JPH0249195A - Method of washing organic solvent and method of deducing volume of waste washing liquid - Google Patents

Method of washing organic solvent and method of deducing volume of waste washing liquid

Info

Publication number
JPH0249195A
JPH0249195A JP63198891A JP19889188A JPH0249195A JP H0249195 A JPH0249195 A JP H0249195A JP 63198891 A JP63198891 A JP 63198891A JP 19889188 A JP19889188 A JP 19889188A JP H0249195 A JPH0249195 A JP H0249195A
Authority
JP
Japan
Prior art keywords
liquid
solvent
choline
org
organic solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63198891A
Other languages
Japanese (ja)
Other versions
JPH07107557B2 (en
Inventor
Mikiro Kumagai
幹郎 熊谷
Takaaki Tamura
田村 孝章
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IND RES INST JAPAN
Original Assignee
IND RES INST JAPAN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IND RES INST JAPAN filed Critical IND RES INST JAPAN
Priority to JP19889188A priority Critical patent/JPH07107557B2/en
Publication of JPH0249195A publication Critical patent/JPH0249195A/en
Publication of JPH07107557B2 publication Critical patent/JPH07107557B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies

Landscapes

  • Extraction Or Liquid Replacement (AREA)

Abstract

PURPOSE:To provide sufficient detergency, ease of handling, ease of preservation and low cost by bringing a soln. contg. choline into liquid-liquid contact with an org. solvent and separating the choline and the org. solvent after this liquid- liquid contact. CONSTITUTION:The soln. contg. the choline is brought into liquid-liquid contact with the org. solvent and the choline soln. and the org. solvent are separated after this liquid-liquid contact. The choline has the solvent regenerating power nearly equiv. to the solvent regenerating power of sodium hydroxide and can easily reduce the volume of the waste regenerating liquid by dry distillation or combustion. Since the choline can be easily synthesized by blowing an ethylene oxide into an aq. triethyl amine soln., the cost is much lower than the cost of tetraalkyl ammonium hydroxide such as tetramethyl ammonium hydroxide.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野] 本発明は、有機溶媒の洗浄方法、特に使用済核燃料再処理の抽出工程で用いられる抽出有機溶媒中の分解生成物の洗浄除去に適した有機溶媒洗浄法ならびに洗浄によって生じた廃液を減容する方法に関する。 【従来の技術】[Industrial application field] The present invention provides an organic solvent cleaning method, particularly an organic solvent cleaning method suitable for cleaning and removing decomposition products in the extracted organic solvent used in the extraction process of spent nuclear fuel reprocessing, and a method for reducing the volume of waste liquid generated by the cleaning. Regarding the method. [Conventional technology]

