述したように酸素原子の共有に
よつて結合されたSiO4及びAlO4 -四面体の硬質三
次元網目構造からなつており、AlO4 -四面体はイ
オン交換可能な陽イオンとの結合によつて通常原
子価的に平衡化されている。Siの代わりにGeが、
又Alの代わりにGaが使用できることは、従来の
ゼオライト合成技術において周知のことである。 ところが、本発明者らの研究によればAlの代
わりにBi及びその他の遷移金属を使用してもゼ
オライト構造中のSiO4四面体と同様の形態で3
価のカチオンの四面体が形成されることが判明し
た。この3価のカチオンが単なるイオン交換可能
な陽イオンと異なることはH+、NH4 +などのイ
オンとイオン交換されないこと、又不純物として
酸化物であれば溶出するであろう強酸に浸漬して
も殆んど溶出しないことからも推察される。 驚くことに、一般にゼオライトと呼ばれるアル
ミノシリケートの代わりに、本発明で得られた結
晶性ビスマスシリケートを使用することにより、
触媒性能に著しい変化が見い出された。例えばメ
タノールやその他の含酸素有機化合物の芳香族炭
化水素への変換反応において、従来のモービル・
オイル社のZSM−5と称されるゼオライト(特
公昭46−10064、特開昭52−8005号)などでは、
エンジン機関のキヤブレター閉塞の原因となるデ
ユレン(m.p.79℃)が数%副生するという問題点
がある。ところが、本発明で得られた結晶性ビス
マスシリケートを使用した場合デユレンなどC10
以上の芳香族炭化水素が殆んど生成しないという
画期的な結果が得られた。このためカーボンの生
成が抑制され触媒の寿命が長く、このような現象
は、活性点がAl原子の周囲と考えた場合、Alの
一部または全部がBi及びその他の遷移金属にか
わつたことにより、置換芳香族のさらに置換基の
増加する反応が抑制されるため、又は細孔径の変
化により抑制されるためと推定される。 本発明方法は脱水された形態において、酸化物
のモル比で表わして、 (1.0±0.4)R2/oO・〔aBi2O3・bM2O3〕・
ySiO2 {上記式中、R;1種又はそれ以上の1価又は2
価カチオン、n;Rの原子価、M:1種又はそれ
以上の3価の遷移金属イオン及び/又はアルミニ
ウムイオン、a+b=1、a>0、b0、y
5}の化学組成を有することを特徴とする結晶性
ビスマスシリケート(以下、結晶性シリケートと
称す)及びその製造方法に関するものである。 本発明の結晶性シリケートの製造方法は、シリ
カ源、ビスマス源、遷移金属及び/又はアルミナ
源、アルカリ金属源、水及び特殊の有機化合物を
含有する反応混合物をつくり、この混合物を結晶
性シリケートが生成するに至る時間及び温度で加
熱することにより製造することを特徴としてい
る。 シリカ源はゼオライト合成において普通に使用
されるシリカの化合物であれば、いずれのシリカ
源であつてもよく、例えば固型シリカ粉末、コロ
イド状シリカ、又は水ガラス等のケイ酸塩などが
用いられる。 ビスマス源又は遷移金属源は、ビスマス又は遷
移金属の硫酸塩、硝酸塩、塩化物などの化合物が
用いられる。 また、本明細書における3価の遷移金属イオン
(M)とは、鉄、ニツケル、コバルト、ロジウム、
ルテニウム、パラジウムなどの族元素、ランタ
ン、セリウムなどの希土類元素、チタン、バナジ
ウム、クロム、ニオブ、タンタルなどの元素の3
価のカチオンをさす。 アルミナ源はアルミン酸ソーダが最も適してい
るが、塩化物、硝酸塩、硫酸塩、酸化物又は水酸
化物などの化合物が用いられる。アルカリ源は、
ナトリウムなどのアルカリ金属又はカルシウムな
どのアルカリ土類金属の水酸化物又はアルミン
酸、ケイ酸との化合物などが用いられる。 結晶性シリケートの水熱合成原料の一つである
特殊の有機化合物としては、以下に示すものが使
用できる。 (1) アルコール類単独又はアンモニアとの混合物 エタノールなどのモノアルコール類 エチレングリコールなどのジオール類 グリセリンなどのトリオール類 又は上記アルコールとアンモニアとの混合物 (2) 有機アミン類 n−プロピルアミン、モノエタノールアミン
などの第1級アミン、 ジプロピルアミン、ジエタノールアミンなど
の第2級アミン、 トリプロピルアミン、トリエタノールアミン
などの第3級アミン、 又はエチレンジアミン、ジグリコールアミン
など その他テトラプロピルアンモニウム塩などの
第4級アンモニウム塩など (3) エーテル類 エチルエーテル、ジ−n−ブチルエーテルな
ど (4) ケトン類 ジエチルケトン、ジ−イソ−ブチルケトンな
ど (5) 有機アミン以外の有機窒素化合物 ピリジン、ピラジン、ピラゾールなど これらの各種有機化合物は例示であつて、本発
明は、これらに何等限定されるものではない。 また、本明細書における1価又は2価カチオン
(R)とは、アルカリ金属イオン、アルカリ土類
金属イオン、前述した有機化合物のイオン又は、
焼成、イオン交換などの処理により形成される水
素イオンなどのイオンをさす。 本発明に用いられる結晶性シリケートは従来の
ゼオライトの構造中のAlの一部又は全部がビス
マス又は他の遷移金属に置き換わつたものであ
り、さらにSiO2/(Bi2O3+M2O3)比が5以上
であることを特徴としており、下記のモル組成の
水性の反応混合物から出発して製造される。 SiO2/(Bi2O3+M2O3
5〜3000(好ましくは10〜200) OH-/SiO2 0〜1.0(好ましくは0.2〜0.8) H2O/SiO2 5〜1000(好ましくは10〜200) 有機化合物/(Bi2O3+M2O3
1〜100(好ましくは5〜50) 本発明に用いられる結晶性シリケートは、前記
原料混合物を結晶性シリケートが生成するに充分
な温度と時間加熱することにより合成されるが、
水熱合成温度は80〜300℃好ましくは130〜200℃
の範囲であり、また水熱合成時間は0.5〜14日好
ましくは1〜10日である。圧力は特に制限を受け
ないが自圧で実施するのが望ましい。 水熱合成反応は所望の温度に原料混合物を加熱
し、必要であれば撹拌下に結晶性シリケートが形
成されるまで継続される。かくして結晶が形成さ
れた後反応混合物を室温まで冷却し、ロ過し、水
洗を行い結晶を分別する。さらに普通は100℃以
上で5〜24時間程度乾燥が行われる。 前述した方法で製造された結晶性シリケートは
周知の技術によりそのままであるいは従来から触
媒成型用として用いられている粘結剤等と混合し
て適当な大きさに成型して触媒として使用されう
る。 好適には、この結晶性シリケートは触媒として
使用する前に空気中で400〜700℃の範囲の温度で
2〜48時間加熱して活性化される。 この結晶性シリケート中に存在するアルカリ金
属は慣用法によつて1種以上の他のカチオンと交
換されてH型あるいは鉄、ロジウム、ルテニウム
などの他の金属カチオン型の結晶性シリケートを
与えうる。例えばH型にイオン交換する方法とし
ては前述した方法で製造された結晶性シリケート
を焼成することにより有機化合物を除去した後、
塩酸などの強酸に浸漬して直接H型にする方法又
はアンモニウム化合物の水溶液に浸漬してNH4
型にした後焼成によりH型にする方法などがあ
る。 更に触媒用としてこの結晶性シリケートを1種
以上の金属の化合物で含漬させうる。適正な金属
には銅、亜鉛、クロム、鉛、アンチモン、ビスマ
ス、チタン、バナジウム、マンガン、鉄、コバル
ト、ニツケル、ルテニウム、ロジウム、パラジウ
ム、白金、ランタン又はセリウムなどが包含され
る。 この含浸シリケートは好適には0.1〜5.0重量%
の金属酸化物を含有する。使用される金属の化合
物は適正には熱をかけると分解して対応する酸化
物を与え、水に可溶であるような化合物、例えば
硝酸塩又は塩化物である。結晶性シリケートと金
属酸化物との混合物は、したがつて所望金属の化
合物の水溶液で含浸し乾燥焼成することにより調
製される。 以上のようにして得られた触媒は実施例で示す
ように、有機化合物の重合、アルキル化、異性
化、不均化などの反応、とりわけアルコール又は
エーテルから芳香族化合物又は低級オレフインを
合成する反応に対し、従来の触媒にない高い触媒
活性を示すものである。 本発明の結晶性シリケートはカルボニウムイオ
ンを中間体とする有機反応に対し、非常に優れた
触媒活性を有する。一般に有機化合物または有機
化合物を含有する原料を40℃〜700℃の温度、
200atm以下の圧力、および0.1h-1〜1000h-1の重
量時間空間速度(以下WHSVと略す)で結晶性
シリケート含有触媒と接触させる。 更に詳しくは、前記転化がオレフインを含有し
た原料の重合を含む場合には温度は260℃〜500
℃、圧力は50atm以下、WHSVは0.5h-1〜50h-1
である。前記転化反応がベンゼンまたは、トルエ
ンのような芳香族化合物のオレフインまたはアル
コールによるアルキル化の場合には反応条件は
200℃〜550℃の温度、60atmの圧力、0.5h-1
50h-1のWHSV、2〜200の芳香族化合物/アル
キル化剤モル比である。 前記転化がキシレンのような芳香族化合物の異
