JPH0248726B2 - - Google Patents

Info

Publication number
JPH0248726B2
JPH0248726B2 JP57104381A JP10438182A JPH0248726B2 JP H0248726 B2 JPH0248726 B2 JP H0248726B2 JP 57104381 A JP57104381 A JP 57104381A JP 10438182 A JP10438182 A JP 10438182A JP H0248726 B2 JPH0248726 B2 JP H0248726B2
Authority
JP
Japan
Prior art keywords
belt
tension
pulley
drive pulley
adjustment means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57104381A
Other languages
Japanese (ja)
Other versions
JPS58220925A (en
Inventor
Kazuyoshi Tani
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bando Chemical Industries Ltd
Original Assignee
Bando Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bando Chemical Industries Ltd filed Critical Bando Chemical Industries Ltd
Priority to JP10438182A priority Critical patent/JPS58220925A/en
Publication of JPS58220925A publication Critical patent/JPS58220925A/en
Publication of JPH0248726B2 publication Critical patent/JPH0248726B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H7/00Gearings for conveying rotary motion by endless flexible members
    • F16H7/08Means for varying tension of belts, ropes, or chains
    • F16H7/10Means for varying tension of belts, ropes, or chains by adjusting the axis of a pulley
    • F16H7/12Means for varying tension of belts, ropes, or chains by adjusting the axis of a pulley of an idle pulley
    • F16H7/1254Means for varying tension of belts, ropes, or chains by adjusting the axis of a pulley of an idle pulley without vibration damping means
    • F16H7/1281Means for varying tension of belts, ropes, or chains by adjusting the axis of a pulley of an idle pulley without vibration damping means where the axis of the pulley moves along a substantially circular path
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B67/00Engines characterised by the arrangement of auxiliary apparatus not being otherwise provided for, e.g. the apparatus having different functions; Driving auxiliary apparatus from engines, not otherwise provided for
    • F02B67/04Engines characterised by the arrangement of auxiliary apparatus not being otherwise provided for, e.g. the apparatus having different functions; Driving auxiliary apparatus from engines, not otherwise provided for of mechanically-driven auxiliary apparatus
    • F02B67/06Engines characterised by the arrangement of auxiliary apparatus not being otherwise provided for, e.g. the apparatus having different functions; Driving auxiliary apparatus from engines, not otherwise provided for of mechanically-driven auxiliary apparatus driven by means of chains, belts, or like endless members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H7/00Gearings for conveying rotary motion by endless flexible members
    • F16H7/08Means for varying tension of belts, ropes, or chains
    • F16H7/10Means for varying tension of belts, ropes, or chains by adjusting the axis of a pulley
    • F16H7/12Means for varying tension of belts, ropes, or chains by adjusting the axis of a pulley of an idle pulley
    • F16H7/1254Means for varying tension of belts, ropes, or chains by adjusting the axis of a pulley of an idle pulley without vibration damping means
    • F16H7/1263Means for varying tension of belts, ropes, or chains by adjusting the axis of a pulley of an idle pulley without vibration damping means where the axis of the pulley moves along a substantially straight path
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B2275/00Other engines, components or details, not provided for in other groups of this subclass
    • F02B2275/06Endless member is a belt
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H7/00Gearings for conveying rotary motion by endless flexible members
    • F16H7/08Means for varying tension of belts, ropes, or chains
    • F16H2007/0802Actuators for final output members
    • F16H2007/0806Compression coil springs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H7/00Gearings for conveying rotary motion by endless flexible members
    • F16H7/08Means for varying tension of belts, ropes, or chains
    • F16H2007/0802Actuators for final output members
    • F16H2007/0808Extension coil springs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H7/00Gearings for conveying rotary motion by endless flexible members
    • F16H7/08Means for varying tension of belts, ropes, or chains
    • F16H2007/0802Actuators for final output members
    • F16H2007/081Torsion springs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H7/00Gearings for conveying rotary motion by endless flexible members
    • F16H7/08Means for varying tension of belts, ropes, or chains
    • F16H2007/0863Finally actuated members, e.g. constructional details thereof
    • F16H2007/0874Two or more finally actuated members