使用済核燃料工場において抽出溶媒として用いられるリ
ン酸トリブチル(TBP)は、その使用の過程において
硝酸、放射線等の作用によって一部分解し、抽出性能が
低下する。分解生成物は種々のものがあるが、主要なも
のは、TBPからリン酸基が一つとれたリン酸ジブチル
(DBP)。 二つとれたリン酸モノブチル(MBP)である。 これらの分解生成物は、溶解液中のジルコニウム、ウラ
ン等と強固な錯体を形成し、微量存在するだけで抽出性
能に著しい悪影響を与える。また、他の分解生成物は沈
澱となって有機相と水相の間にエマルジョン相(第三相
)を形成し、抽出器における有機相と水相の物理的相分
離に悪影響を与える。 したがって、抽出溶媒を再利用する際は、これらの分解
生成物を十分に除去することが必要である。このため、
再処理プロセスには溶媒再生工程が付加され、洗浄剤を
用いて劣化溶媒から分解生成物が除去されている。 洗浄剤としては、従来から水酸化ナトリウム。 炭酸ナトリウム等のアルカリが用いられている。 この工程から発生するアルカリ廃液は、再処理工場の酸
性廃液と混合処理され、N a N O3を含む放射性
廃液(含塩廃液と呼ぶ)となる。含塩廃液は、最終的に
は蒸発濃縮したのち固化し、中低レベル廃棄物として保
管される。この固化体には、β、γ核種だけでなく、α
核種も含まれているため、取り扱いには注意を要する上
、発生量もドラム缶にして数本/トン−Uに達すると言
われている。処理量800 ton /yrの再処理工
場の場合、ドラム缶の発生数は年間数千本に及ぶ。した
がって、この量を減らすことは、廃棄物処理処分の負担
の軽減につながる重要な課題と言える。 この問題に対する対策としては、 ■含塩廃液から問題となる核種を分離する。 ■Na N O:+を電解透析法によってNaOHとH
NO3に分解し、これらを回収再使用する。 ■水和ヒドラジンなどの分解処理可能な洗浄剤の使用に
よりソルトフリー化する 等の方法が検討されている。 第一、第二の方法の場合は、溶媒再生法自身は既存のも
のを使用し、生成する廃スラツジの処分法を新たに開発
するわけで、大量の廃スラツジが一度は生成してしまう
という問題がある。これに対して分解処理可能な洗浄剤
を使用する第三の方法の場合には、スラッジの生成量が
大幅に抑制されるという特徴がある。
Tributyl phosphate (TBP), which is used as an extraction solvent in spent nuclear fuel plants, is partially decomposed by the effects of nitric acid, radiation, etc. during its use, resulting in a decrease in extraction performance. There are various decomposition products, but the main one is dibutyl phosphate (DBP), which has one phosphate group removed from TBP. This is monobutyl phosphate (MBP). These decomposition products form strong complexes with zirconium, uranium, etc. in the solution, and their presence in even a trace amount has a significant adverse effect on extraction performance. In addition, other decomposition products precipitate to form an emulsion phase (third phase) between the organic phase and the aqueous phase, which adversely affects the physical phase separation between the organic phase and the aqueous phase in the extractor. Therefore, when reusing the extraction solvent, it is necessary to sufficiently remove these decomposition products. For this reason,
A solvent regeneration step is added to the reprocessing process, in which decomposition products are removed from the degraded solvent using a cleaning agent. Sodium hydroxide has traditionally been used as a cleaning agent. Alkali such as sodium carbonate is used. The alkaline waste liquid generated from this process is mixed with the acidic waste liquid from the reprocessing plant to become a radioactive waste liquid containing NaNO3 (referred to as salt-containing waste liquid). The salt-containing waste liquid is finally evaporated and concentrated, solidified, and stored as medium-low level waste. This solidified material contains not only β and γ nuclides, but also α
Because it contains nuclides, care must be taken when handling it, and the amount generated is said to reach several drums/ton-U. In the case of a reprocessing plant with a processing capacity of 800 tons/yr, the number of drums generated is several thousand per year. Therefore, reducing this amount is an important issue that will lead to reducing the burden of waste treatment and disposal. Measures to address this problem include: 1) Separating the problematic nuclides from the salt-containing waste liquid. ■NaNO: + is converted into NaOH and H by electrodialysis method.
It is decomposed into NO3 and these are recovered and reused. ■Methods such as making it salt-free by using detergents that can be decomposed such as hydrated hydrazine are being considered. In the case of the first and second methods, the existing solvent regeneration method itself is used, and a new method for disposing of the waste sludge that is generated is developed, which means that a large amount of waste sludge will be generated at once. There's a problem. On the other hand, the third method using a decomposable cleaning agent is characterized in that the amount of sludge produced is significantly suppressed.

【発明が解決しようとする課題】[Problem to be solved by the invention]

