JPH0249005A - Vent type extruder - Google Patents

Vent type extruder

Info

Publication number
JPH0249005A
JPH0249005A JP63200841A JP20084188A JPH0249005A JP H0249005 A JPH0249005 A JP H0249005A JP 63200841 A JP63200841 A JP 63200841A JP 20084188 A JP20084188 A JP 20084188A JP H0249005 A JPH0249005 A JP H0249005A
Authority
JP
Japan
Prior art keywords
screw
polymer
vent
content
cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63200841A
Other languages
Japanese (ja)
Other versions
JP2745552B2 (en
Inventor
Seishiro Taneichi
種市 正四郎
Hidemasa Kubota
久保田 英誠
Akinori Yamamoto
昭典 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP63200841A priority Critical patent/JP2745552B2/en
Publication of JPH0249005A publication Critical patent/JPH0249005A/en
Application granted granted Critical
Publication of JP2745552B2 publication Critical patent/JP2745552B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/76Venting, drying means; Degassing means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/505Screws
    • B29C48/507Screws characterised by the material or their manufacturing process
    • B29C48/509Materials, coating or lining therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/68Barrels or cylinders
    • B29C48/6803Materials, coating or lining therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/05Filamentary, e.g. strands
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/285Feeding the extrusion material to the extruder

Abstract

PURPOSE:To obtain a vent type extruder capable of providing a plastic optical fiber having excellent corrosion resistance and good light transmission properties by using a metal alloy having specific Cr and Ni content and high Rockwell hardness as a material for cylinder and screw. CONSTITUTION:Methyl methacrylate(MMA) purified by vacuum distillation is stored in a storage tank 1, fed to a polymerization reaction tank 3, polymerized by heating under nitrogen atmosphere introduced from a nitrogen introduction line 7 and fed to a vent type extruder 10 using a metal alloy having 10-25% Cr content and <=2% Ni content and >=40 Rockwell C scale hardness as a material for cylinder 14 and screw 15 and unreacted monomer in the polymer is removed from plural vent ports 11 by raising the temperature in the vent type extruder to 180 deg.C in the inlet and 230 deg.C in the extruding part and then the resultant polymer is introduced to a composite spinning machine and spun using a fluorine-containing methacrylate copolymer as a sheath component to provide the optical fiber.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、ベントエクストルーダに関する。更に詳しく
はプラスチック光学繊維の芯成分をなすメタクリル系重
合体を製造する際の該重合体中の未反応モノマを除去す
るベントエクストルーダに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a vent extruder. More specifically, the present invention relates to a vent extruder for removing unreacted monomers from a methacrylic polymer that is a core component of plastic optical fibers when the polymer is produced.

[従来の技術] 工業的にプラスチック光学繊維を製造する方法としては
、たとえば特公昭53−42261号公報にて提案され
ているように、芯材となるメタクリル系重合体の連続塊
状重合・連続股モノマ方式が知られている。又その製造
装置も同公報にて提案されているようにタンク型反応槽
及びベントエクストルーダが知られている。更に特開昭
61−275705号公報にて提案されているように耐
蝕性を考慮した材料にて装置が構成されている。
[Prior Art] As a method for industrially manufacturing plastic optical fibers, for example, as proposed in Japanese Patent Publication No. 53-42261, continuous bulk polymerization/continuous polymerization of a methacrylic polymer as a core material is used. The monomer method is known. Further, as the manufacturing apparatus thereof, a tank type reaction vessel and a vent extruder are known as proposed in the same publication. Further, as proposed in Japanese Patent Application Laid-Open No. 61-275705, the device is constructed of materials with corrosion resistance in mind.

