JPH0249237B2 - - Google Patents

Info

Publication number
JPH0249237B2
JPH0249237B2 JP56042892A JP4289281A JPH0249237B2 JP H0249237 B2 JPH0249237 B2 JP H0249237B2 JP 56042892 A JP56042892 A JP 56042892A JP 4289281 A JP4289281 A JP 4289281A JP H0249237 B2 JPH0249237 B2 JP H0249237B2
Authority
JP
Japan
Prior art keywords
thin film
information recording
recording
film
information
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56042892A
Other languages
Japanese (ja)
Other versions
JPS57157790A (en
Inventor
Yoshikatsu Takeoka
Nagaaki Yasuda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP4289281A priority Critical patent/JPS57157790A/en
Publication of JPS57157790A publication Critical patent/JPS57157790A/en
Publication of JPH0249237B2 publication Critical patent/JPH0249237B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/252Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
    • G11B7/257Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of layers having properties involved in recording or reproduction, e.g. optical interference layers or sensitising layers or dielectric layers, which are protecting the recording layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • G11B2007/24302Metals or metalloids
    • G11B2007/24308Metals or metalloids transition metal elements of group 11 (Cu, Ag, Au)
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • G11B2007/24302Metals or metalloids
    • G11B2007/24316Metals or metalloids group 16 elements (i.e. chalcogenides, Se, Te)
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • G11B2007/24318Non-metallic elements
    • G11B2007/2432Oxygen
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • G11B2007/24318Non-metallic elements
    • G11B2007/24322Nitrogen
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/252Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
    • G11B7/257Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of layers having properties involved in recording or reproduction, e.g. optical interference layers or sensitising layers or dielectric layers, which are protecting the recording layers
    • G11B2007/25705Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of layers having properties involved in recording or reproduction, e.g. optical interference layers or sensitising layers or dielectric layers, which are protecting the recording layers consisting essentially of inorganic materials
    • G11B2007/25706Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of layers having properties involved in recording or reproduction, e.g. optical interference layers or sensitising layers or dielectric layers, which are protecting the recording layers consisting essentially of inorganic materials containing transition metal elements (Zn, Fe, Co, Ni, Pt)
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/252Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
    • G11B7/257Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of layers having properties involved in recording or reproduction, e.g. optical interference layers or sensitising layers or dielectric layers, which are protecting the recording layers
    • G11B7/2578Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of layers having properties involved in recording or reproduction, e.g. optical interference layers or sensitising layers or dielectric layers, which are protecting the recording layers consisting essentially of inorganic materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Read Only Memory (AREA)
  • Optical Record Carriers And Manufacture Thereof (AREA)
  • Thermal Transfer Or Thermal Recording In General (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、レーザ光、電子線等のエネルギービ
ームにより画像、音声信号あるいは電子計算機等
の情報を直接実時間で記録することの出来る情報
記録用部材に関する。 近年、レージ光等のエネルギービームにより各
種情報の書込み、読み出しを行なう方法が注目を
集めている。これは高い記録密度で情報の蓄積が
可能であり、また情報の書込み、読み出しが非接
触、即ち書き込み、読み出しの過程で情報記録用
部材を破壊することなく、且つ高密度で行なえる
等幾つかの利点があるためである。 この種の情報記録方式に関しては、例えば
IEEE Spectrum AUGUST1978に提示された
「Optical disk systems emerge」他に詳細に記
載されているが、第1図に基づき簡単に原理を説
明する。第1図中、11は回転基板である。基板
11上には情報記録膜12が形成されている。こ
の情報記録用部材に光学レンズ2を所定の距離迄
接近させた後、レーザ光発生装置3より記録すべ
き情報に対応したパルス状レーザ光を照射する。
この様な操作を行なうと、上記情報記録膜のうち
レーザ光を照射された部分は、レーザ光により加
熱された熔解若しくは蒸発し、孔部若しくは凹部
が形成される。即ち情報が記録されたことにな
る。次に、レーザ光発生装置3より低出力のレー
ザ光をレンズ2を介して照射し、例えばその反射
光をハーフミラー4を介し、光検出器5で受ける
と、孔部若しくは凹部が形成されている部分は、
レーザ光の照射を受けなかつた部分に比べ、光の
反射率が変化しているため、反射光の強度変化と
して孔部若しくは凹部の有無、位置等が検出可能
であり、これにより情報が読取られることにな
る。 ところで上記情報記録膜に必要とされる特性は
色々のものがあるが、重要度の高いものとして以
下の2点が挙げられる。第1は耐蝕性の高いこと
であり、第2は低出力レーザビームで書き込みの
可能なこと、即ち記録感度の高いことである。情
報記録用部材は数年から数10年の長期間に渡る、
記録情報の読み出し、誤り情報の訂正、新規情報
の書き込みに耐えることが要求される。従つて、
部材に使用される記録膜は長期間に渡り、大気中
の水分や酸素に対して安定なものでなければなら
ない。そこでこの目的にはAu,Ag,Ph,Pt等
の貴金属が適している。公知例としては米国特許
3474457号があり、Phが記録膜として使用されて