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は、内燃機関におけるベルト伝動装置に
関するものである。 (従来の技術) 一般に、内燃機関においては、シリンダ内の爆
発力をクランク軸の回転に変換するため、その回
転力が1回転する間で大きく変化する。また、ク
ランク軸、フライホイール等の軽量化(低剛性
化)により、クランク軸の回転がさらに円滑性を
欠いて角速度が大きく変化する傾向にある。その
ため、クランク軸(出力軸)に固定される駆動プ
ーリ、例えばカムシヤフト駆動用のタイミングベ
ルトを掛けるプーリもしくは補機駆動用のVベル
トまたは多リブベルトを掛けるプーリに強制的な
角速度変動が誘起する。 このクランク軸の駆動プーリの角速度変動は、
伝動ベルトを介して従動プーリを強制的に変動さ
せようと作用する。このとき従動側は、その変動
に相応した慣性力は、回転抵抗が発生し、本来の
従動負荷に加算もしくは減算され、この従動側の
負荷変動によりベルト張力も変動を受ける。 上記ベルト張力の変動は、ベルト応力の増大と
なつてベルト寿命を短縮するとともに、許容応力
を越えると、ベルトスリツプまたは歯付ベルトの
目飛びを生起しベルトの早期破損を誘発する。従
つて、この変動に耐え得るためには、ベルト幅を
大きくして伝動能力を向上させる必要がある。 特に、上記クランク軸の角速度変動はデイーゼ
ルエンジンにおいて大きく、ガソリンエンジンに
比較すると数倍のベルト幅を必要とする場合があ
る。しかるに、自動車のようにエンジンスペース
の狭いものでは、ベルト幅を増大することは困難
となり、ベルトを設計する際の障害となつてい
る。 上記問題点に対し、ベルトに作用する張力変動
を低減するものとして、実開昭54−113996号に示
されるように、駆動ギヤと従動ギヤとを連結する
歯付ベルトに周期的なトルク変動が発生するベル
ト伝動装置において、歯付ベルトと接触しながら
回転する偏心回転体を配設し、この偏心回転体に
よりベルトの張力変動を吸収するようにして、ベ
ルト目飛びを解消する技術が提案されている。 (発明が解決しようとする課題) しかるに、上記提案技術は、歯付ベルトにおい
ては効果があるが、スリツプのあるVベルトもし
くは多リブベルトにおいては同様の効果を得るこ
とはできず、むしろ変動を助長する場合がある。
また、エンジン回転速度変動(振動)は、その使
用回転域に応じて支配的な次数が変化して変動幅
が増減するため、この提案技術では全回転域にお
いて有効に機能しない問題がある。 そこで、本発明はかかる点に鑑みてなされたも
ので、ベルト張力の変動を、助長することなく全
回転域で有効に吸収することで、前記従来の欠点
を解消せんとするものである。 (課題を解決するための手段) 上記の目的を達成するため、本願の第1発明で
は、内燃機関の出力軸に固定された駆動プーリ
と、該駆動プーリにより伝動ベルトを介して駆動
される1つ以上の従動プーリとを有するベルト伝
動装置において、上記駆動プーリの引張側におけ
るベルト張力の最大張りスパンに、ベルト張力の
変動に対応して該ベルトに接触して移動するプー
リを有し、ベルト張力の最高値を所定値以下に規
制する張力調整手段を配設したものとする。 さらに、本願の第2発明では、上記第1発明の
構成に加えて、駆動プーリの弛み側におけるベル
ト張力の最低張力カスパンにベルトの弛みを吸収
する公知のテンシヨナを付加したものとする。 (作用) これにより、第1及び第2発明では、内燃機関
の出力軸に大きな角速度変動があると、それがベ
ルトにシヨツクとして伝わるのを阻止するべく、
ベルト張力の最大張りスパンに張力調整手段を配
設したことにより、ベルト張力の最高値を所定値
以下に規制して張力変動が吸収緩和されることに
なる。 尚、従来より、ベルト伝動装置においてベルト
に必要伝動張力を付与するベルト引張装置(ベル
トテンシヨナ)が使用されている。このベルトテ
ンシヨナは、ベルトの伸びによる張力低下に起因
するスリツプを生じることなく、ベルトとプーリ
とが互いに作動的に相関関係を保つて回転できる
ように、一定のベルト張力を保持するためのもの
である。このようなベルトテンシヨナは、プーリ
間で最も張りの小さい場所、すなわち駆動プーリ
の弛み側の位置にベルトを押し付けるプーリを配
設し、駆動プーリの前後のベルト張力の差を一定
値にするように設けられているものであつて、本
発明の張力調整手段とはその基本思想を異にして
いる。 (実施例) 以下、本発明の実施例を図面に沿つて説明す
る。第1図に示す内燃機関のベルト伝動装置1に
おいて、2は内燃機関の出力軸としてのクランク
軸、3は該クランク軸2に固定された駆動プー
リ、4および5はそれぞれ補機駆動用の従動プー
リであつて、この補機としてはオルタネータ、ウ
オータポンプ、エアポンプ、エアコンプレツサ
ー、パワーステアリング用油圧ポンプもしくはカ
ム軸等がある。 また、6は上記駆動プーリ3及び従動プーリ
4,5に巻き掛けた伝動ベルトであつて、該伝動
ベルト6としてはVベルト、多リブベルト、歯付
ベルト等が使用される。なお、上記伝動ベルト6
がVベルトの場合には、各プーリ3〜5はV溝プ
ーリが使用され、また、多リブベルトの場合には
多リブ溝プーリもしくは平プーリが使用され、さ
らに、歯付ベルトの場合には歯付プーリが使用さ
れる。 上記伝動ベルト6の巻き掛けにおいて、駆動プ
ーリ3は図中矢符Rの方向に回転するものであつ
て、図中6Aは駆動プーリ3の引張側における最
大張りスパン、6Bは駆動プーリ3の弛み側にお
ける最低張力スパン、6Cは従動プーリ4,5間
の第2張りスパンである。 上記最大張りスパン6Aには、張力調整手段7
が配設されている。この張力調整手段7は、伝動
ベルト6の背面に対し外側からアイドラプーリ8
が移動可能に接触し、このアイドラプーリ8をス
プリング等の弾性体9により伝動ベルト6に所定
の付勢力で圧接し、ベルト張力の変動に応じて上
記弾性体9が変形することによりアイドラプーリ
8が移動し、最大張りスパン6Aにおける張力の
最高値を規制し、張力変動を吸収するように構成
されている。 また、最低張力スパン6Bにはテンシヨナ10
が配設され、このテンシヨナ10は、伝動ベルト
6の背面に外側から当接する移動可能なアイドラ
プーリ11と、該アイドラプーリ11を付勢する
スプリング12とからなる。 上記張力調整手段7は、第2図に示すように、
伝動ベルト6の内側から外側に該伝動ベルト6を
付勢するようにアイドラプーリ8を伝動ベルト6
の内面に接触させて配設してもよく、また、テン
シヨナ10についても張力調整手段7と同様に内
側から付勢するように配設してもよい。一方、上
記テンシヨナ10は必要に応じて配設されるもの
であつて、第3図に示すように、省略される場合
もある。第2図及び第3図においては、第1図と
同一構造部分には同一符号を付してその説明を省
略する。 さらに、従動プーリ4,5の設置数も駆動する
補機の数に応じて増減されるものであり、これら
の補機の配置に応じて張力調整手段7を上記の如
くベルト6の外方もしくは内方に配設するもので
ある。 上記張力調整手段7の具体的な構造例を第4図
〜第6図に示す。第4図の張力調整手段7Aは、
伝動ベルト6に接触するアイドラプーリ8を支持
するアーム13を揺動自在に枢着し、このアーム
13に引張スプリング14を連結することで該ア
ーム13を伝動ベルト6に圧接する弾性体9Aを
構成してなる。第5図の張力調整手段7Bは、ア
イドラプーリ8を支持するアーム13を捩りスプ
リングもしくは渦巻きスプリングを内蔵してなる
弾性体9Bを介して揺動可能に支持し、アイドラ
プーリ8を伝動ベルト6に付勢するものである。
また、第6図の張力調整手段7Cは、アイドラプ
ーリ8を支持するアーム13をラバースプリング
15よりなる弾性体9Cを介してピン16に揺動
可能に支持し、ラバースプリング15の変形によ
る弾性力でアイドラプーリ8を伝動ベルト6に付
勢するものである。 次に、上記実施例の作用について説明する。内
燃機関のクランク軸2の回転には、第7図Aに示
すような角速度ωの変動が発生している。この振
動次数は、一般に変位の大きい低速域では、(シ
リンダ数/2)次成分の変動が主であるが、高速
回転になるとクランク軸2の固有振動数付近で共
振し、振動次数の支配的なものが変化する。 上記クランク軸2の角速度変動に対応した最大
張りスパン6Aにおけるベルト張力の変動は、張
力調整手段7を有しない場合には、第7図Bに示
すように、第7図Aの角速度ωの変動と同じ周波
数で変化している。つまり、クランク軸2の変動
に追従して発生する従動プーリ4の慣性力により
張力は上昇し、変動が小さいとき又はテンシヨナ
10の作用により張力が伝動ベルト6の伝動能力
以内のときは、伝動ベルト6はスリツプもしくは
目飛びを生起することなく上記駆動プーリ3の変
動に追従する。 一方、駆動プーリ3での変動が大きくなり、張
力がベルト伝動能力を越えた場合は、第7図Cに
示すように、伝動ベルト6はスリツプもしくは目
飛びを起し、a部の如く頂部がカツトされた変動
となり、この状態が継続すると伝動ベルト6は早
期に破損する。上記張力変動は、テンシヨナ10
によつては吸収することはできない。つまり、最
大張りスパン6Aで張力が上昇する変動のときに
は、最低張力スパン6Bでは張力が減少する変動
となり、テンシヨナ10はこの張力の低下を上昇
するように作用するが、ベルトの寿命に影響する
最大張りスパン6Aでの張力増大を吸収すること
はできない。 上記クランク軸2の角速度ωの変動に対し、最
大張りスパン6Aに張力調整手段7を配設した場
合には、第7図Dに示すように、その張力変動幅
が小さくなる。つまり、クランク軸2の変動に伝
動ベルト6が追従することにより従動プーリ4
(補機)の慣性力を受け、最大張りスパン6Aの
ベルト張力がまず高くなろうとする。ところが、
この張力上昇は張力調整手段7により、そのアイ
ドラプーリ8が弾性体9に抗して移動し、張力上
昇が吸収緩和されてその上昇を抑制するととも
に、張力減少時に弾性体9の変形が復元してその
弾性力により伝動ベルト6を付勢してその張力が
上昇し、張力変動幅を減少させるものである。よ
つて、クランク軸2の角速度変動は張力調整手段
7で調整されて従動プーリ4に伝達される変動は
小さくなる。 なお、上記張力調整手段7の作用に伴い、張力
の異常上昇時には、アイドラプーリ8の移動が大
きくなり、このためベルト6の弛み側すなわち最
低張力スパン6Bに対し張力調整手段7で吸収し
たベルト長さ相当が付加されて張力が大幅に低下
すると、駆動プーリ3でスリツプが生じることに
なるが、この最低張力スパン6Bに設けたテンシ
ヨナ10で上記弛みを吸収して張力が上昇するこ
とによりスリツプの発生が防止できるので、張力
調整手段7とテンシヨナ10とを併設することが
好ましい。しかし、クランク軸2の変動が比較的
小さいものでは張力調整手段7の配設だけで十分
である。 ここで、上記張力調整手段7の効果を確認した
試験例を示す。この試験は、自動車のデイーゼル
エンジン(排気量1800c.c.)における補機駆動用ベ
ルトとして多リブベルト(3PK990)を使用し、
張力調整手段7を付設したものとしないものとで
の走行距離に対するベルトの重量摩耗率を計測し