[発明が解決しようとする課題] しかしながら、これらの装置においても未だ充分でない
。つまり特公昭53−4226”l公報にて提案されて
いる装置では、脱モノマ処理時の熱酸化劣化の発生に対
する充分な配慮がなされてあらず、耐蝕性の充分でない
材料を使用した際は装置材料に起因する不純物が混入し
、透光性能として、満足したものを得ることはできない
。又特開昭61−275705号公報にて提案されてい
る装置においては耐蝕性に優れているため、重合体の熱
酸化劣化物及び熱酸化劣化反応により耐蝕した材料粉な
どの混入は抑制でき、かなりの改善が認められるが、硬
度があまり大きくないため、シリンダとスクリュの摺動
摩摩耗粉が発生しやすく、卓越した透光性を有するプラ
スチック系光学繊維用芯材を製造することはできない。
[Problems to be Solved by the Invention] However, even these devices are still insufficient. In other words, in the equipment proposed in Japanese Patent Publication No. 53-4226"l, sufficient consideration was not given to the occurrence of thermal oxidative deterioration during demonomer treatment, and when materials with insufficient corrosion resistance were used, the equipment Impurities caused by the material are mixed in, making it impossible to obtain a satisfactory light transmission performance.In addition, the device proposed in JP-A No. 61-275705 has excellent corrosion resistance, so heavy It is possible to suppress the incorporation of thermal oxidation degraded products of coalescence and corrosion-resistant material powder due to thermal oxidation degradation reactions, and a considerable improvement is recognized, but since the hardness is not very large, abrasion particles from sliding friction between the cylinder and screw are generated. It is not possible to easily produce a core material for plastic optical fibers that has excellent translucency.

本発明の目的は、従来の光学繊維製造用装置でおるベン
トエクストルーダの前記問題点を解消するもので、従来
のベントエクストルーダ材料に具備されている剛性及び
耐蝕性、耐摩耗性をより一層向上させて、卓越させた透
光性能を達成し)qるプラスチック光学繊維の芯材を製
造するためのベントエクストルーダを提供するにある。
The purpose of the present invention is to solve the above-mentioned problems of the conventional bent extruder, which is an apparatus for manufacturing optical fibers, and to further improve the rigidity, corrosion resistance, and abrasion resistance of the conventional bent extruder material. To provide a bent extruder for producing a core material of plastic optical fiber, which achieves excellent light transmission performance.

[課題を解決するための手段] 本発明は次の構成を有する。[Means to solve the problem] The present invention has the following configuration.

以下本発明の構成を詳細に説明する。The configuration of the present invention will be explained in detail below.

(1)重合体中の未反応モノマを除去するベントエクス
トルーダにおいて、シリンダおよびスクリュの材料にC
r含有量が10%以上25%以下、Ni含有量が2%以
下であり、かつ硬度がロックウェルCスケールにて40
以上である金属合金が用いられていることを特徴とする
ベントエクストルーダ。
(1) In the vent extruder that removes unreacted monomers from the polymer, Cylinder is added to the material of the cylinder and screw.
The r content is 10% or more and 25% or less, the Ni content is 2% or less, and the hardness is 40 on the Rockwell C scale.
A vent extruder characterized in that the above metal alloy is used.

(2)シリンダの硬度がスクリュウの硬度よりもロック
ウェルCスケールにおいて5以上大きいものである請求
項(1)記載のベントエクストルーダ。
(2) The vent extruder according to claim (1), wherein the hardness of the cylinder is greater than the hardness of the screw by 5 or more on the Rockwell C scale.

(3)  エクストルーダが単軸スクリュウよりなる請
求項(1)または(2)に記載のベントエクストルーダ
(3) The vent extruder according to claim (1) or (2), wherein the extruder comprises a single screw.

以下本発明の詳細な説明する。The present invention will be explained in detail below.

本発明のベントエクストルーダを構成する金属材料は、
Cr含有聞10%以上25%以下で、かつNi含有量が
2%以下である金属合金よりなることが必要である。光
学繊維の芯材で必るメタクリル系重合体を製造する際に
は、1七ツマであるメタクリル酸メチルの他に連鎖移動
剤としてメルカプタン化合物を使用することが一般的で
ある。
The metal material constituting the vent extruder of the present invention is
It is necessary that the metal alloy has a Cr content of 10% or more and 25% or less, and a Ni content of 2% or less. When producing a methacrylic polymer required for the core material of optical fibers, it is common to use a mercaptan compound as a chain transfer agent in addition to methyl methacrylate, which is the main component.

