JPH07107557B2 - Washing method of organic solvent and volume reduction method of washing waste liquid - Google Patents

Washing method of organic solvent and volume reduction method of washing waste liquid

Info

Publication number
JPH07107557B2
JPH07107557B2 JP19889188A JP19889188A JPH07107557B2 JP H07107557 B2 JPH07107557 B2 JP H07107557B2 JP 19889188 A JP19889188 A JP 19889188A JP 19889188 A JP19889188 A JP 19889188A JP H07107557 B2 JPH07107557 B2 JP H07107557B2
Authority
JP
Japan
Prior art keywords
washing
organic solvent
waste liquid
solvent
volume reduction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP19889188A
Other languages
Japanese (ja)
Other versions
JPH0249195A (en
Inventor
幹郎 熊谷
孝章 田村
Original Assignee
財団法人産業創造研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 財団法人産業創造研究所 filed Critical 財団法人産業創造研究所
Priority to JP19889188A priority Critical patent/JPH07107557B2/en
Publication of JPH0249195A publication Critical patent/JPH0249195A/en
Publication of JPH07107557B2 publication Critical patent/JPH07107557B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies

Landscapes

  • Extraction Or Liquid Replacement (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention 【産業上の利用分野】[Industrial applications]

本発明は、有機溶媒の洗浄方法、特に使用済核燃料再処
理の抽出工程で用いられる抽出有機溶媒中の分解生成物
の洗浄除去に適した有機溶媒洗浄法ならびに洗浄によっ
て生じた廃液を減容する方法に関する。
INDUSTRIAL APPLICABILITY The present invention reduces the volume of an organic solvent washing method, particularly an organic solvent washing method suitable for washing and removing decomposition products in an extracted organic solvent used in an extraction step of spent nuclear fuel reprocessing, and a waste liquid generated by the washing. Regarding the method.

【従来の技術】[Prior art]