たものである。なお、クランク軸2に固定された
駆動プーリ3(直径140mm)に対し第1の補機と
してオルタネータの従動プーリ4(直径60mm)及
び第2の補機としてウオータポンプとフアンに連
結された従動プーリ5(直径130mm)が配設され、
最大張りスパン6Aに張力調整手段7を設けると
ともに、最低張力スパン6Bにテンシヨナ10を
設置した構成である。上記多リブベルトは、リブ
数が3で、リブ幅が3.56mm、ベルト厚さが5.8mm、
ベルト長さが990mmである。また、自動車は自動
変速機を備え、その走行距離は実車の市内走行距
離である。上記試験の結果を、参考例としてガソ
リンエンジン(排気量1800c.c.)の場合を対比し
て、次表に示す。
(Industrial Application Field) The present invention relates to a belt transmission device in an internal combustion engine. (Prior Art) Generally, in an internal combustion engine, explosive force within a cylinder is converted into rotation of a crankshaft, so the rotational force changes significantly during one rotation. Furthermore, as the crankshaft, flywheel, etc. are made lighter (lower rigidity), the rotation of the crankshaft tends to become less smooth and the angular velocity changes significantly. Therefore, a forced angular velocity fluctuation is induced in a drive pulley fixed to the crankshaft (output shaft), for example, a pulley on which a timing belt for driving a camshaft is hung, or a pulley on which a V-belt or multi-ribbed belt for driving auxiliary equipment is hung. The angular velocity fluctuation of this crankshaft drive pulley is
It acts to forcibly move the driven pulley via the transmission belt. At this time, on the driven side, rotational resistance is generated by an inertial force corresponding to the variation, which is added or subtracted from the original driven load, and the belt tension is also subject to variation due to this load variation on the driven side. The fluctuation in the belt tension increases the belt stress and shortens the belt life, and if the stress exceeds the allowable stress, it causes belt slip or skipped stitches in the toothed belt, leading to premature failure of the belt. Therefore, in order to withstand this variation, it is necessary to increase the belt width to improve the transmission capacity. In particular, the angular velocity fluctuation of the crankshaft is large in a diesel engine, and a belt width several times larger than that in a gasoline engine may be required. However, in vehicles with narrow engine spaces, such as automobiles, it is difficult to increase the belt width, which poses an obstacle in belt design. To solve the above problem, as shown in Utility Model Application No. 113996/1987, periodic torque fluctuations are applied to the toothed belt that connects the driving gear and the driven gear to reduce the tension fluctuations acting on the belt. A technique has been proposed to eliminate belt skipping by arranging an eccentric rotating body that rotates while contacting the toothed belt in a belt transmission device where this phenomenon occurs, and by absorbing belt tension fluctuations with this eccentric rotating body. ing. (Problem to be Solved by the Invention) However, although the above proposed technique is effective for toothed belts, it cannot achieve the same effect for V-belts with slips or multi-ribbed belts, and instead promotes fluctuations. There are cases where
Furthermore, since the dominant order of engine rotational speed fluctuations (vibrations) changes depending on the rotational range in which it is used, and the range of fluctuation increases or decreases, this proposed technique has a problem in that it does not function effectively in the entire rotational range. Therefore, the present invention has been made in view of this point, and aims to eliminate the above-mentioned drawbacks of the conventional belt by effectively absorbing fluctuations in belt tension over the entire rotation range without aggravating them. (Means for Solving the Problems) In order to achieve the above object, the first invention of the present application includes a drive pulley fixed to an output shaft of an internal combustion engine, and a drive pulley driven by the drive pulley via a transmission belt. In a belt transmission device having two or more driven pulleys, the belt transmission device includes a pulley that moves in contact with the belt in response to fluctuations in belt tension at a maximum tension span of the belt tension on the tension side of the drive pulley; It is assumed that tension adjustment means is provided to regulate the maximum value of tension to a predetermined value or less. Furthermore, in the second invention of the present application, in addition to the configuration of the first invention, a known tensioner for absorbing belt slack is added to the minimum tension caspan of the belt tension on the slack side of the drive pulley. (Function) As a result, in the first and second inventions, when there is a large angular velocity fluctuation in the output shaft of the internal combustion engine, in order to prevent it from being transmitted to the belt as a shock,