性化の場合には反応条件は150℃〜500℃の温度、
60atm以下の圧力、0.2h-1〜100h-1のWHSVであ
る。前記転化がパラフインまたはオレフインの異
性化の場合には反応条件は40℃〜400℃、60atm
以下の圧力、0.1h-1〜2h-1のWHSVである。前記
転化がトルエンのような芳香族化合物の不均化の
場合には、反応条件は300℃〜600℃の温度、
0.5h-1〜20h-1のWHSVである。 さらに本発明で得られる結晶性シリケートはア
ルコール又はエーテルから芳香族化合物又は低級
オレフインを合成する反応に対し非常に高い活性
を有しており、この場合の反応条件は300〜600℃
の温度、100atm以下の圧力、0.1h-1〜200h-1
WHSVである。 以下、実施例により、本発明を具体的に説明す
る。 実施例 1 115gの水に、160gの水ガラス(Na2O17.5%、
SiO237%、H2O45.5%)を溶解してA液を作つ
た。次に、90gの水と15gの塩酸の混合物中に8
gの塩化ビスマスを溶解してB液を作つた。 500c.c.のステンレス製オートクレーブにまずA
液を入れ、撹拌しながらB液を添加し、ゲル状混
合物を得た。この混合物にジグリコールアミン22
gを添加して反応混合物を作つた。 この混合物を約500rpmにて撹拌しながら180℃
で2日間反応させた。冷却後固形分を別し、洗
浄液の電気伝導度が100μV/cm以下になるまで
洗浄を行い、110℃で12時間乾燥した。 この生成物の結晶粒径は1μ程度であり、有機
化合物を除外した組成は 0.7Na2O・Bi2O3・7SiO2・18H2O であつた。これを結晶性シリケート1と称する。 この結晶性シリケート1を合成する場合、原料
の中で塩酸の代わりに、硫酸、硝酸を用いても、
又、塩化ビスマスの代わりに、硫酸ビスマス、硝
酸ビスマスを用いても、又水ガラスの代わりにシ
リカゾルを用いても同様のシリケートが得られ
た。 また、水熱合成条件として180℃で2日間反応
させる代わりに160℃で4日間、170℃で3日間、
又は180℃で4日間反応させても同様のシリケー
トが得られた。 結晶性シリケート1のジグリコールアミンの代
わりに、下記の有機化合物をジグリコールアミン
と同モル量だけ添加した点以外は結晶性シリケー
ト1の調製手順を繰返して、結晶性シリケート2
〜18を調製した。
The present invention relates to a novel crystalline bismuth silicate and a method for producing the same. Molecule sieve type crystalline zeolites are well known and important commercial products. As a group of compounds, molecular sieve zeolites are composed of SiO4 and SiO4 , which are all aluminum and silicon atoms bonded by covalent oxygen atoms such that the ratio of oxygen atoms is 1:2.
AlO 4 -It is an aluminosilicate consisting of a rigid three-dimensional network structure of tetrahedrons. The AlO 4 -tetrahedron is usually valence-equilibrated by bonding with a cation, and the cation is an alkali or alkaline earth metal cation in most naturally occurring zeolites, but in synthetic zeolites or It can be essentially any metal cation, hydrogen, ammonium, or organic cation of appropriate atomic or molecular size that has been subjected to ion exchange treatment. In all of these zeolite compositions, the AlO 4 -tetrahedron is a crystallographically significant part of the crystal structure and clearly contributes to the acidic character of the overall structure. Until recently, it was not possible to synthesize zeolites with SiO 2 /Al 2 O 3 ratios greater than 12. And natural zeolites never have a SiO 2 /Al 2 O 3 ratio of 12 or more. However, this problem has recently been overcome, and it has a high SiO 2 /Al 2 O 3 ratio, high stability and extremely high acidity points, and the ability to convert methanol and other oxygenated organic compounds into aromatic hydrocarbons. A series of zeolites with catalytic ability for conversion reactions have become available. This has been achieved by adding organic cations such as tetraalkylammonium during zeolite synthesis. For example, those containing quaternary ammonium as an organic cation (Japanese Patent Publication No. 46-10064,
67298, 67299), those containing tertiary amines (JP-A-47-25097), those containing primary amines having 2 to 10 carbon atoms (JP-A-50-54598), and those containing alcohol ( JP-A-52-43800), those containing alcohol and ammonia (JP-A-54-151600), monoethanolamine, monopropanolamine or derivatives (JP-A-54-107499), and organic sulfur compounds (Japanese Patent Application Laid-Open No. 54-137500
It is known to use methods such as As mentioned above, zeolite consists of a rigid three-dimensional network structure of SiO 4 and AlO 4 -tetrahedrons bonded by covalent oxygen atoms, and the AlO 4 -tetrahedrons are bonded with cations that can exchange ions. Usually balanced in terms of valence by Ge instead of Si,
It is also well known in conventional zeolite synthesis technology that Ga can be used instead of Al. However, according to research by the present inventors, even if Bi and other transition metals are used instead of Al, 3-SiO4 tetrahedra can be formed in the same form as the SiO 4 tetrahedron in the zeolite structure.