分解処理可能な溶媒再生用洗浄剤として炭酸アンモニウ
ム、炭酸ヒドラジン、蓚酸ヒドラジン。 水酸化第4級チッ素化合物などが提案されている。 このうち、炭酸アンモニウムやヒドラジン系の化合物は
、分解生成物の濃度が高くなると洗浄能力が低下すると
いう問題がある。また、これらは、硝酸と反応して爆発
危険性の高い硝酸アンモニウムやアジ化水素を生成する
ため、取り扱いには細心の注意を必要とする。このほか
、ヒドラジン系の化合物は常温でも分解しやすく保存し
にくいという問題がある。 水酸化第4級チッ素化合物の具体例としては、特開昭6
2−200298号で水酸化テトラアルキルアンモニウ
ム、特に水酸化テトラメチルアンモニウムおよび水酸化
テ1〜ラエチルアンモニウムが報告されている。しかし
ながら、これらの化合物は熱に弱く、ゆるやかな加温で
も分解が起るため、再処理工程中の溶媒洗浄のように、
酸を含む溶媒を洗浄する場合は、中和熱による分解に注
意を払う必要がある。また、水酸化テトラアルキルアン
モニウムは、合成が容易ではなく、したがって高価であ
るという欠点がある。 この他の水酸化第4級チッ素化合物の例として特開昭6
2−200298号では、ピロール、オキサゾール、チ
アゾール、イミダゾール3 ピリジン、ピリミジンキノ
リン、キノキサリン、プリン。 プテリジン、カルバゾール、アクリジン5 フェナジン
の水酸化第4級化合物が挙げられている。しかし、これ
らの化合物を4級化して水酸化第4級化合物を合成する
ことは、水酸化テトラアルキルアンモニウムの合成より
もはるかに困難であり、したがって高価にならざるを得
ない。 この他にも数多くの第4級アンモニウム塩が知られてお
り、これらをOH化することができれば水酸化第4級チ
ン素化合物を得ることができる。 しかし、上記の例、および水酸化テトラアルキルアンモ
ニウムでも、アルキル基の分子量が大きくなると、親油
性が増すために溶媒洗浄に使えなくなるという例からも
容易に類推し得るように、水酸化第4級チッ素化合物な
ら何でも溶媒洗浄に使えるわけではなく、使用目的にか
なう高性能の溶媒洗浄剤を開発するには、個々の化合物
について注意深く実験検討する必要がある。 以上のように、公知の方法のどれに関しても、洗浄能力
が不十分であるか、取り扱いに細心の注意を要するか、
保存しにくいか、あるいは高価である等の問題点の一部
または全部があてはまる。 本発明は、これらの問題点のすべてを解決することを目
的としてなされた。
Ammonium carbonate, hydrazine carbonate, and hydrazine oxalate are used as detergents for solvent regeneration that can be decomposed. Hydroxylated quaternary nitrogen compounds and the like have been proposed. Among these, ammonium carbonate and hydrazine compounds have a problem in that their cleaning ability decreases when the concentration of decomposition products increases. In addition, since these react with nitric acid to produce ammonium nitrate and hydrogen azide, which are highly explosive, they must be handled with great care. In addition, hydrazine-based compounds have the problem of being easily decomposed even at room temperature and difficult to store. Specific examples of quaternary nitrogen hydroxide compounds include JP-A No. 6
No. 2-200298 reports tetraalkylammonium hydroxides, in particular tetramethylammonium hydroxide and tetraethylammonium hydroxide. However, these compounds are sensitive to heat and decompose even with gentle heating, so
When cleaning solvents containing acids, it is necessary to pay attention to decomposition due to heat of neutralization. Tetraalkylammonium hydroxides also have the disadvantage of not being easy to synthesize and therefore expensive. As an example of other quaternary nitrogen hydroxide compounds,
No. 2-200298, pyrrole, oxazole, thiazole, imidazole 3 pyridine, pyrimidinequinoline, quinoxaline, purine. Hydroxylated quaternary compounds of pteridine, carbazole, acridine 5 and phenazine are mentioned. However, quaternizing these compounds to synthesize hydroxylated quaternary compounds is much more difficult than the synthesis of tetraalkylammonium hydroxides, and therefore cannot help but be expensive. Many other quaternary ammonium salts are known, and if these can be converted into OH, a hydroxylated quaternary tinine compound can be obtained. However, as can be easily inferred from the above example and also from the example that when the molecular weight of the alkyl group becomes large, the tetraalkyl ammonium hydroxide cannot be used for solvent cleaning due to the increased lipophilicity. Not all nitrogen compounds can be used for solvent cleaning, and in order to develop a high-performance solvent cleaning agent that meets the intended use, it is necessary to carefully conduct experiments on each compound. As mentioned above, all of the known methods either have insufficient cleaning ability or require extreme care in handling.
Some or all of the following problems apply, such as being difficult to store or being expensive. The present invention was made with the aim of solving all of these problems.