By disposing the tension adjustment means at the maximum tension span of the belt tension, the maximum value of the belt tension is regulated to a predetermined value or less, and tension fluctuations are absorbed and alleviated. Incidentally, a belt tensioning device (belt tensioner) has conventionally been used in a belt transmission device to apply the necessary transmission tension to the belt. This belt tensioner maintains a constant belt tension so that the belt and pulley can rotate in operational correlation with each other without slipping due to tension reduction due to belt elongation. It is. This type of belt tensioner has a pulley that presses the belt at the location where the tension is least between the pulleys, that is, the position on the slack side of the drive pulley, so that the difference in belt tension before and after the drive pulley is kept at a constant value. The tension adjustment means of the present invention is different from the tension adjustment means of the present invention in its basic idea. (Example) Examples of the present invention will be described below with reference to the drawings. In a belt transmission device 1 for an internal combustion engine shown in FIG. 1, 2 is a crankshaft as the output shaft of the internal combustion engine, 3 is a drive pulley fixed to the crankshaft 2, and 4 and 5 are driven wheels for driving auxiliary equipment. This is a pulley, and the auxiliary equipment includes an alternator, water pump, air pump, air compressor, hydraulic pump for power steering, or camshaft. Reference numeral 6 denotes a transmission belt wound around the drive pulley 3 and driven pulleys 4 and 5, and the transmission belt 6 may be a V-belt, a multi-ribbed belt, a toothed belt, or the like. In addition, the above-mentioned transmission belt 6
If the belt is a V-belt, V-groove pulleys are used for each pulley 3 to 5, and if it is a multi-rib belt, a multi-rib groove pulley or flat pulley is used, and if it is a toothed belt, a toothed belt is used. A pulley is used. When winding the transmission belt 6, the drive pulley 3 rotates in the direction of the arrow R in the figure, where 6A is the maximum tension span on the tension side of the drive pulley 3, and 6B is the slack side of the drive pulley 3. The lowest tension span 6C is the second tension span between the driven pulleys 4 and 5. For the maximum tension span 6A, the tension adjustment means 7
is installed. This tension adjustment means 7 is connected to an idler pulley 8 from the outside with respect to the back surface of the transmission belt 6.
The idler pulley 8 is pressed against the transmission belt 6 with a predetermined biasing force by an elastic body 9 such as a spring, and the elastic body 9 deforms according to fluctuations in belt tension, thereby causing the idler pulley 8 to move. moves, regulates the maximum value of tension at the maximum tension span 6A, and is configured to absorb tension fluctuations. In addition, the tensioner 10 is used for the lowest tension span 6B.
The tensioner 10 includes a movable idler pulley 11 that contacts the back surface of the transmission belt 6 from the outside, and a spring 12 that biases the idler pulley 11. The tension adjusting means 7, as shown in FIG.
The idler pulley 8 is connected to the transmission belt 6 so as to urge the transmission belt 6 from the inside to the outside of the transmission belt 6.
The tensioner 10 may also be arranged so as to be in contact with the inner surface of the tensioner 10, and the tensioner 10 may also be arranged so as to be biased from the inside like the tension adjusting means 7. On the other hand, the tensioner 10 is provided as required, and may be omitted as shown in FIG. 3. In FIG. 2 and FIG. 3, the same reference numerals are given to the same structural parts as in FIG. 1, and the explanation thereof will be omitted. Furthermore, the number of driven pulleys 4 and 5 installed can be increased or decreased depending on the number of auxiliary machines to be driven, and depending on the arrangement of these auxiliary machines, the tension adjustment means 7 can be positioned outside the belt 6 or outside the belt 6 as described above. It is placed inward. Specific structural examples of the tension adjusting means 7 are shown in FIGS. 4 to 6. The tension adjustment means 7A in FIG.
An arm 13 that supports an idler pulley 8 that contacts the transmission belt 6 is pivotably mounted, and a tension spring 14 is connected to this arm 13 to constitute an elastic body 9A that presses the arm 13 against the transmission belt 6. It will be done. The tension adjustment means 7B in FIG. 5 swingably supports an arm 13 supporting the idler pulley 8 via an elastic body 9B having a built-in torsion spring or spiral spring, and connects the idler pulley 8 to the transmission belt 6. It is something that energizes.
