JPH0248641A - Laser scanner - Google Patents

Laser scanner

Info

Publication number
JPH0248641A
JPH0248641A JP19948188A JP19948188A JPH0248641A JP H0248641 A JPH0248641 A JP H0248641A JP 19948188 A JP19948188 A JP 19948188A JP 19948188 A JP19948188 A JP 19948188A JP H0248641 A JPH0248641 A JP H0248641A
Authority
JP
Japan
Prior art keywords
mirror surface
laser beam
scanning signal
horizontal scanning
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19948188A
Other languages
Japanese (ja)
Inventor
Tomomitsu Takano
高野 朝光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pioneer Corp
Original Assignee
Pioneer Electronic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pioneer Electronic Corp filed Critical Pioneer Electronic Corp
Priority to JP19948188A priority Critical patent/JPH0248641A/en
Publication of JPH0248641A publication Critical patent/JPH0248641A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To eliminate mechanically movable parts and to perform scanning of high precision by using a fixed mirror having a cylinder mirror surface and deflecting the laser beam, with which this mirror surface is irradiated, in the peripheral direction of the cylinder mirror surface in accordance with the level of a scanning signal by an optical deflecting device. CONSTITUTION:The laser beam irradiating from a cylinder mirror surface 13 is deflected in the peripheral direction of the mirror surface 13 in accordance with the level of the horizontal scanning signal by an A/O optical deflector 11 to change the angle of incidence of the laser beam at respective irradiation points of the mirror surface 13 to smaller values, and therefore, the laser beam reflected on the mirror surface 13 is successively scanned on a display face in the direction of an arrow B, and this scanning is repeated at every period of the horizontal scanning signal. A waveform correcting circuit 14 is provided on the control input side of the deflector 11 to correct the waveform of the horizontal scanning signal, and the laser beam is deflected in accordance with the corrected waveform of the horizontal scanning signal, thereby fixing the scanning speed of the laser beam on the display face.

Description

【発明の詳細な説明】 技術分野 本発明は、レーザ走査装置に関し、特にレーザプロジェ
クタ等の高速レーザ走査装置に関する。
TECHNICAL FIELD The present invention relates to a laser scanning device, and more particularly to a high-speed laser scanning device such as a laser projector.

背景技術 高速レーザ走査装置の構成の一例を第3図に示す。本図
において、映像信号に基づいて光変調されたレーず光は
、走査線のピッチむら補正用の第1シリンドリカルレン
ズ21を経て例えば25面体の多面鏡22の鏡面に入射
する。多面鏡22は水平偏向に用いられるものであり、
駆動モータ23により高速にて回転駆動される。多面鏡
22で水平方向に偏向されたレーザ光は2次元偏向用の
第1リレーレンズ24、走査線のピッチむら補正用の第
2シリンドリカルレンズ25及び2次元偏向用の第2リ
レーレンズ26を経た後、垂直偏向用のガルバノミラ−
27に入射する。ガルバノミラ−27で垂直方向に偏向
されたレーザ光は結像レンズ28によってスクリーン(
図示せず)上に結像される。
Background Art An example of the configuration of a high-speed laser scanning device is shown in FIG. In this figure, the laser light modulated based on the video signal passes through the first cylindrical lens 21 for correcting pitch unevenness of the scanning line and enters the mirror surface of a polygon mirror 22 having, for example, a 25-sided shape. The polygon mirror 22 is used for horizontal deflection,
It is rotated at high speed by a drive motor 23. The laser beam horizontally deflected by the polygon mirror 22 passes through a first relay lens 24 for two-dimensional deflection, a second cylindrical lens 25 for correcting pitch unevenness of the scanning line, and a second relay lens 26 for two-dimensional deflection. Rear galvanometer mirror for vertical deflection
27. The laser beam vertically deflected by the galvano mirror 27 is directed to a screen (
(not shown).

ここで、例えば6面体の多面鏡を用いた場合の水平走査
の原理を第4図を参照して説明するに、多面鏡が矢印方
向Aに回転しその1鏡面Pがレーザ光に対して図に実線
で示す位置から一点鎖線で示す1位置まで移動する間に
、鏡面Pの傾斜角が時々刻々と変化することにより、こ
の鏡面Pで反射されたレーザ光は表示面を矢印方向Bに
順次走査することになり、この動作が多面鏡の各鏡面毎
に繰り返されるのである。
Here, the principle of horizontal scanning when using, for example, a hexahedral polygon mirror will be explained with reference to FIG. While moving from the position shown by the solid line to the 1st position shown by the dashed-dotted line, the inclination angle of the mirror surface P changes moment by moment, so that the laser beam reflected by the mirror surface P sequentially moves along the display surface in the direction of the arrow B. This operation is repeated for each mirror surface of the polygon mirror.