使用済核燃料工場において抽出溶媒として用いられるリ
ン酸トリブチル(TBP)は、その使用の過程において硝
酸,放射線等の作用によって一部分解し、抽出性能が低
下する。分解生成物は種々のものがあるが、主要なもの
は、TBPからリン酸基が一つとれたリン酸ジブチル(DB
P),二つとれたリン酸モノブチル(MBP)である。 これらの分解生成物は、溶解液中のジルコニウム,ウラ
ン等と強固な錯体を形成し、微量存在するだけで抽出性
能に著しい悪影響を与える。また、他の分解生成物は沈
澱となって有機相と水相の間にエマルジョン相(第三
相)を形成し、抽出器における有機相と水相の物理的相
分離に悪影響を与える。 したがって、抽出溶媒を再利用する際は、これらの分解
生成物は十分に除去することが必要である。このため、
再処理プロセスには溶媒再生工程が付加され、洗浄剤を
用いて劣化溶媒から分解生成物が除去されている。 洗浄剤としては、従来から水酸化ナトリウム,炭酸ナト
リウム等のアルカリが用いられている。この工程から発
生するアルカリ廃液は、再処理工場の酸性廃液と混合処
理され、NaNO3を含む放射性廃液(含塩廃液と呼ぶ)と
なる。含塩廃液は、最終的には蒸発濃縮したのち固化
し、中低レベル廃液物として保管される。この固化体に
は、β,γ核種だけでなく、α核種も含まれているた
め、取り扱いには注意を要する上、発生量もドラム缶に
して数本/トン−Uに達すると言われている。処理量80
0ton/yrの再処理工場の場合、ドラム缶の発生数は年間
数千本に及ぶ。したがって、この量を減らすことは、廃
棄物処理処分の負担の軽減につながる重要な課題と言え
る。 この問題に対する対策としては、 含塩廃液から問題となる核種を分離する, NaNO3を電解透析法によってNaOHとHNO3に分解し、こ
れらを回収再使用する, 水和ヒドラジンなどの分解処理可能な洗浄剤の使用に
よりソルトフリー化する, 等の方法が検討されている。 第一,第二の方法の場合は、溶媒再生自身は既存のもの
を使用し、生成する廃スラッジの処分法を新たに開発す
るわけで、大量の廃スラッジが一度は生成してしまうと
いう問題がある。これに対して分解処理可能な洗浄剤を
使用する第三の方法の場合には、スラッジの生成量が大
幅に抑制されるという特徴がある。
Tributyl phosphate (TBP), which is used as an extraction solvent in the spent nuclear fuel plant, is partially decomposed by the action of nitric acid and radiation during the process of its use, and the extraction performance is reduced. There are various decomposition products, but the main one is dibutyl phosphate (DB containing one phosphate group from TBP).
P), two monobutyl phosphates (MBP). These decomposition products form a strong complex with zirconium, uranium, etc. in the solution, and even if they are present in a trace amount, they have a significant adverse effect on the extraction performance. In addition, other decomposition products precipitate and form an emulsion phase (third phase) between the organic phase and the aqueous phase, which adversely affects the physical phase separation between the organic phase and the aqueous phase in the extractor. Therefore, when reusing the extraction solvent, it is necessary to sufficiently remove these decomposition products. For this reason,
A solvent regeneration step has been added to the reprocessing process to remove degradation products from the degraded solvent using a detergent. Alkali such as sodium hydroxide and sodium carbonate has been conventionally used as a cleaning agent. The alkaline waste liquid generated from this process is mixed with the acidic waste liquid of the reprocessing plant to be a radioactive waste liquid containing NaNO 3 (called a salt-containing waste liquid). The salt-containing waste liquid is finally evaporated and concentrated, then solidified, and stored as a medium to low level waste liquid. Not only β and γ nuclides but also α nuclides are contained in this solidified body, so that it is necessary to handle it with care, and it is said that the amount generated is several drums / ton-U. . Throughput 80
In the case of a 0 ton / yr reprocessing plant, the number of drums generated is several thousand per year. Therefore, it can be said that reducing this amount is an important issue that leads to reduction of the burden of waste treatment and disposal. As a countermeasure against this problem, the problematic nuclides are separated from the salt-containing waste liquid, NaNO 3 is decomposed into NaOH and HNO 3 by electrolytic dialysis, and these are recovered and reused. Decomposition treatment such as hydrated hydrazine is possible. Methods such as making salt-free by using a cleaning agent are being studied. In the case of the 1st and 2nd methods, the existing solvent regeneration is used and a new disposal method for the generated waste sludge is developed, which causes a large amount of waste sludge to be generated once. There is. On the other hand, in the case of the third method using a cleaning agent that can be decomposed, the amount of sludge produced is greatly suppressed.

【発明が解決しようとする課題】[Problems to be Solved by the Invention]

