JPH0248594A - Production of d-glucofuranose or d-xylofuranose - Google Patents

Production of d-glucofuranose or d-xylofuranose

Info

Publication number
JPH0248594A
JPH0248594A JP19796988A JP19796988A JPH0248594A JP H0248594 A JPH0248594 A JP H0248594A JP 19796988 A JP19796988 A JP 19796988A JP 19796988 A JP19796988 A JP 19796988A JP H0248594 A JPH0248594 A JP H0248594A
Authority
JP
Japan
Prior art keywords
formula
compound
glucofuranose
reaction
isopropylidene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19796988A
Other languages
Japanese (ja)
Other versions
JPH0762024B2 (en
Inventor
Hiromu Meguro
目黒 煕
Hiroshi Orui
洋 大類
Keiichi Takagi
恵一 高木
Akira Fujita
明 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
T Hasegawa Co Ltd
Original Assignee
T Hasegawa Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by T Hasegawa Co Ltd filed Critical T Hasegawa Co Ltd
Priority to JP19796988A priority Critical patent/JPH0762024B2/en
Publication of JPH0248594A publication Critical patent/JPH0248594A/en
Publication of JPH0762024B2 publication Critical patent/JPH0762024B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Saccharide Compounds (AREA)

Abstract

PURPOSE:To obtain the title high-purity compound useful as a synthetic intermediate for spice substance in high yield simply and inexpensively by a specific method using chloro-di-O-isopropylidene-alpha-D-glucofuranose as a raw material. CONSTITUTION:6-Chloro-1,2:3,5-di-O-isopropylidene-alpha-D-glucofuranose as a raw material shown by formula I is catalytically reduced in the presence of a reduction catalyst (e.g., Raney nickel) to give D-glucofuranose among the aimed compound shown by formula II or the compound shown by formula I is reacted with 1,8-diazabicyclo [5,4,0]-7-undecene and catalytically reduced in the presence of the reduction catalyst to give D-xylofuranose among the aimed compound shown by the formula II. The above-mentioned D-xylofuranose is a novel substance.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、香料物質として有用なフラネオール(2,5
−ジメチル−3−ヒドロキシ−4−オキソ−4,6−シ
ヒドロフラン)の合成中間体として利用できるD−グル
コフラノース又はD−キシロフラノース誘導体の新規な
製法に間する。
Detailed Description of the Invention (Industrial Field of Application) The present invention provides furaneol (2,5
A novel method for producing D-glucofuranose or D-xylofuranose derivatives which can be used as intermediates for the synthesis of dimethyl-3-hydroxy-4-oxo-4,6-cyhydrofuran) is developed.

更に詳しくは、本発明は下記式(1) に包含される下記式(1) −1 で表される6−ジオキシ−1,2:3.5−ジー0−イ
ソプロピリデン−α−D−グルコフラノース又は線式(
1)に包含される下記式(1)−2で表される5−C−
メチル−1,2:3.5−ジー0−イソプロピリデン−
α−D−キシロフラノースの新規な製法に関する。
More specifically, the present invention relates to 6-dioxy-1,2:3.5-di-0-isopropylidene-α-D-gluco represented by the following formula (1) -1 included in the following formula (1). Furanose or wire type (
5-C- represented by the following formula (1)-2 included in 1)
Methyl-1,2:3.5-di-0-isopropylidene-
This invention relates to a new method for producing α-D-xylofuranose.

(従来の技術) 従来、上記式(2)の6−クロロ−1,2:3.5−ジ
ー0−イソプロピリデン−α−D−グロコフラノースか
ら上記式(1)で表されるD−グルコフラノース又はD
−キシロフラノース誘導体を合成する方法は知られてい
ない。
(Prior art) Conventionally, from 6-chloro-1,2:3.5-di-0-isopropylidene-α-D-glocofuranose of formula (2) above, D- Glucofuranose or D
- There is no known method for synthesizing xylofuranose derivatives.