It was found that tetrahedrons of valent cations are formed. This trivalent cation is different from a simple ion-exchangeable cation in that it cannot be ion-exchanged with ions such as H + and NH 4 + , and that it cannot be ion-exchanged with ions such as H + and NH 4 +, and that it cannot be ion-exchanged with ions such as H + and NH 4 +. This is also inferred from the fact that almost no elution occurs. Surprisingly, by using the crystalline bismuth silicate obtained in the present invention instead of aluminosilicate, commonly called zeolite,
Significant changes in catalyst performance were found. For example, in the conversion reaction of methanol and other oxygenated organic compounds to aromatic hydrocarbons, conventional Mobil
Zeolite called ZSM-5 (Japanese Patent Publication No. 46-10064, Japanese Patent Publication No. 52-8005) by Oil Company, etc.
There is a problem in that several percent of durene (mp79℃), which causes blockage of the engine's carburetor, is produced as a by-product. However, when using the crystalline bismuth silicate obtained in the present invention, C 10
An epoch-making result was obtained in which almost no aromatic hydrocarbons were produced. This suppresses the formation of carbon and extends the life of the catalyst.This phenomenon is caused by the fact that some or all of the Al is replaced by Bi and other transition metals, assuming that the active sites are around the Al atoms. This is presumed to be because the reaction of the substituted aromatic compound to further increase the number of substituents is suppressed or due to a change in the pore diameter. In the dehydrated form, the method of the present invention is expressed as the molar ratio of oxides: (1.0 ± 0.4)R 2 /o O.
ySiO 2 {In the above formula, R; one or more monovalent or divalent
Valence cation, n; valence of R, M: one or more trivalent transition metal ions and/or aluminum ions, a+b=1, a>0, b0, y
The present invention relates to a crystalline bismuth silicate (hereinafter referred to as crystalline silicate) characterized by having a chemical composition of 5} and a method for producing the same. The method for producing crystalline silicate of the present invention involves preparing a reaction mixture containing a silica source, a bismuth source, a transition metal and/or alumina source, an alkali metal source, water, and a special organic compound, and converting this mixture into a crystalline silicate. It is characterized in that it is produced by heating for a time and at a temperature that results in formation. The silica source can be any silica compound commonly used in zeolite synthesis, such as solid silica powder, colloidal silica, or silicates such as water glass. . As the bismuth source or transition metal source, compounds such as bismuth or transition metal sulfates, nitrates, chlorides, etc. are used. In addition, trivalent transition metal ions (M) in this specification include iron, nickel, cobalt, rhodium,
Group elements such as ruthenium and palladium, rare earth elements such as lanthanum and cerium, and elements such as titanium, vanadium, chromium, niobium, and tantalum.
Refers to the valence cation. The alumina source is most preferably sodium aluminate, but compounds such as chlorides, nitrates, sulfates, oxides or hydroxides can be used. The alkaline source is
Hydroxides of alkali metals such as sodium or alkaline earth metals such as calcium, or compounds with aluminic acid or silicic acid are used. As a special organic compound that is one of the raw materials for hydrothermal synthesis of crystalline silicate, the following can be used. (1) Alcohols alone or mixtures with ammonia Monoalcohols such as ethanol Diols such as ethylene glycol Triols such as glycerin or mixtures of the above alcohols and ammonia (2) Organic amines n-propylamine, monoethanolamine Primary amines such as, secondary amines such as dipropylamine, diethanolamine, tertiary amines such as tripropylamine, triethanolamine, or quaternary amines such as ethylenediamine, diglycolamine, etc., and other tetrapropylammonium salts. Ammonium salts, etc. (3) Ethers Ethyl ether, di-n-butyl ether, etc. (4) Ketones Diethyl ketone, di-iso-butyl ketone, etc. (5) Organic nitrogen compounds other than organic amines Pyridine, pyrazine, pyrazole, etc. Various types of these The organic compounds are examples, and the present invention is not limited thereto. In addition, the monovalent or divalent cation (R) in this specification refers to an alkali metal ion, an alkaline earth metal ion, an ion of the above-mentioned organic compound, or