分解処理可能な溶媒再生用洗浄剤として炭酸アンモニウ
ム,炭酸ヒドラジン,蓚酸ヒドラジン,水酸化第4級チ
ッ素化合物などが提案されている。 このうち、炭酸アンモニウムやヒドラジン系の化合物
は、分解生成物の濃度が高くなると洗浄能力が低下する
という問題がある。また、これらは、硝酸と反応して爆
発危険性の高い硝酸アンモニウムやアジ化水素を生成す
るため、取り扱いには細心の注意を必要とする。このほ
か、ヒドラジン系の化合物は常温でも分解しやすく保存
しにくいという問題がある。 水酸化第4級チッ素化合物の具体例としては、特開昭62
−200298号で水酸化テトラアルキルアンモニウム,特に
水酸化テトラメチルアンモニウムおよび水酸化テトラエ
チルアンモニウムが報告されている。しかしながら、こ
れらの化合物は熱に弱く、ゆるやかな加温でも分解が起
るため、再処理工程中の溶媒洗浄のように、酸を含む溶
媒を洗浄する場合は、中和熱による分解に注意を払う必
要がある。また、水酸化テトラアルキルアンモニウム
は、合成が容易ではなく、したがって高価であるという
欠点がある。 この他の水酸化第4級チッ素化合物の例として特開昭62
−200298号では、ピロール,オキサゾール,チアゾー
ル,イミダゾール,ピリジン,ピリミジンキノリン,キ
ノキサリン,プリン,プテリジル,カルバゾール,アク
リジン,フェナジンの水酸化第4級化合物が挙げられて
いる、しかし、これらの化合物を4級化して水酸化第4
級化合物を合成することは、水酸化テトラアルキルアン
モニウムの合成よりもはるかに困難であり、したがって
高価にならざるを得ない。 この他にも数多くの第4級アンモニウム塩が知られてお
り、これらをOH化することができれば水酸化第4級チッ
素化合物を得ることができる。しかし、上記の例、およ
び水酸化テトラアルキルアンモニウムでも、アルキル基
の分子量が大きくなると、親油性が増すために溶媒洗浄
に使えなくなるという例からも容易に類推し得るよう
に、水酸化第4級チッ素化合物なら何でも溶媒洗浄に使
えるわけではなく、使用目的にかなう高性能の溶媒洗浄
剤を開発するには、個々の化合物について注意深く実験
検討する必要がある。 以上のように、公知の方法のどれに関しても、洗浄能力
が不十分であるか、取り扱いに細心の注意を要するか、
保存しにくいか、あるいは高価である等の問題点の一部
または全部があてはまる。 本発明は、これらの問題点のすべてを解決することを目
的としてなされた。
Ammonium carbonate, hydrazine carbonate, hydrazine oxalate, and quaternary nitrogen hydroxide compounds have been proposed as detergents for decomposable solvent regeneration. Of these, ammonium carbonate and hydrazine-based compounds have a problem that the cleaning ability decreases as the concentration of decomposition products increases. In addition, since these react with nitric acid to generate ammonium nitrate and hydrogen azide, which are highly explosive, they require careful handling. In addition, hydrazine-based compounds have a problem that they are easily decomposed at room temperature and are difficult to store. As specific examples of the quaternary nitrogen hydroxide compound, there is disclosed in Japanese Patent Laid-Open No. 62-62
-200298 reports tetraalkylammonium hydroxide, especially tetramethylammonium hydroxide and tetraethylammonium hydroxide. However, since these compounds are sensitive to heat and decomposition occurs even with gentle heating, be careful of decomposition due to heat of neutralization when washing a solvent containing an acid as in the solvent washing during the reprocessing step. Need to pay. In addition, tetraalkylammonium hydroxide has the drawback that it is not easy to synthesize and therefore expensive. As examples of other quaternary hydroxide hydroxide compounds, JP-A-62-62
-200298 mentions hydroxylated quaternary compounds of pyrrole, oxazole, thiazole, imidazole, pyridine, pyrimidinequinoline, quinoxaline, purine, pteridyl, carbazole, acridine, phenazine, but these compounds are quaternized. 4th
Synthesis of graded compounds is much more difficult than synthesis of tetraalkylammonium hydroxide and is therefore expensive. In addition to these, many quaternary ammonium salts are known, and if these can be OH-ized, a quaternary hydroxide hydroxide compound can be obtained. However, even in the above example and the example in which tetraalkylammonium hydroxide cannot be used for solvent washing due to an increase in lipophilicity when the molecular weight of the alkyl group becomes large, it can be easily analogized that the quaternary hydroxide hydroxide is used. Not all nitrogen compounds can be used for solvent cleaning, and in order to develop a high-performance solvent cleaning agent that meets the intended use, it is necessary to carefully experiment with individual compounds. As described above, with respect to any of the known methods, whether the cleaning ability is insufficient, whether the handling is meticulous,
Some or all of the problems such as difficult to store or expensive are applicable. The present invention has been made to solve all of these problems.