この高速レーザ走査装置において、NTSC方式の水平
走査の場合、水平走査周波数15.75[KHz]に対
して945.000[c、p、s、]で走査しなければ
ならないことから、多面鏡22として例えば25面体の
ものを用いたとしても、37.800[r、p、s、]
と極めて高速な回転で多面鏡22を回転駆動する必要が
ある。このため、駆動モータ23の軸受として動圧型空
気軸受等の極めて特殊な軸受が必要になると共に、モー
タ自体の回転制御も難しかった。また、増速機構を用い
ることで駆動モータ23の回転数を低くすることも考え
られるが、増速機構を例えばギアの組合わせで構成した
場合、ジッタ等の悪影響を除かなければならないという
新たな問題が生ずる。
In this high-speed laser scanning device, in the case of NTSC horizontal scanning, scanning must be performed at 945.000 [c, p, s,] for a horizontal scanning frequency of 15.75 [KHz], so the polygon mirror 22 For example, even if a 25-hedron is used, 37.800 [r, p, s, ]
It is necessary to rotate the polygon mirror 22 at extremely high speed. Therefore, a very special bearing such as a dynamic pressure air bearing is required as a bearing for the drive motor 23, and it is also difficult to control the rotation of the motor itself. It is also possible to lower the rotational speed of the drive motor 23 by using a speed increasing mechanism, but if the speed increasing mechanism is configured by a combination of gears, for example, there is a new problem in that it is necessary to eliminate negative effects such as jitter. A problem arises.

発明の概要 そこで、本発明は、機械的な可動部をなくすことにより
上述した従来の問題点を解消すると共に、極めて高精度
の走査が可能なレーザ走査装置を提供することを目的と
する。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to solve the above-mentioned conventional problems by eliminating mechanically movable parts, and to provide a laser scanning device that is capable of scanning with extremely high precision.

本発明によるレーザ走査装置においては、円筒鏡面を有
する固定ミラーを用い、その円筒鏡面に向けて照射され
るレーザ光を光偏向手段により走査信号レベルに応じて
円筒鏡面の周方向に偏向せしめる構成となっている。
In the laser scanning device according to the present invention, a fixed mirror having a cylindrical mirror surface is used, and a laser beam irradiated toward the cylindrical mirror surface is deflected in the circumferential direction of the cylindrical mirror surface by a light deflecting means according to a scanning signal level. It has become.

実施例 以下、本発明の実施例を図に基づいて詳細に説明する。Example Hereinafter, embodiments of the present invention will be described in detail based on the drawings.

本発明の一実施例を示す第1図において、例えば第3図
における第1シリンドリカルレンズ21を経たレーザ光
は光偏向手段である例えば音響光学(A10)光偏向器
11に入射する。A10光偏向器11を経たレーザ光は
固定ミラー12の円筒鏡面13に照射され、この円筒鏡
面13で反射される。反射されたレーザ光は、例えば第
3図において1.第1リレーレンズ24、第2シリンド
リカルレンズ25及び第2リレーレンズ26を経た後、
ガルバノミラ−27で垂直方向に偏向され結像レンズ2
8によってスクリーン(図示せず)上に結像される。
In FIG. 1 showing an embodiment of the present invention, a laser beam passes through a first cylindrical lens 21 in FIG. 3, for example, and enters an acousto-optic (A10) optical deflector 11, which is a light deflecting means. The laser beam that has passed through the A10 optical deflector 11 is irradiated onto the cylindrical mirror surface 13 of the fixed mirror 12, and is reflected by this cylindrical mirror surface 13. The reflected laser light is, for example, 1. in FIG. After passing through the first relay lens 24, the second cylindrical lens 25, and the second relay lens 26,
The image forming lens 2 is deflected vertically by the galvanometer mirror 27.
8 onto a screen (not shown).

A10光偏向器11は、物質中に超音波による屈折率の
周期的変化を形成させ、超音波の周波数を変えて光ビー
ムの回折角度を変える音響光学効果を用いたものであり
、波形補正回路14を介して供給される水平走査信号レ
ベルに応じてレーザ光を円筒鏡面13の周方向に偏向せ
しめる。なお、光偏向手段として、A10光偏向器11
を用いたが、電界印加による物質の屈折率変化を利用し
た電気光学(Elo)光偏向器であっても良く、要は、
水平走査信号レベルに応じてレーザ光を円筒鏡面13の
周方向に偏向し得るものであれば良い。
The A10 optical deflector 11 uses an acousto-optic effect in which periodic changes in the refractive index are formed in a substance by ultrasonic waves, and the frequency of the ultrasonic waves is changed to change the diffraction angle of the light beam, and the waveform correction circuit is used. The laser beam is deflected in the circumferential direction of the cylindrical mirror surface 13 in accordance with the horizontal scanning signal level supplied via the mirror 14. Note that the A10 optical deflector 11 is used as the optical deflection means.
However, an electro-optical (Elo) optical deflector that utilizes changes in the refractive index of a material due to the application of an electric field may also be used.
Any device that can deflect the laser beam in the circumferential direction of the cylindrical mirror surface 13 according to the horizontal scanning signal level may be used.