いる。しかし、これら貴金属を記録膜とした情報
記録用部材の欠点は書込みに大出力のレーザを必
要とすることである。上記米国特許でも書き込み
には出力1Wのアルゴンレーザを用いている。こ
れは、これら貴金属の融点、沸点が高いと言う熱
的性質及び光の反射率が高く、吸収率が低いた
め、照射した光のエネルギーの極く一部しか加熱
に供せられないと言う光学的性質に起因してい
る。大出力のレーザが必要と言うことは、本情報
記録用部材を用いる情報処理装置が大形かつ高価
になることであり、本情報処理装置を広く普及す
る上での障害となる。 一方記録感度の高い記録膜としてはTe,Bi等
の半金属が知られている。記録感度の値は例えば
Teを記録膜とした場合、数mWのレーザ出力で
数100msec程度照射しただけで書込みが可能であ
る。数mW程度の出力レベルは、現在実用化しつ
つある半導体レーザから引出せるレベルの値であ
る。半導体レーザを用いることの利点は、先に挙
げたガスレーザと異なり、極めて小形高効率であ
り、更に直接変調が可能で、その結果本情報記録
用部材を用いる情報処理装置を著しく小形化、軽
量化出来、実用上の利点が著しく増加することで
ある。これら半金属の特徴は、貴金属の場合とは
逆に、低融点、低沸点であること、即ち記録温度
が低いと言う熱的性質及び光の吸収率が30〜40%
と高く、先のエネルギーが効率良く熱エネルギー
に変換されると言う光学的性質に起因している。
しかし、その半面これらの半金属は先の貴金属と
異なり、大気中の水分、酸素と反応して、比較的
容易に劣化すると言う欠点がある。また、この劣
化は、通常高い記録感度を維持するため記録膜の
厚さを数100Å程度と著しく薄くすることからよ
り促進される。従つてこれらの半金属を記録膜と
した情報記録用部材は実用化されるに到つていな
い。Te、Bi等半金属記録膜を用いた情報記録用
部材の耐蝕性を向上させる手段として、例えば記
録膜上に有機物からなる保護層を設ける方法が知
られている。しかし、有機物は無機物に比べ透水
性、通気性が大であり、耐蝕性を向上させる効果
は認められるものの、保護手段として不完全なも
のである。 本発明の目的は、かかる従来の情報記録用部材
の欠点を除去し、実用上充分な長期間の使用に耐
えられ、且つ、半導体レーザで供しうる程度の低
出力のレーザビームで書き込み可能な情報記録用
部材を提供することにある。 本発明の情報記録用部材の情報記録膜は2種類
の薄膜より構成される。第1の薄膜はエネルギー
ビームの照射により400℃以下の温度で揮発性の
成分を遊離する薄膜であり、第2の薄膜は耐蝕性
金属からなる薄膜であり、第1と第2の薄膜はこ
の順に基板上に積層形成される。 本発明によれば、第2の薄膜によつて大気中の
水分や酸素に対する安定性が確保される。またエ
ネルギービームを照射したとき第1の薄膜が比較
的低温で揮発性成分を遊離し、この成分は第2の
薄膜に孔を形成して放出される結果、書き込みに
要するエネルギービームの低出力化が図られる。 第2図は本発明の情報記録用部材の基本構成で
ある。第2図中21は基板、22は400℃以下の
温度で揮発性の成分を遊離する第1の薄膜、23
は耐食性金属からなる第2の薄膜である。第1の
薄膜としては、窒素との結合が弱い金属窒化物な
いし酸窒化物が適しており、このような化合物は
Te−N,Te−O−N,Ag−N,Ag−O−N,
Au−N,Au−O−N系から得られる。これらの
系から得られる化合物はいずれも100〜400℃の間
の温度においてN2ガスを遊離するが、特にTe−
N系、Te−O−N系から得られる薄膜が好適で
ある。これらの化合物は、いずれも窒素プラズマ
による当該金属のスパツタリングにて作製するこ
とが出来る。第2の薄膜としては沸点が2000℃以
上の金属、即ちAu,Ag,Pt,Pd,Ph,Ir,等
の貴金属やCu,Nb,Ta,Ti,Os,Zr,Hf等の
遷移金属、Alが適しており、特に好適なものは
Au,Agである。 このような情報記録部材において、第2の薄膜
23側よりレーザビームを照射した場合、照射光
の一部は反射され、一部は吸収されて熱に変換さ
れ、記録膜を加熱する。その結果、第1の薄膜2
2よりN2ガスが遊離し、このN2ガスは第2の薄
膜23が蒸発融解しないような低温度においても
第2の薄膜23に孔部を形成して放出される。つ
まり耐蝕性が良好であると言う長所はあるもの
の、書き込みに過大なエネルギーを要するとして
実用化が困難であつた貴金属や遷移金属膜を用い
て半導体レーザから引出せる程度の数mWの出力
で記録することが出来る。 第3図は本発明の情報記録用部材の別の構成例
である。第3図中311,312は透明基板、32
,322は400℃以下の温度において揮発生の成
分を遊離する第1の薄膜、331,332は沸点
2000℃以上の金属からなる第2の薄膜である。3
4は記録膜の形成された2枚の基板を所定間隔を
おいて接着一体化するスペーサである。第1、第
2の薄膜は第2図に示した情報記録用部材と同様
のものが使用出来る。この情報記録用部材に基板
側よりレーザビームを照射した場合、第2図に示
した情報記録用部材と同様、第1の薄膜321
たは322より遊離したN2ガスは第2の薄膜33
または332が蒸発、融解しないような低温度に
おいても第2の薄膜331または332に孔部を形
成して放出される。この情報記録用部材の長所
は、記録膜が大気中のホコリや操作中に生じ得る
キズに対して保護されていること、および両面記
録が可能なことである。 第2図、第3図に示した情報記録用部材の場
合、沸点が2000℃以上と極めて高く、且つ耐蝕性
の良い貴金属、遷移金属にも数mWのレーザ出力
で記録出来るのは第1の薄膜の存在によるもの
で、これら耐蝕性の良い金属膜単体では膜厚を
100Å以下に薄くしても数mWのレーザ出力で記
録することは出来ない。これは膜厚を薄くした場
合、照射したレーザビームは大部分が透過してし
まい、吸収される割合が著しく少なく、結果とし
て記録膜が殆ど加熱されなくなつてしまうことに
よる。また、第1の薄膜に融点、沸点が低く記録
感度の高いTe,Bi等の半金属を使用し、さらに
貴金属や遷移金属からなる耐蝕性の良い第2の記
録膜を積層した場合、Te,Bi等の半金属膜は加
熱に伴なつて遊離する成分がなく、半金属膜自体
の沸点ないし融点迄加熱されない限り記録出来な
い。従つて第1の薄膜として、比較的低温で揮発
性成分を遊離するものを用いることが不可欠であ
る。 第1の薄膜から遊離成分の遊離する温度を400
℃以下に限定した理由は、400℃より遊離温度が
高い場合、前述したような沸点2000℃以上の第2
の薄膜に対して数mWのレーザ出力で記録出来な
いことである。次に第1と第2の薄膜の膜厚につ
いて説明すると、第2の薄膜の膜厚は300Å以下
が望ましい。これは300Åよりも厚い場合照射さ
れたレーザビームの大部分は第2の薄膜表面で反
射されるか、第2の薄膜自体に吸収され、第1の
薄膜迄透過せず、従つて、第2の薄膜が加熱され
ず、半導体レーザから供し得る程度の低出力のレ
ーザビームでは記録出来ないためである。しかし
余りに薄い場合には、第2の薄膜の形成目的であ
る耐蝕性の向上が期待出来ない。以上から、第2
の薄膜の膜厚として最適な範囲は50〜200Åの間
であつた。第1の薄膜の膜厚は300Å以上が望ま
しい。これは第1の薄膜は第2の薄膜と異なり、
照射されたレーザビームを吸収することのみを目
的として形成されていることによる。即ち、第1
の薄膜が300Åより薄い場合、第2の薄膜を透過
して照射されたレーザビームが第1の薄膜におい
ても充分吸収されず、更に第1の薄膜をも透過し
てしまい、第1の薄膜の形成目的である遊離成分
の効率良い遊離が期待出来なくなつてしまう。 以下具体的な実施例について説明する。 実施例 1 真空容器の圧力を10-7Torrに排気後、H2Oガ
スを10-5Torrになるよう導入した。次いで、N2
ガスを5×10-3Torrになるよう導入し、電極間
に高周波電界を印加し、プラズマを発生してTe
のターゲツトをスパツタし、アクリル基板上に
Te40O56N4なる組成の第1の薄膜を形成した。第
1の薄膜の膜厚は4000Åである。次に、再度真空
容器を10-7Torrに排気後、Arガスを10-4Torrに
なるよう導入し、電極間に高周波電界を印加し、
プラズマを発生させAuターゲツトをスパツタし、
第1の薄膜上に第2の薄膜を形成した。膜厚は
100Åである。 次に比較例としてアルゴンプラズマにてスパツ
タしたTe膜を記録膜とする情報記録用部材を製
作した。これらの情報記録用部材を以下の方法で
評価した。 先ずこれらの情報記録用部材に同一記録情報に
対応させパルス変調したレーザビームを照射し、
記録を行なつた。レーザは半導体レーザで(波長
830nm)、ビーム径は約1μmφである。記録用レ
ーザビームの出力は1〜10mWとなるよう変化さ
せた。読出しは0.5mWのレーザビームで行ない、
反射光の強度変化として行なつた。上記記録読出
し過程から以下の方法で記録感度を求めた。反射
光の強度をImax、孔部からの反射光強度をImin
とし、変調度Mを下式で定義した。 M=Imax−Imin/Imax+Imin 記録用レーザビーム出力と変調度Mとの関係は
第1表のようであつた。
The present invention relates to an information recording member that can directly record information such as images, audio signals, or computer information in real time using an energy beam such as a laser beam or an electron beam. In recent years, methods of writing and reading various information using energy beams such as laser beams have been attracting attention. This allows information to be stored at a high recording density, and information can be written and read without contact, that is, without destroying the information recording member during the writing and reading process, and at a high density. This is because it has the following advantages. Regarding this type of information recording method, for example,