しかしながら、前記メルカプタン化合物は、化学侵蝕作
用が強く、反応液から高温下で未反応モノマを除去する
脱モノマ工程に使用されるベントエクストルーダの選択
には、特にこのメルカプタン化合物に対する耐蝕性に着
目する必要がある。−船釣にメルカプタン化合物に対す
る耐蝕性の良い材料としては、アルミニュウム、チタン
、ガラスなどが知られている。しかし剛性、加工性など
の点から上記材料を使用してベントエクストルーダを製
作することはできない。
However, the mercaptan compound has a strong chemical corrosive effect, and when selecting a vent extruder to be used in the demonomerization process that removes unreacted monomers from the reaction solution at high temperatures, it is necessary to pay special attention to the corrosion resistance of the mercaptan compound. There is. - Aluminum, titanium, glass, etc. are known as materials with good corrosion resistance against mercaptan compounds for boat fishing. However, due to rigidity, workability, etc., it is not possible to manufacture a vent extruder using the above materials.

又Cr含有量が25%を越えるCr合金では、酸素雰囲
気中でメルカプタン化合物と反応し、硫化クロム化合物
を析出して重合体に混入し、重合体の透光性能を著しく
悪化させる。
In addition, a Cr alloy with a Cr content of more than 25% reacts with a mercaptan compound in an oxygen atmosphere, precipitating a chromium sulfide compound and mixing it into the polymer, which significantly deteriorates the light-transmitting performance of the polymer.

更にN:含有量が2%を越えるNi合金では高温下でメ
ルカプタン化合物と反応し硫化ニッケル化合物を析出し
て、重合体に混入し、重合体の透光性能を著しく悪化さ
せてしまう。
Furthermore, in a Ni alloy with a N content exceeding 2%, it reacts with a mercaptan compound at high temperatures, precipitating a nickel sulfide compound, which is mixed into the polymer and significantly deteriorates the light-transmitting performance of the polymer.

なおFe、Cを主成分とする炭素鋼はメタクリル酸メチ
ルと高温下で反応し腐蝕を生じる。
Note that carbon steel containing Fe and C as main components reacts with methyl methacrylate at high temperatures, causing corrosion.

以上より、上記元素を主成分とする金属材料は、メルカ
プタン化合物もしくはメタクリ酸メチルに対して腐蝕す
るため単独で使用することはできない。しかしながら、
驚くべきことに、これらの元素の混合比率を規制した合
金においては、上記腐蝕現象は全く認められず、メルカ
プタン化合物、メタクリル酸メチルの相方に対して優れ
た耐蝕性を有することがわかった。
From the above, metal materials containing the above elements as main components cannot be used alone because they corrode mercaptan compounds or methyl methacrylate. however,
Surprisingly, the above-mentioned corrosion phenomenon was not observed at all in the alloy in which the mixing ratio of these elements was controlled, and it was found that the alloy had excellent corrosion resistance against the mercaptan compound and methyl methacrylate.

つまり、メタクリル系重合体から、高温下で未反応モノ
マ及び連鎖移動剤を除去するベントエクストルーダの構
成材料としてはCr含有量が10%以上25%以下で、
かつNi含有量が2%以下でおるCr合金が好適である
In other words, as a constituent material for a vent extruder that removes unreacted monomers and chain transfer agents from a methacrylic polymer at high temperatures, the Cr content is 10% to 25%.
A Cr alloy having a Ni content of 2% or less is suitable.

次に、ベントエクストルーダの材料としては硬度がロッ
クウェルCスケールで40以上あることが必要である。
Next, the material of the vent extruder must have a hardness of 40 or more on the Rockwell C scale.