ここで、円筒鏡面13を有する固定ミラー12を用いた
場合の水平走査の原理を第2図を参照して説明するに、
円筒鏡面13に照射されるレーザ光がA10光偏向器1
1によって水平走査信号レベルに応じて円筒鏡面13の
周方向(例えば、A方向)に偏向されることにより、円
筒鏡面13の各照射点におけるレーザ光の入射角が小な
る方向に変化するため、この円筒鏡面13で反射された
レーザ光は表示面を矢印方向Bに順次走査することにな
り、この動作が水平走査信号の周期毎に繰り返されるの
である。なお、A10光偏向器11による偏向角度(範
囲)をα、これに対応する円筒鏡面13での反射角度を
βとすると、β/αが角度増幅ゲインとなる。
Here, the principle of horizontal scanning when using a fixed mirror 12 having a cylindrical mirror surface 13 will be explained with reference to FIG.
The laser beam irradiated onto the cylindrical mirror surface 13 is transmitted through the A10 optical deflector 1
1 in the circumferential direction (for example, direction A) of the cylindrical mirror surface 13 in accordance with the horizontal scanning signal level, the incident angle of the laser beam at each irradiation point on the cylindrical mirror surface 13 changes in the direction of decreasing. The laser beam reflected by the cylindrical mirror surface 13 sequentially scans the display surface in the direction of arrow B, and this operation is repeated every cycle of the horizontal scanning signal. Note that if the deflection angle (range) by the A10 optical deflector 11 is α and the corresponding reflection angle at the cylindrical mirror surface 13 is β, β/α becomes the angle amplification gain.

この水平走査において、レーザ光の反射面が円f7im
面13であることにより、レーザ光の偏向角の変化率と
反射角の変化率とが比例しないため、A10光偏向器1
1によるレーザ光の偏向速度が一定であっても表示面上
のレーザ光の走査速度が一定とならないことになる。こ
のため、A10光偏向器11の制御入力側に波形補正回
路14を設け、この波形補正回路14によって本来第2
図に破線で示す如くのこぎり波であるべき水平走査信号
波形を実線で示す如く補正し、この補正後の水平走査信
号波形に応じてレーザ光を偏向せしめることにより、表
示面上のレーザ光の走査速度が一定となるようにしてい
る。波形補正回路14の補正係数は円筒鏡面13の曲率
に応じて表示面上のレーザ光の走査速度が一定となるよ
うに設定される。
In this horizontal scanning, the reflective surface of the laser beam is a circle f7im.
Due to the surface 13, the rate of change in the deflection angle of the laser beam is not proportional to the rate of change in the reflection angle, so the A10 optical deflector 1
Even if the deflection speed of the laser beam according to No. 1 is constant, the scanning speed of the laser beam on the display surface will not be constant. For this reason, a waveform correction circuit 14 is provided on the control input side of the A10 optical deflector 11.
The horizontal scanning signal waveform, which should be a sawtooth wave as shown by the broken line in the figure, is corrected as shown by the solid line, and the laser beam is deflected according to the corrected horizontal scanning signal waveform, thereby scanning the laser beam on the display surface. The speed is kept constant. The correction coefficient of the waveform correction circuit 14 is set according to the curvature of the cylindrical mirror surface 13 so that the scanning speed of the laser beam on the display surface is constant.

なお、上記実施例では、レーザプロジェクタに適用した
場合について説明したが、デイスプレィのみならず、液
晶プリンタ等のようにレーザ走査を必要とする全てのも
のに適用可能である。
In the above embodiment, the case where the present invention is applied to a laser projector has been described, but the present invention can be applied not only to a display but also to any device that requires laser scanning, such as a liquid crystal printer.