In addition, the tension adjustment means 7C in FIG. This biases the idler pulley 8 against the transmission belt 6. Next, the operation of the above embodiment will be explained. In the rotation of the crankshaft 2 of the internal combustion engine, fluctuations in the angular velocity ω as shown in FIG. 7A occur. In general, in the low-speed range where displacement is large, this vibration order mainly fluctuates in the (number of cylinders/2) order component, but at high speeds, it resonates near the natural frequency of the crankshaft 2, and the vibration order becomes dominant. Things change. In the case where the tension adjustment means 7 is not provided, the variation in the belt tension at the maximum tension span 6A corresponding to the angular velocity variation of the crankshaft 2 is as shown in FIG. 7B, and the variation in the angular velocity ω in FIG. 7A. is changing at the same frequency. In other words, the tension increases due to the inertial force of the driven pulley 4 that follows the fluctuation of the crankshaft 2, and when the fluctuation is small or the tension is within the transmission capacity of the transmission belt 6 due to the action of the tensioner 10, the transmission belt 6 follows the fluctuations of the drive pulley 3 without causing slips or skipped stitches. On the other hand, if the fluctuation in the drive pulley 3 increases and the tension exceeds the belt transmission capacity, the transmission belt 6 will slip or skip stitches, as shown in part a, as shown in FIG. 7C. If this state continues, the transmission belt 6 will break at an early stage. The above tension fluctuation is caused by the tensioner 10
It cannot be absorbed by some people. In other words, when the tension increases at the maximum tension span 6A, the tension decreases at the minimum tension span 6B, and the tensioner 10 acts to increase this decrease in tension. It is not possible to absorb the increase in tension at tension span 6A. When the tension adjusting means 7 is provided at the maximum tension span 6A, the width of the tension fluctuation becomes smaller as shown in FIG. 7D in response to fluctuations in the angular velocity ω of the crankshaft 2. In other words, as the transmission belt 6 follows the fluctuation of the crankshaft 2, the driven pulley 4
In response to the inertial force of the (auxiliary machine), the belt tension at the maximum tension span of 6A tries to increase first. However,
This increase in tension is caused by the tension adjustment means 7, which causes the idler pulley 8 to move against the elastic body 9, absorbing and relaxing the increase in tension and suppressing the increase, and at the same time, when the tension decreases, the deformation of the elastic body 9 is restored. The elastic force urges the power transmission belt 6 to increase its tension and reduce the range of tension fluctuation. Therefore, fluctuations in the angular velocity of the crankshaft 2 are adjusted by the tension adjusting means 7, and the fluctuations transmitted to the driven pulley 4 are reduced. In addition, due to the action of the tension adjustment means 7, when the tension increases abnormally, the movement of the idler pulley 8 becomes large, so that the belt length absorbed by the tension adjustment means 7 increases with respect to the slack side of the belt 6, that is, the minimum tension span 6B. If the tension is significantly reduced due to the addition of a stress, slip will occur in the drive pulley 3, but the tensioner 10 installed at the lowest tension span 6B absorbs the slack and increases the tension, thereby preventing slip. Since this can be prevented from occurring, it is preferable to provide the tension adjustment means 7 and the tensioner 10 together. However, if the fluctuation of the crankshaft 2 is relatively small, provision of the tension adjustment means 7 is sufficient. Here, a test example will be shown in which the effect of the tension adjusting means 7 was confirmed. In this test, a multi-rib belt (3PK990) was used as an accessory drive belt in an automobile diesel engine (displacement 1800c.c.).
The weight wear rate of the belt with respect to the running distance was measured with and without the tension adjustment means 7. In addition, for the drive pulley 3 (diameter 140 mm) fixed to the crankshaft 2, the driven pulley 4 (diameter 60 mm) of the alternator is the first auxiliary device, and the driven pulley connected to the water pump and fan is the second auxiliary device. 5 (diameter 130mm) is installed,
In this configuration, a tension adjustment means 7 is provided at the maximum tension span 6A, and a tensioner 10 is provided at the minimum tension span 6B. The above multi-rib belt has 3 ribs, a rib width of 3.56mm, and a belt thickness of 5.8mm.
The belt length is 990mm. Furthermore, the car is equipped with an automatic transmission, and the mileage is the actual city mileage of the car. The results of the above tests are shown in the table below, comparing the results of a gasoline engine (displacement 1800 c.c.) as a reference example.