Refers to ions such as hydrogen ions formed through processes such as calcination and ion exchange. The crystalline silicate used in the present invention has a conventional zeolite structure in which part or all of the Al is replaced with bismuth or other transition metals, and further has a structure of SiO 2 /(Bi 2 O 3 + M 2 O 3 ) It is characterized by a ratio of 5 or more, and is produced starting from an aqueous reaction mixture having the following molar composition. SiO 2 /(Bi 2 O 3 +M 2 O 3 )
5-3000 (preferably 10-200) OH - /SiO 2 0-1.0 (preferably 0.2-0.8) H 2 O / SiO 2 5-1000 (preferably 10-200) Organic compound / (Bi 2 O 3 +M 2O3 )
1 to 100 (preferably 5 to 50) The crystalline silicate used in the present invention is synthesized by heating the raw material mixture at a temperature and time sufficient to generate crystalline silicate.
Hydrothermal synthesis temperature is 80~300℃ preferably 130~200℃
The hydrothermal synthesis time is from 0.5 to 14 days, preferably from 1 to 10 days. Although the pressure is not particularly limited, it is preferable to carry out the test under its own pressure. The hydrothermal synthesis reaction is continued by heating the raw material mixture to the desired temperature, with stirring if necessary, until crystalline silicate is formed. After crystals have formed, the reaction mixture is cooled to room temperature, filtered, and washed with water to separate the crystals. Furthermore, drying is usually performed at 100°C or higher for about 5 to 24 hours. The crystalline silicate produced by the above-mentioned method can be used as a catalyst as it is or by mixing it with a binder or the like conventionally used for catalyst molding and molding it into an appropriate size using well-known techniques. Preferably, the crystalline silicate is activated by heating in air at a temperature ranging from 400 to 700°C for 2 to 48 hours before use as a catalyst. The alkali metal present in the crystalline silicate may be exchanged with one or more other cations by conventional methods to give the crystalline silicate in the H form or in the form of other metal cations such as iron, rhodium, ruthenium, etc. For example, as a method for ion exchange to H type, after removing organic compounds by firing the crystalline silicate produced by the method described above,
Directly convert it into H form by immersing it in a strong acid such as hydrochloric acid, or NH4 by immersing it in an aqueous solution of an ammonium compound.
There is a method of forming the material into an H shape by baking it after forming it into a mold. Furthermore, the crystalline silicates can be impregnated with one or more metal compounds for catalytic purposes. Suitable metals include copper, zinc, chromium, lead, antimony, bismuth, titanium, vanadium, manganese, iron, cobalt, nickel, ruthenium, rhodium, palladium, platinum, lanthanum or cerium. The impregnated silicate is preferably 0.1 to 5.0% by weight.