発明の詳細 な説明したように、本発明によるレーザ走査装置におい
ては、円筒鏡面を有する固定ミラーを用い、その円筒鏡
面に向けて照射されるレーザ光を光偏向手段により走査
信号レベルに応じて円筒鏡面の周方向に偏向せしめる構
成となっているので、従来装置の如きモータを用いたこ
とによる種々の問題点を解消できると共に、機械的な可
動部がないことにより極めて高精度の走査が可能となり
、しかも光学系の位置等の:A整も容易である。
As described in detail, in the laser scanning device according to the present invention, a fixed mirror having a cylindrical mirror surface is used, and a laser beam irradiated toward the cylindrical mirror surface is deflected into a cylindrical shape according to a scanning signal level by an optical deflection means. Since it is configured to deflect in the circumferential direction of the mirror surface, various problems caused by using a motor as in conventional devices can be solved, and since there are no mechanically moving parts, extremely high precision scanning is possible. Moreover, it is easy to adjust the position of the optical system, etc.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す概略構成図、第2図は
円筒鏡面を用いた場合の水平走査の原理を説明するため
の図、第3図は高速レーザ走査装置の一例を示す構成図
、第4図は回転多面鏡を用いた場合の水平走査の原理を
説明するための図である。 主要部分の符号の説明 11・・・・・・A10光偏向器 13・・・・・・円筒鏡面 14・・・・・・波形補正回路 22・・・・・・回転多面鏡 出願人   パイオニア株式会社 代理人   弁理士 藤村元゛彦 d 本1図 具11 本2図 レーず先 本4 図
Fig. 1 is a schematic configuration diagram showing an embodiment of the present invention, Fig. 2 is a diagram for explaining the principle of horizontal scanning when a cylindrical mirror surface is used, and Fig. 3 shows an example of a high-speed laser scanning device. The configuration diagram, FIG. 4, is a diagram for explaining the principle of horizontal scanning when a rotating polygon mirror is used. Explanation of symbols of main parts 11...A10 Optical deflector 13...Cylindrical mirror surface 14...Waveform correction circuit 22...Rotating polygon mirror Applicant Pioneer Co., Ltd. Company agent Patent attorney Motohiko Fujimura d Book 1 Illustrations 11 Book 2 Illustrations Lace book 4 Illustrations

Claims (3)

【特許請求の範囲】[Claims] (1)円筒鏡面を有する固定ミラーと、前記円筒鏡面に
向けてレーザ光を照射する照射手段と、前記レーザ光を
走査信号レベルに応じて前記円筒鏡面の周方向に偏向せ
しめる光偏向手段とを備えたことを特徴とするレーザ走
査装置。
(1) A fixed mirror having a cylindrical mirror surface, irradiation means for irradiating laser light toward the cylindrical mirror surface, and light deflection means for deflecting the laser light in the circumferential direction of the cylindrical mirror surface in accordance with a scanning signal level. A laser scanning device comprising:
(2)前記光偏向手段は音響光学光偏向器又は電気光学
光偏向器であることを特徴とする請求項1記載のレーザ
走査装置。
(2) The laser scanning device according to claim 1, wherein the light deflecting means is an acousto-optic light deflector or an electro-optic light deflector.
(3)前記円筒鏡面の曲率に応じて前記走査信号レベル
を補正する補正手段を有することを特徴とする請求項1
記載のレーザ走査装置。
(3) Claim 1 further comprising a correction means for correcting the scanning signal level according to the curvature of the cylindrical mirror surface.
The laser scanning device described.
JP19948188A 1988-08-10 1988-08-10 Laser scanner Pending JPH0248641A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19948188A JPH0248641A (en) 1988-08-10 1988-08-10 Laser scanner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19948188A JPH0248641A (en) 1988-08-10 1988-08-10 Laser scanner

Publications (1)

Publication Number Publication Date
JPH0248641A true JPH0248641A (en) 1990-02-19

Family

ID=16408523

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19948188A Pending JPH0248641A (en) 1988-08-10 1988-08-10 Laser scanner

Country Status (1)

Country Link
JP (1) JPH0248641A (en)

Similar Documents

Publication Publication Date Title
US7701412B2 (en) Apparatus for and method of scaling a scanning angle and image projection apparatus incorporating the same
US4201455A (en) Laser-operated apparatus for data and signal recording
US4386272A (en) Apparatus and method for generating images by producing light spots of different sizes
JPS61185716A (en) Optical beam scanner
US4651169A (en) Laser printer for printing a plurality of output-images sizes
US5026133A (en) Large format laser scanner with wavelength insensitive scanning mechanism
US4651170A (en) Laser printer having means for changing the output-image size
JPH0527086B2 (en)
US5044710A (en) Laser beam deflection apparatus
JPS63241519A (en) Light beam recorder
JPH03109591A (en) Laser display device
US4195316A (en) Apparatus and method for correcting imperfection in a polygon used for laser scanning
US5835249A (en) Apparatus and method for exposing a liquid crystal panel by beam scanning
JPH0439054B2 (en)
JPH0248641A (en) Laser scanner
JPH05173094A (en) Laser display device
JPS6212893B2 (en)
JPH10319446A (en) Beam deflecting device
JPS6326366B2 (en)
JPS61111069A (en) Image recording device
JPS5924823A (en) Device for effacing influence of speckle of output light of optical fiber
JPH02254409A (en) Scanning optical system and laser beam printer using its system
JPH10325929A (en) Optical scanner
KR890006858Y1 (en) Scanner hologram
JPS58184926A (en) Optical scanner