一方、フラネオールの合成中間体とし、て利用できる類
縁化合物(E)の合成に関して、例えば、下記反応工程
図で示した合成方法がしられている(新実験化学講m1
4−5.2485頁、1978年)。
On the other hand, regarding the synthesis of a related compound (E) that can be used as a synthetic intermediate for furaneol, for example, the synthesis method shown in the reaction process diagram below is known (New Experimental Chemistry Course m1
4-5.2485, 1978).

(A) CB) Futaneol 上記反応工程図の反応方法によれば、上記式(A)のD
−グルコースから式(B)のイソプロピリデン誘導体を
形成せしめ、線式(B)を塩化亜鉛の存在下にベンツア
ルデヒドと反応させて式(C)のアセタールを合成し、
次に線式(C)化合物をとリジンの存在下に塩化トシル
と反応させて式(D)のトシル誘導体として、次いで線
式(D)化合物をリチウムアルミニウムヒドライドで還
元してFuraneolに導くことのできる式(E)化
合物を合成している。
(A) CB) Futaneol According to the reaction method in the above reaction process diagram, D of the above formula (A)
- forming an isopropylidene derivative of formula (B) from glucose and reacting linear formula (B) with benzaldehyde in the presence of zinc chloride to synthesize an acetal of formula (C);
Next, react the linear formula (C) compound with tosyl chloride in the presence of lysine to obtain a tosyl derivative of formula (D), and then reduce the linear formula (D) compound with lithium aluminum hydride to lead to Furaneol. A compound of formula (E) has been synthesized.

(発明が解決しようとする課題) 上述の様に、フラネオールの合成中間体として利用でき
る類縁化合物(E)の製造に間する従来提案においては
、反応工程が長く、又反応操作が煩雑であり、収率が低
く、更に工業的実施に適さないなどの問題点がある。更
に加えて、上記式(E)化合物からFuraneolを
合成した場合収率が低く、線式(E)化合物はFura
ne。
(Problems to be Solved by the Invention) As mentioned above, in the conventional proposals for producing analogous compounds (E) that can be used as synthetic intermediates for furaneol, the reaction steps are long and the reaction operations are complicated. There are problems such as low yield and unsuitability for industrial implementation. In addition, when Furaneol is synthesized from the above formula (E) compound, the yield is low, and the linear formula (E) compound is Furaneol.
ne.

lの合成中間として利用するのには適さない不利益があ
る。
There are disadvantages that make it unsuitable for use as an intermediate in the synthesis of l.

(課題を解決するための手段) 本発明者らは、上述の如き不利益乃至欠点を回避すべき
鋭意研究を行ってきた。
(Means for Solving the Problems) The present inventors have conducted intensive research to avoid the disadvantages and drawbacks described above.

その結果、市場で人手容易なり一グルコースから容易に
合成することの出来る上記式(2)の6%式% リデンーα−D−グルコフラノースを原料として短縮さ
れた工程で上記式(1)−1化合物を高収率且つ簡単な
操作で工業的に有利に合成できることを発見した。又、
従来文献未記載の新規化合物である上記式(1)−2の
5−C−メチル−1゜2:3,5−ジーO−イソプロピ
リデンフラノースは、上記式(2)化合物から2工程で
高収率且つ容易な操作で工業的に有利に合成できること
も発見した。
As a result, the above formula (1)-1 was synthesized using 6% formula (2), which can be easily synthesized manually or from monoglucose in the market, using the shortened process using %redene-α-D-glucofuranose as a raw material. It has been discovered that the compound can be industrially advantageously synthesized with high yield and simple operations. or,
5-C-Methyl-1゜2:3,5-di-O-isopropylidenefuranose of the above formula (1)-2, which is a new compound not previously described in the literature, can be synthesized from the above formula (2) compound in two steps. It was also discovered that it can be synthesized industrially with high yield and easy operation.