Although it is described in detail in ``Optical disk systems emerge'' presented in IEEE Spectrum AUGUST 1978, the principle will be briefly explained based on Fig. 1. In FIG. 1, 11 is a rotating board. An information recording film 12 is formed on the substrate 11 . After the optical lens 2 is brought close to this information recording member to a predetermined distance, a pulsed laser beam corresponding to the information to be recorded is irradiated from the laser beam generator 3.
When such an operation is performed, the portion of the information recording film irradiated with the laser beam is heated by the laser beam and melts or evaporates, forming a hole or a recess. In other words, information has been recorded. Next, when a low-power laser beam is irradiated from the laser beam generator 3 through the lens 2 and the reflected light is received by the photodetector 5 through the half mirror 4, a hole or a recess is formed. The part where
Since the light reflectance has changed compared to the part that was not irradiated with laser light, it is possible to detect the presence or absence and position of holes or depressions as a change in the intensity of the reflected light, and information can be read from this. It turns out. Incidentally, there are various characteristics required for the above-mentioned information recording film, but the following two points are listed as highly important. The first is that it has high corrosion resistance, and the second is that it can be written with a low-power laser beam, that is, it has high recording sensitivity. Information recording materials are used for long periods of time, from several years to several decades.
It is required to withstand reading of recorded information, correction of error information, and writing of new information. Therefore,
The recording film used in the member must be stable against moisture and oxygen in the atmosphere over a long period of time. Therefore, noble metals such as Au, Ag, Ph, and Pt are suitable for this purpose. Known examples include US patents
No. 3474457, in which Ph is used as a recording film. However, a drawback of these information recording members using noble metal recording films is that they require a high-output laser for writing. The above US patent also uses an argon laser with an output of 1W for writing. This is due to the thermal properties of these precious metals, such as their high melting and boiling points, as well as their high light reflectivity and low absorption rate, which means that only a small portion of the energy of the irradiated light can be used for heating. This is due to the nature of The need for a high-output laser means that the information processing device using the present information recording member will be large and expensive, which will be an obstacle to the widespread use of the present information processing device. On the other hand, semimetals such as Te and Bi are known as recording films with high recording sensitivity. For example, the recording sensitivity value is
When Te is used as a recording film, writing is possible by irradiating it for several hundred milliseconds with a laser output of several milliwatts. An output level of about several mW is a level that can be obtained from semiconductor lasers that are currently being put into practical use. The advantage of using a semiconductor laser, unlike the gas laser mentioned above, is that it is extremely small and highly efficient, and can be directly modulated.As a result, information processing equipment using this information recording member can be significantly smaller and lighter. The result is a significant increase in practical benefits. The characteristics of these metalloids, contrary to those of precious metals, are that they have low melting points and low boiling points, that is, low recording temperatures, and light absorption rates of 30 to 40%.
This is due to the optical property that the previous energy is efficiently converted into thermal energy.