周知のとうりベントエクストルーダは、シリンダの中で
スクリュウが回転することにより、重合体を輸送する際
にシリンダに設けられたベント部より逐次未反応モノマ
を除去して重合体を精製するものである。よって、ベン
トエクストルーダ材料の硬度が低い際には、シリンダと
スクリュウとの摺動による摩耗が起り、摩耗粉が重合体
に混入し、重合体の透光性能を悪化させる。
As is well known, the vent extruder purifies the polymer by sequentially removing unreacted monomers from a vent section provided in the cylinder when the polymer is transported by rotating a screw inside the cylinder. . Therefore, when the hardness of the vent extruder material is low, abrasion occurs due to sliding between the cylinder and the screw, and abrasion powder is mixed into the polymer, deteriorating the light-transmitting performance of the polymer.

卓越した透光性能を維持するには、許容される金属摩耗
粉の重合体中での濃度はいかなる金属であっても1oo
ppb以下にする必要がある。かかる状況を作りだすた
めのベントエクス[−ルーダの硬度としてはロックウェ
ルCスケールにて40以上とすることが必要である。な
お、シリンダとスクリュウとの摺動摩耗をより一層抑制
するためには、両者の硬度に差異を持たせることが効果
的であり、その際には経済的効果から、シリンダの硬度
がスクリュウの硬度よりロックウェルCスケールにて5
以上大ぎくすることが好ましい。
To maintain excellent light transmission performance, the allowable concentration of metal wear particles in the polymer is 100% for any metal.
It is necessary to keep it below ppb. In order to create such a situation, it is necessary that the hardness of BentEx[-Ruda is 40 or more on the Rockwell C scale. In addition, in order to further suppress sliding wear between the cylinder and screw, it is effective to differentiate the hardness of the two.In this case, for economical reasons, the hardness of the cylinder is equal to the hardness of the screw. 5 on the Rockwell C scale.
It is preferable to increase the amount more than that.

かかる要件を満す金属材料としては、焼き入れにて硬度
を増大させた5US420J2 (Cr12〜14%、
Ni0.6%以下)、5US440C(Cr16〜18
%、Ni0.6%以下)、5KD−11(Crl 1〜
13%、Ni  O)、HPM−38(Cr15.5〜
17.5%、N1%以下)(日立金属製)などを例示す
ることができる。
A metal material that satisfies these requirements is 5US420J2 (Cr12-14%,
Ni0.6% or less), 5US440C (Cr16~18
%, Ni0.6% or less), 5KD-11 (Crl 1~
13%, NiO), HPM-38 (Cr15.5~
17.5%, N1% or less) (manufactured by Hitachi Metals).

上記金属材料を使用することにより、ベントエクストル
ーダでの重合体の熱酸化劣化、金属材料の腐蝕及び1習
動摩耗を抑制されて、製造される重合体はきわめて透光
性能の優れたものとなるが、更に一層の透光性能の向上
をはかるには、ベントエクストルーダを単軸スクリュウ
より構成することが好ましい。何故ならば単軸スクリュ
ウの場合には、シリンダ壁に付着した重合体をスクリュ
ウの溝が掻き取りながら前方に重合体を輸送させる機構
であるのに対し、二軸に代表される多軸スクリュウの場
合は各スクリュウの歯のかみ合せにより、スクリュウ溝
にプールされた重合体を前方に輸送させる機構であるた
め、多軸スクリュウの方が確実にスクリュウ同士の接触
による摩耗が生じるためである。
By using the above metal material, thermal oxidative deterioration of the polymer in the vent extruder, corrosion of the metal material, and 1) dynamic wear are suppressed, and the produced polymer has extremely excellent light-transmitting performance. However, in order to further improve the light transmitting performance, it is preferable that the vent extruder is constructed from a single screw. This is because, in the case of a single-screw, the mechanism is to transport the polymer forward while the screw groove scrapes off the polymer adhering to the cylinder wall, whereas with a multi-screw, such as a biaxial screw, This is because the mechanism is such that the polymer pooled in the screw groove is transported forward by the meshing of the teeth of each screw, so multi-screws are more likely to cause wear due to contact between the screws.