【表】 上記表から明らかなように、張力調整手段7を
有する本発明ではベルトの摩耗が少なくスリツプ
の発生が防止されているのに比べ、張力調整手段
7を備えていない従来例では大きく摩耗して早期
に寿命に達している。 (発明の効果) 以上説明したように、本願の第1及び第2発明
によれば、ベルト張力の最大張りスパンに配設し
た張力調整手段により、内燃機関の出力軸におけ
る角速度変動に対応して生起するベルト張力の変
動を助長することなく全回転域で有効に吸収緩和
してその最高値を所定値以下に規制することがで
きるので、ベルト寿命を向上させることができ、
ひいてはベルト幅の低減化を図ることができるな
どの利点を有する。
[Table] As is clear from the above table, the belt of the present invention, which has the tension adjustment means 7, has less wear and the occurrence of slips is prevented, whereas the conventional example, which does not have the tension adjustment means 7, has a large amount of wear. and are reaching the end of their lifespan early. (Effects of the Invention) As explained above, according to the first and second inventions of the present application, the tension adjusting means disposed at the maximum tension span of the belt tension adjusts the angular velocity fluctuation at the output shaft of the internal combustion engine. The belt tension can be effectively absorbed and relaxed over the entire rotation range without aggravating fluctuations in belt tension, and the maximum value can be regulated below a predetermined value, so the belt life can be improved.
Furthermore, it has the advantage that the belt width can be reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のベルト伝動装置の一例を示す
概略構成図、第2図はベルト伝動装置の他の例を
示す同概略構成図、第3図はベルト伝動装置のさ
らに他の例を示す同概略構成図、第4図は張力調
整手段の一例を示す要部正面図、第5図は張力調
整手段の他の例を示す要部斜視図、第6図は張力
調整手段のさらに他の例を示す要部正面図、第7
図A〜Dは張力調整手段の作用を説明するための
説明図である。 1……ベルト伝動装置、2……クランク軸、3
……駆動プーリ、4,5……従動プーリ、6……
伝動ベルト、6A……最大張りスパン、6B……
最低張力スパン、6C……第2張りスパン、7…
…張力調整手段、8……アイドラプーリ、9……
弾性体、10……テンシヨナ。
FIG. 1 is a schematic configuration diagram showing an example of the belt transmission device of the present invention, FIG. 2 is a schematic configuration diagram showing another example of the belt transmission device, and FIG. 3 is a schematic configuration diagram showing another example of the belt transmission device. 4 is a front view of the main part showing an example of the tension adjustment means, FIG. 5 is a perspective view of the main part showing another example of the tension adjustment means, and FIG. 6 is a main part perspective view of another example of the tension adjustment means. Main part front view showing example, No. 7
Figures A to D are explanatory diagrams for explaining the action of the tension adjusting means. 1...Belt transmission device, 2...Crankshaft, 3
... Drive pulley, 4, 5 ... Driven pulley, 6 ...
Transmission belt, 6A... Maximum tension span, 6B...
Minimum tension span, 6C...Second tension span, 7...
...Tension adjustment means, 8...Idler pulley, 9...
Elastic body, 10... tensioner.