However, unlike the above-mentioned noble metals, these metalloids have the disadvantage that they react with moisture and oxygen in the atmosphere and deteriorate relatively easily. Furthermore, this deterioration is accelerated because the thickness of the recording film is usually made extremely thin, on the order of several hundred angstroms, in order to maintain high recording sensitivity. Therefore, information recording members using these semimetals as recording films have not yet been put into practical use. As a means for improving the corrosion resistance of an information recording member using a semimetal recording film such as Te or Bi, it is known to provide, for example, a protective layer made of an organic material on the recording film. However, organic materials have higher water permeability and air permeability than inorganic materials, and although they are recognized to have the effect of improving corrosion resistance, they are incomplete as a means of protection. An object of the present invention is to eliminate the drawbacks of such conventional information recording members, to withstand use for a long period of time for practical purposes, and to write information with a laser beam as low as that which can be provided by a semiconductor laser. The object of the present invention is to provide a recording member. The information recording film of the information recording member of the present invention is composed of two types of thin films. The first thin film is a thin film that releases volatile components at a temperature of 400°C or less when irradiated with an energy beam, the second thin film is a thin film made of a corrosion-resistant metal, and the first and second thin films are They are sequentially layered on the substrate. According to the present invention, stability against moisture and oxygen in the atmosphere is ensured by the second thin film. Furthermore, when irradiated with an energy beam, the first thin film liberates volatile components at a relatively low temperature, and these components form holes in the second thin film and are released, resulting in a reduction in the output of the energy beam required for writing. is planned. FIG. 2 shows the basic structure of the information recording member of the present invention. In FIG. 2, 21 is a substrate, 22 is a first thin film that releases volatile components at a temperature of 400°C or less, and 23
is a second thin film made of a corrosion-resistant metal. As the first thin film, metal nitrides or oxynitrides that have a weak bond with nitrogen are suitable;
Te-N, Te-O-N, Ag-N, Ag-O-N,
Obtained from Au-N and Au-O-N systems. All compounds obtained from these systems liberate N2 gas at temperatures between 100 and 400 °C, but especially Te-
Thin films obtained from N-based and Te-O-N-based materials are preferred. All of these compounds can be produced by sputtering the metal using nitrogen plasma. The second thin film is made of metals with a boiling point of 2000℃ or higher, such as noble metals such as Au, Ag, Pt, Pd, Ph, Ir, transition metals such as Cu, Nb, Ta, Ti, Os, Zr, Hf, Al is suitable, and particularly suitable is
Au and Ag. In such an information recording member, when a laser beam is irradiated from the second thin film 23 side, a part of the irradiated light is reflected and a part is absorbed and converted into heat, thereby heating the recording film. As a result, the first thin film 2
N2 gas is liberated from the second thin film 23, and this N2 gas is released by forming holes in the second thin film 23 even at a low temperature such that the second thin film 23 does not evaporate and melt. In other words, although it has the advantage of good corrosion resistance, it is difficult to put it into practical use because it requires too much energy to write.It records with an output of several milliwatts, which can be extracted from a semiconductor laser. You can. FIG. 3 shows another example of the structure of the information recording member of the present invention. In Fig. 3, 31 1 and 31 2 are transparent substrates, 32
1 and 32 2 are the first thin films that release volatile components at temperatures below 400°C, and 33 1 and 33 2 are the boiling points.
This is a second thin film made of a metal with a temperature of 2000°C or higher. 3
Reference numeral 4 denotes a spacer for adhering and integrating two substrates on which recording films are formed at a predetermined distance. The first and second thin films can be the same as the information recording member shown in FIG. 2. When this information recording member is irradiated with a laser beam from the substrate side, like the information recording member shown in FIG .
Even at such low temperatures that 1 or 33 2 does not evaporate or melt, holes are formed in the second thin film 33 1 or 33 2 and the second thin film 33 1 or 33 2 is released. The advantages of this information recording member are that the recording film is protected from dust in the atmosphere and scratches that may occur during operation, and that double-sided recording is possible. In the case of the information recording members shown in Figures 2 and 3, it is the first method that can record information on precious metals and transition metals, which have an extremely high boiling point of 2000°C or higher and have good corrosion resistance, with a laser output of several mW. This is due to the presence of a thin film, and the thickness of these corrosion-resistant metal films alone cannot be increased.