【発明の概要】[Summary of the invention]

本発明者等は、上記の目的を達成するために種々の物質
について試験を行った結果、コリンがこの目的のために
効果的に使用し得ることを見出し、本発明を完成するに
至った。 コリンは、 H3 CCH,−N”  −ctizoH)OHH3 で表わされる強塩基性の有機化合物であり、水酸化ナト
リウムとほぼ同等の溶媒再生能力を持ち、発生した再生
廃液を乾留または燃焼により容易に減容することができ
る。 コリンは、半導体工業においてシリコン基板の洗浄剤と
して大量に使用されており、トリエチルアミン水溶液に
エチレンオキサイドを吹き込むことにより容易に合成す
ることができるので、水酸化テトラメチルアンモニウム
等の水酸化テトラアルキルアンモニウムに比べるとはる
かに安価である。 以下に本発明の実施例、および本発明によらない対照例
を示す。 対照例 30vo1%TBP−n−ドデカン混合溶媒250m1
と3N硝酸250m1を分液ロート中で10分間振盪後
、有機相を分離し、Co−60のγ線を4M rad照
射した。こうして作成した模擬廃溶媒中のD B P 
?M度は、イオンクロマトグラフ分析によれば1120
ppmであった。この模擬廃溶媒100m1とIN  
NaOH溶液100m1を分液ロート中で10分間fi
盪後有機相を分離し、同一の操作を再度繰り返した。こ
の洗浄済み廃溶媒中のDBP濃度は、52ρρmであっ
た。 実施例 対照例で用いたものと同一の模擬廃溶媒100m1を、
INコリン水溶液100m1で2回洗浄した。 この洗浄済み廃溶媒中のD B P ra度は、48p
pmであった。このように、コリン水溶液の廃溶媒洗浄
能力は、NaOH溶液と同等かもしくはそれ以上である
ことがわかる。
The present inventors conducted tests on various substances to achieve the above object, and as a result found that choline can be effectively used for this purpose, and completed the present invention. Choline is a strongly basic organic compound represented by H3CCH,-N"-ctizoH)OHH3, and has almost the same solvent regeneration ability as sodium hydroxide, and the generated regenerated waste liquid can be easily reduced by carbonization or combustion. Choline is used in large quantities as a cleaning agent for silicon substrates in the semiconductor industry, and can be easily synthesized by blowing ethylene oxide into an aqueous solution of triethylamine. It is much cheaper than tetraalkylammonium hydroxide. Examples of the present invention and control examples not according to the present invention are shown below. Control Example 30 vol 1% TBP-n-dodecane mixed solvent 250 ml
After shaking 250 ml of 3N nitric acid in a separatory funnel for 10 minutes, the organic phase was separated and irradiated with 4M rad of Co-60 gamma rays. D B P in the simulated waste solvent thus created
? The M degree is 1120 according to ion chromatography analysis.
It was ppm. 100ml of this simulated waste solvent and IN
100 ml of NaOH solution in a separatory funnel for 10 minutes
After shaking, the organic phase was separated and the same operation was repeated again. The DBP concentration in this washed waste solvent was 52ρρm. 100 ml of the same simulated waste solvent as that used in the Examples and Control Examples,
Washed twice with 100 ml of IN choline aqueous solution. The D B P ra degree in this washed waste solvent is 48p.
It was pm. Thus, it can be seen that the waste solvent cleaning ability of the choline aqueous solution is equal to or greater than that of the NaOH solution.

Claims (2)

【特許請求の範囲】[Claims] (1)コリンを含む溶液を有機溶媒と液−液接触させ、
この液−液接触後に前記コリン溶液と前記有機溶媒とを
分離することを特徴とする有機溶媒の洗浄方法。
(1) Bringing a solution containing choline into liquid-liquid contact with an organic solvent,
A method for cleaning an organic solvent, which comprises separating the choline solution and the organic solvent after this liquid-liquid contact.
(2)特許請求の範囲第1項の洗浄方法で発生した洗浄
廃液を、熱分解または酸化分解により減容することを特
徴とする有機溶媒の洗浄廃液の減容法。
(2) A method for reducing the volume of an organic solvent cleaning waste liquid, which comprises reducing the volume of the cleaning waste liquid generated in the cleaning method according to claim 1 by thermal decomposition or oxidative decomposition.
JP19889188A 1988-08-11 1988-08-11 Washing method of organic solvent and volume reduction method of washing waste liquid Expired - Lifetime JPH07107557B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19889188A JPH07107557B2 (en) 1988-08-11 1988-08-11 Washing method of organic solvent and volume reduction method of washing waste liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19889188A JPH07107557B2 (en) 1988-08-11 1988-08-11 Washing method of organic solvent and volume reduction method of washing waste liquid