Claims (1)

【特許請求の範囲】 1 内燃機関の出力軸に固定された駆動プーリ
と、該駆動プーリにより伝動ベルトを介して駆動
される1つ以上の従動プーリとを有するベルト伝
動装置において、上記駆動プーリの引張側におけ
るベルト張力の最大張りスパンに、ベルト張力の
変動に対応して該ベルトに接触して移動するプー
リを有し、ベルト張力の最高値を所定値以下に規
制する張力調整手段を配設したことを特徴とする
ベルト伝動装置。 2 内燃機関の出力軸に固定された駆動プーリ
と、該駆動プーリにより伝動ベルトを介して駆動
される1つ以上の従動プーリとを有するベルト伝
動装置において、上記駆動プーリの引張側におけ
るベルト張力の最大張りスパンに、ベルト張力の
変動に対応して該ベルトに接触して移動するプー
リを有し、ベルト張力の最高値を所定値以下に規
制する張力調整手段を配設するとともに、上記駆
動プーリの弛み側におけるベルト張力の最低張力
スパンにベルトの弛みを吸収するテンシヨナを配
設したことを特徴とするベルト伝動装置。
[Scope of Claims] 1. A belt transmission device having a drive pulley fixed to the output shaft of an internal combustion engine and one or more driven pulleys driven by the drive pulley via a transmission belt. At the maximum tension span of the belt tension on the tension side, a tension adjustment means is provided, which has a pulley that moves in contact with the belt in response to fluctuations in belt tension, and regulates the maximum value of the belt tension to a predetermined value or less. A belt transmission device characterized by: 2. In a belt transmission device having a drive pulley fixed to the output shaft of an internal combustion engine and one or more driven pulleys driven by the drive pulley via a transmission belt, the belt tension on the tension side of the drive pulley is A tension adjustment means is disposed at the maximum tension span, and has a pulley that moves in contact with the belt in response to fluctuations in belt tension, and is provided with a tension adjustment means for regulating the maximum value of the belt tension to a predetermined value or less, and the drive pulley A belt transmission device characterized in that a tensioner for absorbing belt slack is provided at the lowest tension span of the belt tension on the slack side of the belt.
JP10438182A 1982-06-16 1982-06-16 Belt transmission device Granted JPS58220925A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10438182A JPS58220925A (en) 1982-06-16 1982-06-16 Belt transmission device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10438182A JPS58220925A (en) 1982-06-16 1982-06-16 Belt transmission device