なあ、本発明のベントエクストルーダにて製造するメタ
クリル系重合体としては、メチルメタクリレ−トを主成
分とする重合体が示され、更に好ましくはメチルメタク
リレートが80重量%以上であるメタクリル系重合体が
用いられる。
The methacrylic polymer produced by the vent extruder of the present invention includes a polymer containing methyl methacrylate as a main component, and more preferably a methacrylic polymer containing 80% by weight or more of methyl methacrylate. is used.

また、ベントエクストルーダにて除去される揮発未反応
モノマの但は特に限定されないが、単軸ベントエクスト
ルーダの脱モノマ能力とプラスチック光ファイバの芯成
分となるメタクリル系重合体に要求される残存モノマ率
及び重合工程を含めた工程安定性と経済性を考慮して決
定されるものではあり、メタクリル系重合体反応液中3
0重子%から60重量%が好ましい 以下実施例に基づき、本発明を更に詳細に説明する。
In addition, the volatilized unreacted monomer removed by the vent extruder is not particularly limited; This is determined by taking into account process stability and economic efficiency including the polymerization process, and 3 in the methacrylic polymer reaction solution.
The present invention will be explained in more detail based on the following examples in which the content is preferably 0 to 60% by weight.

[実施例] 実施例1〜2、比較例1 重合反応貯槽の内容が40ffおよびスクリュウ径40
trm、スクリュウ艮1200#、ベント数5段の一層
スクリュウベントエクストルーダを備えた第1図に示す
重合反応装置を用いて、光学繊維の芯成分であるメチル
メタクリレート系重合体を製造した。ここでベント押出
はのバレルとスクリュウは、第1表に示すように、各種
の金属合金を用いて製作した。
[Example] Examples 1 to 2, Comparative Example 1 The content of the polymerization reaction storage tank was 40ff and the screw diameter was 40
A methyl methacrylate polymer, which is a core component of an optical fiber, was produced using a polymerization reaction apparatus shown in FIG. 1, which was equipped with a single-layer screw vent extruder having a screw diameter of 1200# and a five-stage vent. Here, the barrel and screw of the bent extrusion were manufactured using various metal alloys as shown in Table 1.

減圧照温精製したMMAをモノマ貯槽に蓄え、5に3/
時間の速度で重合反応槽に供給した。重合開始剤として
アゾ−1−オクタン0.0045重間%(対MMA’)
および連鎖移動剤としてn−ブチルメルカプタン0.1
75重量%(対MMA)をそれぞれ重合反応槽へのMM
A供給配管にラインミックスした。重合反応槽には窒素
を供給し、反応圧力が4に’j/cmゲージになるよう
に調節した。
MMA purified under reduced pressure and temperature is stored in a monomer storage tank, and 5 to 3/3
was fed into the polymerization reactor at a rate of 1 hour. Azo-1-octane 0.0045% by weight (relative to MMA') as a polymerization initiator
and 0.1 n-butyl mercaptan as chain transfer agent.
75% by weight (based on MMA) of MM to the polymerization reaction tank.
A line mix was added to the A supply piping. Nitrogen was supplied to the polymerization reactor and the reaction pressure was adjusted to 4'j/cm gauge.

また、反応温度が135℃になるように加熱系を調節し
た。重合反応槽での平均滞留時間が4時間になるように
液面レベルを管理し、反応生成物は計量ポンプで5Kg
/時間の速度で排出し、ベントエクストルーダに供給し
た。
Further, the heating system was adjusted so that the reaction temperature was 135°C. The liquid level was controlled so that the average residence time in the polymerization reaction tank was 4 hours, and the reaction product was weighed at 5 kg using a metering pump.
/hour and fed into a vent extruder.

ベントエクストルーダの入口温度は180℃、第1ベン
ト部〜第5ベント部まで徐々に胃温し、押出部で230
℃になるように設定した。
The inlet temperature of the vent extruder is 180°C, the stomach is gradually warmed from the first vent part to the fifth vent part, and the temperature is 230°C at the extrusion part.
It was set to ℃.

第1ベント部〜第5ベント部の真空度は250゜50.
50,20および5↑orrと順次段階的に増大するよ
うに設定した。
The vacuum degree of the first vent part to the fifth vent part is 250°50.
It was set to increase in steps of 50, 20, and 5↑orr.