【発明の概要】[Outline of the Invention]

本発明者等は、上記の目的を達成するために種々の物質
について試験を行った結果、コリンがこの目的のために
効果的に使用し得ることを見出し、本発明を完成するに
至った。 コリンは、 で表わされる強塩基性の有機化合物であり、水酸化ナト
リウムとほぼ同等の溶媒再生能力を持ち、発生した再生
廃液を乾留または燃焼により容易に減容することができ
る。 コリンは、半導体工場においてシリコン基板の洗浄剤と
して大量に使用されており、トリエチルアミン水溶液に
エチレンオキサイドを吹き込むことにより容易に合成す
ることができるので、水酸化テトラメチルアンモニウム
等の水酸化テトラアルキルアンモニウムに比べるとはる
かに安価である。 以下に本発明の実施例,および本発明によらない対照例
を示す。 対照例 30vol%TBP・n−ドデカン混合溶媒250mlと3N硝酸250ml
を分液ロート中で10分間振盪後、有機相を分離し、Co−
60のγ線を4Mrad照射した。こうして作成した模擬廃溶
媒中のDBP濃度は、イオンクロマトグラフ分析によれば1
120ppmであった。この模擬廃溶媒100mlと1N NaOH溶液1
00mlを分液ロート中で10分間振盪後有機相を分離し、同
一の操作を再度繰り返した。この洗浄済み廃溶媒中のDB
P濃度は、52ppmであった。 実施例 対照例で用いたものと同一の模擬廃溶媒100mlを、1Nコ
リン水溶液100mlで2回洗浄した。この洗浄済み廃溶媒
中のDBP濃度は、48ppmであった。このように、コリン水
溶液の廃溶媒洗浄能力は、NaOH溶液と同等かもしくはそ
れ以上であることがわかる。
The present inventors have conducted tests on various substances in order to achieve the above-mentioned object, and as a result, found that choline can be effectively used for this purpose, and completed the present invention. Choline is It is a strongly basic organic compound represented by and has a solvent regenerating capacity almost equal to that of sodium hydroxide, and the generated regenerated waste liquid can be easily reduced in volume by dry distillation or combustion. Choline is used in large quantities as a cleaning agent for silicon substrates in semiconductor factories and can be easily synthesized by blowing ethylene oxide into an aqueous solution of triethylamine. It is much cheaper than it is. Examples of the present invention and control examples not according to the present invention will be shown below. Control Example 30vol% TBP / n-dodecane mixed solvent 250ml and 3N nitric acid 250ml
After shaking in a separatory funnel for 10 minutes, the organic phase was separated and Co-
Irradiation with 60 gamma rays of 4 Mrad was performed. The DBP concentration in the simulated waste solvent thus created was 1 according to ion chromatography analysis.
It was 120 ppm. 100 ml of this simulated waste solvent and 1N NaOH solution 1
After shaking 00 ml in a separating funnel for 10 minutes, the organic phase was separated, and the same operation was repeated again. DB in this washed waste solvent
The P concentration was 52 ppm. Example 100 ml of the same simulated waste solvent used in the control example was washed twice with 100 ml of 1N choline aqueous solution. The DBP concentration in this washed waste solvent was 48 ppm. Thus, it can be seen that the ability of the aqueous choline solution to be washed with the waste solvent is equal to or higher than that of the NaOH solution.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】コリンを含む溶液を有機溶媒と液−液接触
させ、この液−液接触後に前記コリン溶液と前記有機溶
媒とを分離することを特徴とする有機溶媒の洗浄方法。
1. A method for washing an organic solvent, which comprises bringing a solution containing choline into liquid-liquid contact with an organic solvent, and separating the choline solution from the organic solvent after the liquid-liquid contact.
【請求項2】特許請求の範囲第1項の洗浄方法で発生し
た洗浄廃液を、熱分解または酸化分解により減容するこ
とを特徴とする有機溶媒の洗浄廃液の減容法。
2. A method for reducing the volume of a cleaning waste liquid of an organic solvent, which comprises reducing the volume of the cleaning waste liquid generated by the cleaning method according to claim 1 by thermal decomposition or oxidative decomposition.
JP19889188A 1988-08-11 1988-08-11 Washing method of organic solvent and volume reduction method of washing waste liquid Expired - Lifetime JPH07107557B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19889188A JPH07107557B2 (en) 1988-08-11 1988-08-11 Washing method of organic solvent and volume reduction method of washing waste liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19889188A JPH07107557B2 (en) 1988-08-11 1988-08-11 Washing method of organic solvent and volume reduction method of washing waste liquid