Contains metal oxides of. The metal compounds used are suitably those which decompose on application of heat to give the corresponding oxides and which are soluble in water, such as nitrates or chlorides. Mixtures of crystalline silicates and metal oxides are thus prepared by impregnation with an aqueous solution of the compound of the desired metal and dry calcination. As shown in the examples, the catalysts obtained as described above can be used for reactions such as polymerization, alkylation, isomerization, and disproportionation of organic compounds, especially reactions for synthesizing aromatic compounds or lower olefins from alcohols or ethers. In contrast, it exhibits high catalytic activity not found in conventional catalysts. The crystalline silicate of the present invention has extremely excellent catalytic activity for organic reactions using carbonium ions as intermediates. Generally, organic compounds or raw materials containing organic compounds are heated at a temperature of 40℃ to 700℃,
It is contacted with a crystalline silicate-containing catalyst at a pressure of less than 200 atm and a weight hourly space velocity (hereinafter abbreviated as WHSV) of 0.1 h -1 to 1000 h -1 . More particularly, when the conversion involves polymerization of an olefin-containing feedstock, the temperature is between 260°C and 500°C.
℃, pressure is below 50atm, WHSV is 0.5h -1 ~ 50h -1
It is. When the conversion reaction is alkylation of an aromatic compound such as benzene or toluene with an olefin or alcohol, the reaction conditions are
Temperature of 200℃ ~ 550℃, pressure of 60atm, 0.5h -1 ~
WHSV of 50h -1 , aromatics/alkylating agent molar ratio of 2-200. When the conversion is isomerization of an aromatic compound such as xylene, the reaction conditions are a temperature of 150°C to 500°C;
Pressure below 60atm, WHSV between 0.2h -1 and 100h -1 . When the conversion is isomerization of paraffin or olefin, the reaction conditions are 40°C to 400°C, 60atm.
The pressure is below, WHSV of 0.1h -1 to 2h -1 . When the conversion is a disproportionation of an aromatic compound such as toluene, the reaction conditions are a temperature of 300°C to 600°C;
The WHSV is between 0.5h -1 and 20h -1 . Furthermore, the crystalline silicate obtained in the present invention has extremely high activity in the reaction for synthesizing aromatic compounds or lower olefins from alcohols or ethers, and the reaction conditions in this case are 300 to 600°C.
Temperature, pressure below 100atm, 0.1h -1 ~200h -1
It is WHSV. Hereinafter, the present invention will be specifically explained with reference to Examples. Example 1 160 g of water glass (Na 2 O 17.5%,
Solution A was prepared by dissolving 37% SiO 2 and 45.5% H 2 O. Next, in a mixture of 90 g of water and 15 g of hydrochloric acid,
A solution B was prepared by dissolving 1 g of bismuth chloride. First, put A into a 500 c.c. stainless steel autoclave.
liquid was added thereto, and while stirring, liquid B was added to obtain a gel-like mixture. Diglycolamine 22 in this mixture
g was added to form a reaction mixture. This mixture was heated to 180°C while stirring at approximately 500 rpm.
The mixture was allowed to react for 2 days. After cooling, the solid content was separated, washed until the electrical conductivity of the washing solution became 100 μV/cm or less, and dried at 110° C. for 12 hours. The crystal grain size of this product was about 1 μ, and the composition excluding organic compounds was 0.7Na 2 O.Bi 2 O 3.7SiO 2.18H 2 O. This is called crystalline silicate 1. When synthesizing this crystalline silicate 1, even if sulfuric acid or nitric acid is used instead of hydrochloric acid among the raw materials,
Further, similar silicates were obtained even when bismuth sulfate or bismuth nitrate was used instead of bismuth chloride, and when silica sol was used instead of water glass. In addition, instead of reacting at 180°C for 2 days as the hydrothermal synthesis conditions, we conducted a reaction at 160°C for 4 days and at 170°C for 3 days.
Alternatively, a similar silicate was obtained by reacting at 180°C for 4 days. Crystalline silicate 2 was prepared by repeating the preparation procedure for crystalline silicate 1, except that instead of diglycolamine in crystalline silicate 1, the following organic compound was added in the same molar amount as the diglycolamine.
~18 were prepared.