ベントエクストルーダから排出される重合体は複合紡糸
機に導き、テトラフルオロプロピルメタクリレート/メ
チルメタクリレート=90/10の組成を有する弗素含
有メタクリレート共重合体を鞘成分として紡糸し、光学
繊維を得た。
The polymer discharged from the vent extruder was introduced into a composite spinning machine, and a fluorine-containing methacrylate copolymer having a composition of tetrafluoropropyl methacrylate/methyl methacrylate = 90/10 was spun as a sheath component to obtain an optical fiber.

なお紡糸温度は242℃、芯成分と鞘成分との重量比は
92:8とした。芯成分は孔当り6.59/minの吐
出速度で吐出し、引取り速度は2C)m1m団とした。
The spinning temperature was 242°C, and the weight ratio of the core component to the sheath component was 92:8. The core component was discharged at a discharge rate of 6.59/min per hole, and the take-up rate was 2 C) m1m group.

1qられた光学繊維中の金属含有量および繊維の光学特
性をベントエクストルーダを構成する金属合金の組成と
対比して第1表に示した。
Table 1 shows the metal content in the 1q optical fiber and the optical properties of the fiber in comparison with the composition of the metal alloy constituting the vent extruder.

[発明の効果] 本発明は以下の効果を有する。[Effect of the invention] The present invention has the following effects.

■ ベントエクストルーダの構成材料として、耐蝕性に
優れた金属材料を用いているため、未反応モノマなどと
の化学反応物を析出することがない。
■ Since a metal material with excellent corrosion resistance is used as the constituent material of the vent extruder, there is no precipitation of chemical reaction products with unreacted monomers.

■ このため、光学特性の優れたメタクリル重合体を得
ることができ、該メタクリル重合体を芯成分としたプラ
スチック光学繊維の透光性能は卓越したものとなる。
(2) Therefore, a methacrylic polymer with excellent optical properties can be obtained, and a plastic optical fiber containing the methacrylic polymer as a core component has excellent light-transmitting performance.

■ 硬度の高い金属材料をベントエクストルーダの構成
材料として用いているため、シリンダとスクリュウとの
開動摩擦粉の発生を極めて微少に抑制することができ、
得られたメタクリル重合体を芯成分としたプラスチック
光学繊維の透光性能は極めて優れたものとなる。
■ Since a highly hard metal material is used as the component of the vent extruder, it is possible to suppress the generation of friction powder between the cylinder and screw to an extremely small amount.
The light transmission performance of the plastic optical fiber containing the obtained methacrylic polymer as a core component is extremely excellent.

■ 一般の金属材料を用いてベントエクストルーダを構
成できるため経済的である。
■ It is economical because the vent extruder can be constructed using general metal materials.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明に係るエクストルーダが組込まれた光
学繊維の製造に使用される芯成分重合体の重合反応プロ
セスの一態様を示すフローシート図である。 1°モノマ貯槽    2:計量ポンプ3:重合反応槽
    4:上部ジャケット5:下部ジャケット  6
:li拌機、7゛窒素導入ライン  8:圧力制御弁9
°計量ポンプ、10:ベントエクストルーダ11:複数
のベントロ 12:留出系 13ニライン     14ニジリンダ15:スクリュ
FIG. 1 is a flow sheet diagram showing one aspect of the polymerization reaction process of a core component polymer used for manufacturing an optical fiber incorporating an extruder according to the present invention. 1° Monomer storage tank 2: Metering pump 3: Polymerization reaction tank 4: Upper jacket 5: Lower jacket 6
:Li stirrer, 7゛nitrogen introduction line 8:Pressure control valve 9
°Measuring pump, 10: Vent extruder 11: Multiple vents 12: Distillation system 13 Ni line 14 Niji cylinder 15: Screw

Claims (3)