Even if the thickness is reduced to less than 100 Å, recording with a laser output of several mW is not possible. This is because when the film thickness is made thin, most of the irradiated laser beam is transmitted, and the proportion absorbed is extremely small, resulting in the recording film being hardly heated. In addition, if a semimetal such as Te or Bi, which has a low melting point and boiling point and high recording sensitivity, is used for the first thin film, and a second recording film with good corrosion resistance made of a noble metal or a transition metal is further laminated, Te, A semimetal film such as Bi has no components that are liberated upon heating, and recording is not possible unless the semimetal film itself is heated to its boiling or melting point. Therefore, it is essential to use a film that releases volatile components at relatively low temperatures as the first thin film. The temperature at which free components are released from the first thin film is 400°C.
The reason for limiting the temperature to below 400°C is that if the free temperature is higher than 400°C, the secondary temperature with a boiling point of 2000°C or higher
The problem is that it is not possible to record on a thin film with a laser output of several mW. Next, the thickness of the first and second thin films will be explained. The thickness of the second thin film is preferably 300 Å or less. This is because when the thickness is greater than 300 Å, most of the irradiated laser beam is reflected on the surface of the second thin film or absorbed by the second thin film itself, and does not pass through to the first thin film. This is because the thin film is not heated and recording cannot be performed with a laser beam as low as that provided by a semiconductor laser. However, if it is too thin, it cannot be expected to improve the corrosion resistance, which is the purpose of forming the second thin film. From the above, the second
The optimal range for the thickness of the thin film was between 50 and 200 Å. The thickness of the first thin film is preferably 300 Å or more. This is because the first thin film is different from the second thin film.
This is because it is formed for the sole purpose of absorbing the irradiated laser beam. That is, the first
If the thin film is thinner than 300 Å, the laser beam irradiated through the second thin film will not be sufficiently absorbed by the first thin film, and will also pass through the first thin film, causing Efficient release of free components, which is the purpose of formation, cannot be expected. Specific examples will be described below. Example 1 After exhausting the pressure of the vacuum container to 10 -7 Torr, H 2 O gas was introduced to bring the pressure to 10 -5 Torr. Then N2
A gas is introduced to a pressure of 5×10 -3 Torr, and a high-frequency electric field is applied between the electrodes to generate plasma.
Sputter the target onto the acrylic substrate.
A first thin film having a composition of Te 40 O 56 N 4 was formed. The thickness of the first thin film is 4000 Å. Next, after evacuating the vacuum container to 10 -7 Torr again, Ar gas was introduced to a pressure of 10 -4 Torr, and a high frequency electric field was applied between the electrodes.
Generate plasma and spatter the Au target,
A second thin film was formed on the first thin film. The film thickness is
It is 100Å. Next, as a comparative example, an information recording member was manufactured using a Te film sputtered with argon plasma as a recording film. These information recording members were evaluated by the following method. First, these information recording members are irradiated with a pulse-modulated laser beam corresponding to the same recorded information,
I made a record. The laser is a semiconductor laser (wavelength
830 nm), and the beam diameter is approximately 1 μmφ. The output of the recording laser beam was varied from 1 to 10 mW. Readout is performed with a 0.5mW laser beam,
This was done as a change in the intensity of reflected light. Recording sensitivity was determined from the recording readout process described above using the following method. The intensity of the reflected light is Imax, and the intensity of the reflected light from the hole is Imin.
The modulation degree M was defined by the following formula. M=Imax-Imin/Imax+Imin The relationship between the recording laser beam output and the modulation degree M was as shown in Table 1.