【表】 以上の結晶性シリケート(No.2〜18)の有機化
合物を除外した組成は、 (0.6〜0.8)Na2O・Bi2O3・(70〜85)SiO2・(10
〜20)H2O であつた。 結晶性シリケート1の調製時のB液にさらに下
記の遷移金属の塩化物、硫酸塩又は硫酸アルミニ
ウムを添加した点以外は、結晶性シリケート1の
調製手順を繰返して、結晶性シリケート19〜27を
調製した。
[Table] The composition of the above crystalline silicates (No. 2 to 18) excluding organic compounds is (0.6 to 0.8) Na 2 O, Bi 2 O 3 , (70 to 85) SiO 2 , (10
~20) It was H 2 O. Crystalline silicates 19 to 27 were prepared by repeating the procedure for preparing crystalline silicate 1, except that the following transition metal chloride, sulfate, or aluminum sulfate was further added to liquid B in the preparation of crystalline silicate 1. Prepared.

【表】 以上の結晶性シリケート(No.19〜27)の有機化
合物を除外した組成は、 (0.6〜0.8)Na2O・(0.92〜0.96)Bi2O3・(0.04〜
0.08)M2O3・(70〜85)SiO2・(10〜20)H2O であつた。 (M:V、Ti、La、Nd、Fe、Co、Cr、Sb、
Al) 実施例 2 実施例1の結晶性シリケートNo.27の塩化ビスマ
スと硫酸アルミニウムの添加量を変えた点以外
は、実施例1の操作を繰返した。
[Table] The composition of the above crystalline silicates (No. 19 to 27) excluding organic compounds is (0.6 to 0.8) Na 2 O (0.92 to 0.96) Bi 2 O 3 (0.04 to 0.8)
0.08) M2O3 . (70-85) SiO2 .(10-20) H2O . (M: V, Ti, La, Nd, Fe, Co, Cr, Sb,
Al) Example 2 The operation of Example 1 was repeated except that the amounts of bismuth chloride and aluminum sulfate added to crystalline silicate No. 27 of Example 1 were changed.