Publications (2)

Publication Number Publication Date
JPH0249195A JPH0249195A (en) 1990-02-19
JPH07107557B2 true JPH07107557B2 (en) 1995-11-15

Family

ID=16398656

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19889188A Expired - Lifetime JPH07107557B2 (en) 1988-08-11 1988-08-11 Washing method of organic solvent and volume reduction method of washing waste liquid

Country Status (1)

Country Link
JP (1) JPH07107557B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5030136B2 (en) * 2006-08-04 2012-09-19 日立機材株式会社 Fixing mechanism
US9152122B2 (en) 2011-05-30 2015-10-06 Canon Finetech Inc. Static-electricity-blocking mounting unit and electronic apparatus
JP6217392B2 (en) * 2013-12-27 2017-10-25 株式会社Ihi Method and apparatus for treating radioactive liquid waste
AU2021305593A1 (en) * 2020-07-10 2023-02-16 Aquafortus Technologies Limited A solvent drying solution and processes therefor

Also Published As

Publication number Publication date
JPH0249195A (en) 1990-02-19

Similar Documents

Publication Publication Date Title
US5322644A (en) Process for decontamination of radioactive materials
CA1072341A (en) Bidentate organophosphorus solvent extraction process for actinide recovery and partition
JPS60636B2 (en) Treatment method for radioactive waste liquid
US4059671A (en) Method for increasing the lifetime of an extraction medium used for reprocessing spent nuclear fuel and/or breeder materials
US3112275A (en) Regeneration of hydrocarbon solutions of trialkyl phosphate used in processing of nuclear fuel
US4197195A (en) Method for minimizing the organic waste in aqueous product streams produced in liquid-liquid extraction processes
JPH07107557B2 (en) Washing method of organic solvent and volume reduction method of washing waste liquid
US4358426A (en) Method for cleaning solution used in nuclear fuel reprocessing
JP5643745B2 (en) Cleaning fluid suitable for continuous reprocessing of nuclear fuel and its use in the system
US3949049A (en) Method of stripping plutonium from tributyl phosphate solution which contains dibutyl phosphate-plutonium stable complexes
JPS6260449B2 (en)
JPS6141994A (en) Method for recovering value uranium in extracting reprocessing process for spent nuclear fuel
JPS60227196A (en) Improvement method through which substance inhibiting recovery of uranium and plutonium in fission substance and fission substance to be recovered is separated mutually by reprocessing process
RU93038611A (en) METHOD FOR TREATING HIGHLY ACTIVE NITROGEN-REFINATES FROM NPP FUEL REGENERATION
JP3159887B2 (en) Reprocessing of spent nuclear fuel
US3943204A (en) Method for improving the extraction properties of a tributyl phosphate solution
US3574532A (en) Wash treatment to restore the degraded d2ehpa-tbp used in fission product extraction
JP3567017B2 (en) Regeneration method of decomposed organic solvent used for reprocessing of spent nuclear fuel
US3595629A (en) Plutonium and neptunium extraction process
US4404130A (en) Process for the plutonium decontamination of an organic solvent
JP5072334B2 (en) Method and apparatus for treating radioactive waste
JPH07107560B2 (en) Method for cleaning organic solvent and apparatus using the same
JP3028254B2 (en) Reprocessing method of reprocessed organic solvent
RU2767931C1 (en) Method for extraction purification of uranium extract from technetium
US2868619A (en) Process for the recovery of plutonium