【表】 第1の表から判るように、本実施例の情報記録
用部材はTeを記録膜とした情報記録用部材に比
べ同等以上の記録感度が得られている。 次にこれらの情報記録用部材を80℃、80%RH
の恒温・恒湿槽に入れ、耐蝕性の評価を行なた。
Teを記録膜とした記録用部材は200時間後に記録
膜が酸化され一部透明化したのに対し、本実施例
の記録用部材では、何ら変化が認められなかつ
た。またこの時点での記録、読出し特性は8mW
のレーザビーム出力に対し0.8の変調度が得られ、
記録感度の劣化も認められなかつた。 実施例 2 実施例1と同一の方法で製作したTe40O56N4
る組成の第1の薄膜の上に、Ag,Cu,pt,Ir,
Nb,Ta,Ti,Pd,Os,Zr,Hf,Alからなる第
2の薄膜を夫々100Åの厚さになるよう蒸着法な
いしスパツタ法にて形成した。これらの情報記録
用部材の記録感度を実施例1と同様の方法で測定
したところ、8mWの記録用レーザビーム出力に
対し、第2の薄膜がAgの場合M=0.7、Ptまたは
Phの場合M=0.6、Cu,Ir,Ti,Pd,Alの場合
M=0.5,Nb,Ta,Os,Zrの場合M=0.4なる変
調度が得られた。 実施例 3 真空容器の圧力を10-6Torrに排気後、N2ガス
を圧力10-4Torr以上になるように導入し、その
後電極間に高周波電界を印加してプラズマ発生さ
せ、Teのターゲツトスパツタしてアクリル基板
上にTe80O2N18なる組成の第1の薄膜を形成し
た。次に再度真空容器を10-6Torrに排気後、Ar
ガスを導入し、電極間に高周波電界を印加して、
プラズマを発生させ、Auターゲツトをスパツタ
して第2の薄膜を形成した。本情報記録用部材の
記録感度を実施例1と同様の方法で測定したとこ
ろ、8mWの記録用レーザビームに出力に対し、
0.6なる変調度が得られた。 実施例 4 真空容器の圧力を10-7Torrに排気後、N2ガス
を圧力が10-2Torrになるよう導入した。次いで、
真空容器内に高周波電界を印加してプラズマを発
生させAgターゲツトをスパツタしてアクリル基
板上にAg95N5なる組成の第1の薄膜を形成した。
次いで真空容器を再度10-5Torrに排気後、Agを
第1の薄膜上にアルゴンガスプラズマでスパツタ
して第2の薄膜を形成した。本情報記録用部材の
記録感度を実施例1の方法で測定したところ、10
mWのレーザビーム出力に対し0.3なる変調度が
得られた。 実施例 5 真空容器の圧力を10-7Torrに排気後、N2ガス
を圧力が10-2Torrになるよう導入した。次いで、
真空容器内に高周波電界を印加してプラズマを発
生させ、Auターゲツトをスパツタしてアクリル
基板上にAu90N10なる組成の第1の薄膜を形成し
た。次いで真空容器を再度10-5Torrに排気後、
Auを第1の薄膜上にアルゴンガスプラズマでス
パツタして第2の薄膜を形成した。本情報記録用
部材の記録感度を実施例1の方法で測定したとこ
ろ10mWのレーザビーム出力に対し0.3なる変調
度が得られた。 上述した如く、本発明の情報記録用部材は、従
来より耐蝕性良く情報記録用部材の記録膜として
好適な性質を有しながらその高い光の反射率ない
し高い融点、沸点の故、高出力のレーザを使用し
なければ記録が出来なかつた貴金属や遷移金属膜
を記録膜として用い、半導体レーザから供しうる
程度の低出力のレーザビームで記録することが出
来る。これは本発明において、これらの耐蝕性金
属を第2の薄膜とし、第1の薄膜として400℃以
下の比較的低い温度で構成成分を遊離するような
薄膜を設けたことによるものである。また本発明
の情報記録用部材においては、第2の薄膜に比較
的光の反射率の高い材料が選定されているため、
読出しに際して第1の薄膜の反射光が低い場合で
も充分良好な変調度を得ることが出来る。
[Table] As can be seen from the first table, the information recording member of this example has a recording sensitivity equal to or higher than that of the information recording member using a recording film made of Te. Next, these information recording members were heated to 80℃ and 80%RH.
The corrosion resistance was evaluated by placing it in a constant temperature and humidity chamber.
In contrast to the recording member in which the recording film was made of Te, the recording film was oxidized and partially became transparent after 200 hours, no change was observed in the recording member of this example. Also, the recording and reading characteristics at this point are 8mW.
A modulation depth of 0.8 is obtained for a laser beam output of
No deterioration in recording sensitivity was observed. Example 2 Ag, Cu , pt , Ir,
A second thin film consisting of Nb, Ta, Ti, Pd, Os, Zr, Hf, and Al was formed to a thickness of 100 Å by vapor deposition or sputtering. When the recording sensitivity of these information recording members was measured in the same manner as in Example 1, it was found that for a recording laser beam output of 8 mW, M = 0.7 when the second thin film was made of Ag, and M = 0.7 when the second thin film was made of Ag, and when Pt or
A modulation degree of M=0.6 for Ph, M=0.5 for Cu, Ir, Ti, Pd, and Al, and M=0.4 for Nb, Ta, Os, and Zr was obtained. Example 3 After evacuating the pressure of the vacuum container to 10 -6 Torr, N 2 gas was introduced to a pressure of 10 -4 Torr or higher, and then a high frequency electric field was applied between the electrodes to generate plasma and target Te. A first thin film having a composition of Te 80 O 2 N 18 was formed on the acrylic substrate by sputtering. Next, after evacuating the vacuum container to 10 -6 Torr again, Ar
By introducing gas and applying a high frequency electric field between the electrodes,
Plasma was generated and the Au target was sputtered to form a second thin film. When the recording sensitivity of this information recording member was measured in the same manner as in Example 1, it was found that for the output of an 8 mW recording laser beam,
A modulation depth of 0.6 was obtained. Example 4 After the pressure of the vacuum container was evacuated to 10 -7 Torr, N 2 gas was introduced so that the pressure became 10 -2 Torr. Then,
A high-frequency electric field was applied in a vacuum container to generate plasma, and an Ag target was sputtered to form a first thin film having a composition of Ag 95 N 5 on the acrylic substrate.
Next, the vacuum chamber was evacuated to 10 -5 Torr again, and Ag was sputtered onto the first thin film using argon gas plasma to form a second thin film. When the recording sensitivity of this information recording member was measured by the method of Example 1, it was found that 10
A modulation depth of 0.3 was obtained for a laser beam output of mW. Example 5 After the pressure of the vacuum container was evacuated to 10 -7 Torr, N 2 gas was introduced so that the pressure became 10 -2 Torr. Then,
Plasma was generated by applying a high frequency electric field in a vacuum chamber, and an Au target was sputtered to form a first thin film having a composition of Au 90 N 10 on an acrylic substrate. Then, after evacuating the vacuum container to 10 -5 Torr again,
A second thin film was formed by sputtering Au onto the first thin film using argon gas plasma. When the recording sensitivity of this information recording member was measured by the method of Example 1, a modulation degree of 0.3 was obtained for a laser beam output of 10 mW. As described above, the information recording member of the present invention has better corrosion resistance than conventional materials and has properties suitable as a recording film of an information recording member. By using a noble metal or transition metal film as a recording film, which could not be recorded without using a laser, it is possible to record with a laser beam as low as that provided by a semiconductor laser. This is because, in the present invention, these corrosion-resistant metals are used as the second thin film, and the first thin film is a thin film that liberates the constituent components at a relatively low temperature of 400° C. or less. Furthermore, in the information recording member of the present invention, since a material with a relatively high light reflectance is selected for the second thin film,
Even when the reflected light from the first thin film is low during readout, a sufficiently good degree of modulation can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は光学式の情報記録再生方法を示す図、
第2図および第3図は本発明の情報記録用部材の
構成例を示す図である。 21,311,312……基板、22,321
322……第1の薄膜、23,331,332……
第2の薄膜、34……スペーサ。
FIG. 1 is a diagram showing an optical information recording and reproducing method.
FIG. 2 and FIG. 3 are diagrams showing an example of the structure of the information recording member of the present invention. 21,31 1 ,31 2 ...Substrate, 22,32 1 ,
32 2 ... first thin film, 23, 33 1 , 33 2 ...
Second thin film, 34...spacer.