【表】 以上のようにBiの割合を変化させても、同様
の結晶性シリケートが得られた。 比較例 実施例1の塩化ビスマスを添加せずに、硫酸ア
ルミニウムを8g添加する点、及びジグリコール
アミンの代わりに、臭化テトラプロピルアンモニ
ウムを47g添加する点以外は実施例1の操作を繰
返した。この生成物の有機化合物を除外した組成
は、 0.6Na2O・Al2O3・75SiO2・16H2O であり、この粉末のX線回折パターンは特公昭46
−10064号公報に記述されているZSM−5と同じ
であつた。 実験例 1 実施例1、2で合成した結晶性シリケート及び
比較例で合成したゼオライトZSM−5を1Nの塩
酸に浸漬し、80℃で7日間処理した。これを洗
浄、ロ過した後、圧縮成型し、550℃で3時間焼
成した触媒を用いてメタノールと反応を行わせ
た。反応条件は常圧、360℃L.H.S.V.1h-1で行い、
次の表のような結果が得られた。
[Table] Similar crystalline silicates were obtained even when the Bi ratio was changed as shown above. Comparative Example The operation of Example 1 was repeated except that 8 g of aluminum sulfate was added without adding bismuth chloride, and 47 g of tetrapropylammonium bromide was added instead of diglycolamine. . The composition of this product excluding organic compounds is 0.6Na 2 O・Al 2 O 3・75SiO 2・16H 2 O, and the X-ray diffraction pattern of this powder is
It was the same as ZSM-5 described in Publication No.-10064. Experimental Example 1 The crystalline silicates synthesized in Examples 1 and 2 and the zeolite ZSM-5 synthesized in Comparative Example were immersed in 1N hydrochloric acid and treated at 80°C for 7 days. After washing and filtering, this was compression molded and reacted with methanol using a catalyst that had been calcined at 550°C for 3 hours. The reaction conditions were normal pressure and 360°C LHSV1h -1 .
The results shown in the table below were obtained.