【特許請求の範囲】[Claims] (1)重合体中の未反応モノマを除去するベントエクス
トルーダにおいて、シリンダおよびスクリュの材料にC
r含有量が10%以上25%以下、Ni含有量が2%以
下であり、かつ硬度がロックウェルCスケールにて40
以上である金属合金が用いられていることを特徴とする
ベントエクストルーダ。
(1) In the vent extruder that removes unreacted monomers from the polymer, Cylinder is added to the material of the cylinder and screw.
The r content is 10% or more and 25% or less, the Ni content is 2% or less, and the hardness is 40 on the Rockwell C scale.
A vent extruder characterized in that the above metal alloy is used.
(2)シリンダの硬度がスクリュウの硬度よりもロック
ウェルCスケールにおいて5以上大きいものである請求
項(1)記載のベントエクストルーダ。
(2) The vent extruder according to claim (1), wherein the hardness of the cylinder is greater than the hardness of the screw by 5 or more on the Rockwell C scale.
(3)エクストルーダが単軸スクリュウよりなる請求項
(1)または(2)に記載のベントエクストルーダ。
(3) The vent extruder according to claim (1) or (2), wherein the extruder comprises a single screw.
JP63200841A 1988-08-11 1988-08-11 Vent extruder Expired - Lifetime JP2745552B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63200841A JP2745552B2 (en) 1988-08-11 1988-08-11 Vent extruder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63200841A JP2745552B2 (en) 1988-08-11 1988-08-11 Vent extruder

Publications (2)

Publication Number Publication Date
JPH0249005A true JPH0249005A (en) 1990-02-19
JP2745552B2 JP2745552B2 (en) 1998-04-28

Family

ID=16431098

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63200841A Expired - Lifetime JP2745552B2 (en) 1988-08-11 1988-08-11 Vent extruder

Country Status (1)

Country Link
JP (1) JP2745552B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000023249A3 (en) * 1998-10-21 2000-08-24 Devro Plc Cellulose extrusion

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000023249A3 (en) * 1998-10-21 2000-08-24 Devro Plc Cellulose extrusion

Also Published As

Publication number Publication date
JP2745552B2 (en) 1998-04-28

Similar Documents

Publication Publication Date Title
WO1999044083A1 (en) Plastic optical fiber, optical fiber cable, optical fiber cable with plug, method for producing methyl methacrylate based polymer and method for producing plastic optical fiber
EP0863167B1 (en) Process for producing a copolymer of methyl methacrylate and styrene
KR100299776B1 (en) Manufacturing Method of Methyl Methacrylate-Based Polymer
JPS5834404A (en) Plastic optical fiber
JPH0249005A (en) Vent type extruder
JP3937111B2 (en) Method for producing polymer
JP3906848B2 (en) Method for producing methacrylic resin
JP3565229B2 (en) Method for producing methacrylic resin
JP3801124B2 (en) Method for producing methacrylic polymer
JP4091689B2 (en) Method for producing methyl methacrylate polymer and method for producing plastic optical fiber
JPS59210910A (en) Transfer of high-temperature polymerizable liquid composition
SU1083912A3 (en) Process for preparing moldable (co)polymers
JP3319484B2 (en) Method for producing methacrylic resin having thermal decomposition resistance
JPS61275705A (en) Production of optical fiber
JP3434225B2 (en) Method for producing methacrylic polymer
KR910000615B1 (en) Polymeric optical fiber
JP2009215367A (en) Method for producing methacrylic polymer
DE2513851A1 (en) PROCESS FOR PRODUCING POLYAETHYLENE IN A PIPE REACTOR
JPS623401B2 (en)
KR102410698B1 (en) Method for producing (meth)acrylic resin
JP2000053709A (en) Continuous production of methacrylic polymer
JPH05255448A (en) Production of styrene-acrylonitrile-based copolymer
JPH06239938A (en) Production of methacrylic resin
JP2007052452A (en) Plastic optical fiber, optical fiber cable, optical fiber cable with plug, method for producing methyl methacrylate based polymer and method for producing plastic optical fiber
JP3319483B2 (en) Methacrylic resin having thermal decomposition resistance and method for producing the same