Publications (2)

Publication Number Publication Date
JPH0249195A true JPH0249195A (en) 1990-02-19
JPH07107557B2 JPH07107557B2 (en) 1995-11-15

Family

ID=16398656

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19889188A Expired - Lifetime JPH07107557B2 (en) 1988-08-11 1988-08-11 Washing method of organic solvent and volume reduction method of washing waste liquid

Country Status (1)

Country Link
JP (1) JPH07107557B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008038454A (en) * 2006-08-04 2008-02-21 Hitachi Metals Techno Ltd Fixing mechanism
JP2015127673A (en) * 2013-12-27 2015-07-09 株式会社Ihi Radioactive waste liquid processing method and radioactive waste liquid processing apparatus
US9152122B2 (en) 2011-05-30 2015-10-06 Canon Finetech Inc. Static-electricity-blocking mounting unit and electronic apparatus
WO2022010367A1 (en) * 2020-07-10 2022-01-13 Aquafortus Technologies Limited A solvent drying solution and processes therefor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008038454A (en) * 2006-08-04 2008-02-21 Hitachi Metals Techno Ltd Fixing mechanism
US9152122B2 (en) 2011-05-30 2015-10-06 Canon Finetech Inc. Static-electricity-blocking mounting unit and electronic apparatus
JP2015127673A (en) * 2013-12-27 2015-07-09 株式会社Ihi Radioactive waste liquid processing method and radioactive waste liquid processing apparatus
WO2022010367A1 (en) * 2020-07-10 2022-01-13 Aquafortus Technologies Limited A solvent drying solution and processes therefor

Also Published As

Publication number Publication date
JPH07107557B2 (en) 1995-11-15

Similar Documents

Publication Publication Date Title
US5322644A (en) Process for decontamination of radioactive materials
US5523513A (en) Decontamination processes
US4501691A (en) Process for treating a radioactive liquid waste
WO2007083588A1 (en) Sodium salt recycling system for use in wet reprocessing of used nuclear fuel
US3112275A (en) Regeneration of hydrocarbon solutions of trialkyl phosphate used in processing of nuclear fuel
JPH0249195A (en) Method of washing organic solvent and method of deducing volume of waste washing liquid
US4358426A (en) Method for cleaning solution used in nuclear fuel reprocessing
JPS6260449B2 (en)
JP5643745B2 (en) Cleaning fluid suitable for continuous reprocessing of nuclear fuel and its use in the system
RU2080666C1 (en) Method for processing of active nitrate raffinates produced by regeneration of nuclear fuel
JPS60227196A (en) Improvement method through which substance inhibiting recovery of uranium and plutonium in fission substance and fission substance to be recovered is separated mutually by reprocessing process
RU93038611A (en) METHOD FOR TREATING HIGHLY ACTIVE NITROGEN-REFINATES FROM NPP FUEL REGENERATION
JPS63198897A (en) Method particularly used for reprocessing irradiated nuclear fuel in order to separate technetium existing in organic solvent together with one kind or more of other metal such as zirconium and uranium or plutonium
JPS6141994A (en) Method for recovering value uranium in extracting reprocessing process for spent nuclear fuel
JP3567017B2 (en) Regeneration method of decomposed organic solvent used for reprocessing of spent nuclear fuel
US3943204A (en) Method for improving the extraction properties of a tributyl phosphate solution
US4394269A (en) Method for cleaning solution used in nuclear fuel reprocessing
US4404130A (en) Process for the plutonium decontamination of an organic solvent
JPH0196019A (en) Method for precipitating and separating transuranic element
US3574532A (en) Wash treatment to restore the degraded d2ehpa-tbp used in fission product extraction
JPH07107560B2 (en) Method for cleaning organic solvent and apparatus using the same
JP4395589B2 (en) Method for selectively separating and recovering uranium (VI) present in aqueous solution with branched N, N-dialkylmonoamide
US3595629A (en) Plutonium and neptunium extraction process
US2868619A (en) Process for the recovery of plutonium
US4022708A (en) Method of preparation for storage of liquids used in the reprocessing of spent nuclear fissile and/or fertile materials