Publications (2)

Publication Number Publication Date
JPS58220925A JPS58220925A (en) 1983-12-22
JPH0248726B2 true JPH0248726B2 (en) 1990-10-26

Family

ID=14379180

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10438182A Granted JPS58220925A (en) 1982-06-16 1982-06-16 Belt transmission device

Country Status (1)

Country Link
JP (1) JPS58220925A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19849886A1 (en) * 1998-10-29 2000-05-11 Bosch Gmbh Robert Belt drive, especially in internal combustion engines for driving auxiliary units of a vehicle
JP4050986B2 (en) * 2000-10-03 2008-02-20 ザ ゲイツ コーポレイション Motor / generator and auxiliary belt transmission system
KR100405536B1 (en) * 2000-12-29 2003-11-14 기아자동차주식회사 Belt operation type engine start apparatus
JP2009070459A (en) * 2007-09-12 2009-04-02 Seiko Epson Corp Conveying mechanism and information processing device provided with the same
JP2016503151A (en) 2012-12-26 2016-02-01 リテンズ オートモーティヴ パートナーシップ Orbital tensioner assembly
JP6248595B2 (en) * 2013-12-10 2017-12-20 三菱自動車工業株式会社 Belt tension adjustment mechanism
JP6503385B2 (en) 2014-06-26 2019-04-17 リテンズ オートモーティヴ パートナーシップ Track tensioner assembly

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5620149B2 (en) * 1972-05-25 1981-05-12

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5620149U (en) * 1979-07-23 1981-02-23

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5620149B2 (en) * 1972-05-25 1981-05-12

Also Published As

Publication number Publication date
JPS58220925A (en) 1983-12-22

Similar Documents

Publication Publication Date Title
CA2447996C (en) Method of tuning a belt drive system
US4834694A (en) Belt tensioning apparatus
JP5349497B2 (en) Torsional decoupler
US4557707A (en) Belt tensioner
KR100565917B1 (en) Asymmetric damping tensioner belt drive system
RU2266445C2 (en) Tension device for belt drive of auxiliary members
RU2240452C1 (en) Belt tensioning twin linear device
US20050181901A1 (en) Double action belt tensioner
CN100430625C (en) A two-arm belt tensioner for a belt drive
US8568259B2 (en) Engine accessory drive with belt tensioner and same plane idler
US6422963B2 (en) Belt power transmission device
CA2330891A1 (en) Tensioning device for a flexible driving element
US10295025B2 (en) Belt transmission system
US9618099B2 (en) Tensioner with secondary damping
JPH0861443A (en) Method and device for belt transmission
US20040077446A1 (en) Belt tensioner assembly for internal combustion engine
KR960009741Y1 (en) Auto tensioner
JPH0248726B2 (en)
US10774906B2 (en) Tensioner
KR20180006375A (en) Belt transmission system
US20200132173A1 (en) Tensioner
JP2515084Y2 (en) Belt transmission
WO2014120514A1 (en) Belt drive system
JP2000230612A (en) Belt transmission device
JPH0552407U (en) Engine accessory drive structure