Claims (1)

【特許請求の範囲】 1 基板上に情報記録膜が形成され、エネルギー
ビームの照射により前記情報記録膜の光学的特性
を変化させて情報の書き込みを行なう情報記録用
部材において、前記情報記録膜が、金属及び揮発
性の成分からなり400℃以下の温度で該揮発性の
成分を遊離する第1の薄膜と、この上に形成され
た耐蝕性金属からなる第2の薄膜とから構成され
ていることを特徴とする情報記録用部材。 2 第1の薄膜は400℃以下の温度でN2ガスを遊
離するTe−N,Te−O−N,Ag−N,Ag−O
−N,Au−N,Au−O−N系の中から選ばれた
1種であり、第2の薄膜はAu,Ag,Cu,Pt,
Ph,Ir,Nb,Ta,Ti,Pd,Os,Zr,Al,Hfよ
り選ばれた1種であることを特徴とする特許請求
の範囲第1項記載の情報記録用部材。
[Scope of Claims] 1. An information recording member in which an information recording film is formed on a substrate and information is written by changing the optical characteristics of the information recording film by irradiation with an energy beam, wherein the information recording film is , consisting of a first thin film made of a metal and a volatile component, which releases the volatile component at a temperature of 400°C or less, and a second thin film made of a corrosion-resistant metal formed thereon. An information recording member characterized by: 2 The first thin film is made of Te-N, Te-O-N, Ag-N, Ag-O, which releases N2 gas at temperatures below 400℃.
-N, Au-N, Au-O-N system, and the second thin film is Au, Ag, Cu, Pt,
The information recording member according to claim 1, characterized in that it is one selected from Ph, Ir, Nb, Ta, Ti, Pd, Os, Zr, Al, and Hf.
JP4289281A 1981-03-24 1981-03-24 Information recording member Granted JPS57157790A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4289281A JPS57157790A (en) 1981-03-24 1981-03-24 Information recording member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4289281A JPS57157790A (en) 1981-03-24 1981-03-24 Information recording member