【表】【table】

【表】 実験例 2 実施例1で合成した結晶性シリケート1を実施
例3と同じ操作で活性化した触媒を用いて、下記
反応について実験を行い、次のような結果を得
た。
[Table] Experimental Example 2 Using a catalyst in which the crystalline silicate 1 synthesized in Example 1 was activated in the same manner as in Example 3, an experiment was conducted for the following reaction, and the following results were obtained.

【表】【table】

Claims (1)

【特許請求の範囲】 1 脱水された形態において、酸化物のモル比で
表わして、 (1.0±0.4)R2/oO・〔a・Bi2O・b・M2O3〕・
ySiO2 {上記式中、R;1種又はそれ以上の1価又は2
価カチオン、n;Rの原子価、M;1種又はそれ
以上の3価の遷移金属イオン及び/又はアルミニ
ウムイオン、a+b=1、a>0、b0、y
5} の化学組成を有する結晶性ビスマスシリケート。 2 シリカ源、ビスマス源、遷移金属及び/又は
アルミナ源、アルカリ金属源、水及び特殊の有機
化合物を含有する反応混合物をつくり、この混合
物を結晶性ビスマスシリケートが生成するに至る
時間及び温度で加熱することからなる脱水された
形態において酸化物のモル比で表わして、 (1.0±0.4)R2/oO・〔a・Bi2O・b・M2O3〕・
ySiO2 {上記式中、R;1種又はそれ以上の1価又は2
価カチオン、n;Rの原子価、M;1種又はそれ
以上の3価の遷移金属イオン及び/又はアルミニ
ウムイオン、a+b=1、a>0、b0、y
5} の化学組成を有する結晶性ビスマスシリケートの
製造方法。
[Claims] 1 In the dehydrated form, expressed as the molar ratio of oxides, (1.0±0.4)R 2/o O.[a.Bi 2 O.b.M 2 O 3 ].
ySiO 2 {In the above formula, R; one or more monovalent or divalent
Valence cation, n; Valency of R, M; One or more trivalent transition metal ions and/or aluminum ions, a+b=1, a>0, b0, y
5} Crystalline bismuth silicate having the chemical composition. 2. Creating a reaction mixture containing a silica source, a bismuth source, a transition metal and/or alumina source, an alkali metal source, water, and a special organic compound, and heating this mixture for a time and at a temperature that results in the formation of crystalline bismuth silicate. (1.0±0.4)R 2/o O・[a・Bi 2 O・b・M 2 O 3 ]・
ySiO 2 {In the above formula, R; one or more monovalent or divalent
Valence cation, n; Valency of R, M; One or more trivalent transition metal ions and/or aluminum ions, a+b=1, a>0, b0, y
5} A method for producing crystalline bismuth silicate having a chemical composition.
JP56078714A 1981-05-26 1981-05-26 Novel crystalline silicate and its manufacture Granted JPS57196718A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56078714A JPS57196718A (en) 1981-05-26 1981-05-26 Novel crystalline silicate and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56078714A JPS57196718A (en) 1981-05-26 1981-05-26 Novel crystalline silicate and its manufacture

Publications (2)

Publication Number Publication Date
JPS57196718A JPS57196718A (en) 1982-12-02
JPH0249245B2 true JPH0249245B2 (en) 1990-10-29

Family

ID=13669533

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56078714A Granted JPS57196718A (en) 1981-05-26 1981-05-26 Novel crystalline silicate and its manufacture

Country Status (1)

Country Link
JP (1) JPS57196718A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105967749A (en) * 2016-05-05 2016-09-28 陕西科技大学 Preparation method of metastable state Bi2SiO5 porous material

Also Published As

Publication number Publication date
JPS57196718A (en) 1982-12-02

Similar Documents

Publication Publication Date Title
EP0002899A1 (en) Method for preparing aluminosilicates and their use as catalyst supports and catalysts
EP0002900A1 (en) Method for producing aluminosilicates and their use as catalysts and supports
CA1212386A (en) Process for the preparation of an aromatic hydrocarbon mixture
CA1136112A (en) Method for producing aluminosilicates, their use as catalysts and catalytic compositions containing them
JP2637765B2 (en) Improved zeolite ZK-5
JPH04504577A (en) C↓9+ Catalytic conversion method of aromatic raw materials
EP0070657B1 (en) Transition element-containing crystalline aluminosilicate composition
JPH0249245B2 (en)
EP0040444B1 (en) Process for the preparation of crystalline silicates, crystalline silicates so prepared and process for carrying out catalytic reactions
GB2037808A (en) Process for the Preparation of Hydrocarbons
JPS624327B2 (en)
JPH0339009B2 (en)
JPH0249246B2 (en)
JPS58192836A (en) Preparation of aromatic hydrocarbon mixture
JPH0239558B2 (en)
JPH0235692B2 (en)
EP0036683B1 (en) Process for the preparation of crystalline aluminium silicates, crystalline aluminium silicates so prepared and process for the production of an aromatic hydrocarbon mixture
JPH0261518B2 (en)
JPH0232205B2 (en)
JPS6121926B2 (en)
JPH0358397B2 (en)
JPS60238150A (en) Preparation of nickel-containing crystalline alumino silicate
JPH0235691B2 (en)
JP2734480B2 (en) Nitrogen oxide decomposition catalyst
JPH03143547A (en) Catalyst for decomposition of nitrogen oxide