Publications (2)

Publication Number Publication Date
JPS57157790A JPS57157790A (en) 1982-09-29
JPH0249237B2 true JPH0249237B2 (en) 1990-10-29

Family

ID=12648677

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4289281A Granted JPS57157790A (en) 1981-03-24 1981-03-24 Information recording member

Country Status (1)

Country Link
JP (1) JPS57157790A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59119550A (en) * 1982-12-27 1984-07-10 Toshiba Corp Information recording member
JPS59119549A (en) * 1982-12-27 1984-07-10 Toshiba Corp Information recording member
JPS62266746A (en) * 1986-05-14 1987-11-19 Teijin Ltd Optical recording medium and its production
US5034255A (en) * 1988-10-28 1991-07-23 Mitsui Petrochemical Industries, Ltd. Optical recording medium and method of its production
FR2809856B1 (en) * 2000-05-30 2002-07-12 Commissariat Energie Atomique IRREVERSIBLE OPTICAL RECORDING MEDIA
JP4647241B2 (en) 2003-08-04 2011-03-09 シャープ株式会社 Optical recording medium master manufacturing method, optical recording medium stamper manufacturing method, and optical recording medium manufacturing method

Also Published As

Publication number Publication date
JPS57157790A (en) 1982-09-29

Similar Documents

Publication Publication Date Title
US4023185A (en) Ablative optical recording medium
US4241355A (en) Ablative optical recording medium
US4313188A (en) Method of recording an ablative optical recording medium
JPS6034897A (en) Rewritable optical recording medium
US5334433A (en) Optical recording medium
JP3627002B2 (en) Group III metal nitride films as phase change media for optical recording
US4218689A (en) Ablatable medium for optical recording
GB1576279A (en) Optical recording medium
US4242689A (en) Ablative optical recording medium
JPH0249237B2 (en)
Chen et al. The effect of overcoats on the ablative writing characteristics of tellurium films
GB2066489A (en) Ablative optical recording medium
JP3071243B2 (en) Optical recording medium and manufacturing method thereof
JPH0123858B2 (en)
JPH052769A (en) Optical information recording medium
SU1190405A1 (en) Method of manufacturing optical information medium
JPS6120237A (en) Optical information recording medium
JP2922889B2 (en) One-time recording type optical disk and manufacturing method thereof
JP2923036B2 (en) Information recording medium
JPS61177284A (en) Information-recording medium
JP3157019B2 (en) Optical recording medium and manufacturing method thereof
JPS61134097A (en) Manufacture of semiconductor laser
JPH01263954A (en) Optical system information recording medium and its manufacture
JPH04247339A (en) Optical recording medium
JPH10208296A (en) Optical recording medium