すなわち、本発明者らは、下記式(2)で表される6−
クロロ−1,2:3,5−ジー0−イソプロピリデン−
α−D−グルコフラノースを、例えば有機溶媒中、還元
触媒の存在下に接触還元反応させることにより上記式(
1)に包含される下記式(1)−1 で表される6−ジオキシ−1,2:3,5−ジー0−イ
ソプロピリデン−α、D−グルコフラノースを合成でき
ることを発見した。
That is, the present inventors discovered that 6- expressed by the following formula (2)
Chloro-1,2:3,5-di-0-isopropylidene-
The above formula (
It has been discovered that 6-dioxy-1,2:3,5-di-0-isopropylidene-α,D-glucofuranose represented by the following formula (1)-1, which is included in 1), can be synthesized.

又、上記式(2)化合物を有機溶媒中、1.8−ジアザ
ビシクロ[5,4,01−7−ウンデセンと反応させて
下記式(3) で表される5、6−ジヒドロ−1,2:3,5−ジーO
−イソプロピリデン−α−D−グルコフラノースを形成
させ、次いで線式(3)化合物を、例えば有機溶媒中、
還元触媒の存在下に接触還元反応させることにより上記
式(1)に包含される下記式(1) −2 従って、本発明の目的は、たとえばフラネオールの合成
中間体として有用な上記式(1)化合物を上記式(2)
化合物から容易な操作で工業的に高純度且つ安価に製造
することのできる新しい方法を提供するにある。
Alternatively, the above formula (2) compound is reacted with 1,8-diazabicyclo[5,4,01-7-undecene in an organic solvent to form 5,6-dihydro-1,2 represented by the following formula (3). :3,5-G-O
-isopropylidene-α-D-glucofuranose and then the compound of linear formula (3), e.g. in an organic solvent,
Therefore, the object of the present invention is to obtain the following formula (1)-2 which is included in the above formula (1) by carrying out a catalytic reduction reaction in the presence of a reduction catalyst. The compound is represented by the above formula (2)
The object of the present invention is to provide a new method that enables industrial production of compounds with high purity and low cost through easy operations.

本発明の上記式(1)化合物の製造の態様を、上記式(
2)化合物の製造例を含めて工程図で示すと以下の様に
表すことができる。又、上記式(1)化合物からフラネ
オールを合成する方法も併せて示した。
The mode of production of the above formula (1) compound of the present invention is described by the above formula (
2) When shown in a process diagram including manufacturing examples of the compound, it can be expressed as follows. Also shown is a method for synthesizing furaneol from the compound of formula (1) above.

で表される5−C−メチル−1,2:3,5−ジー0−
イソプロピリデン−α−D−キシロフラノースも合成で
きることを発見した。
5-C-methyl-1,2:3,5-di0- represented by
It has been discovered that isopropylidene-α-D-xylofuranose can also be synthesized.

(b) 本発明の上記式(1)化合物に包含される上記式(1)
 −1の6−ジオキシ−1,2:3.5−ジーO−イソ
プロピリデン−α−D−グルコフラノース及び上記式(
1) −2の5−C−メチル−〇−キシロピラノースの
製造方法を上記工程図に従って、以下に詳細に説明する
(b) The above formula (1) included in the above formula (1) compound of the present invention
-1 of 6-dioxy-1,2:3.5-di-O-isopropylidene-α-D-glucofuranose and the above formula (
1) The method for producing 5-C-methyl-〇-xylopyranose of -2 will be explained in detail below according to the above process diagram.

出発原料の上記式(2)の6−クロロ−1,2:3,5
−ジー0−イソプロピリデン−α−D−グルコフラノー
スは、式(5)のD−グルコースを例えば、塩化亜鉛お
よび硫酸の存在下に反応して、容易に上記式(4)の1
,2:5,6−ジー0−イソプロピリデン−α、D−グ
ルコフラノースに導くことができる0次いで線式(4)
化合物を例えば、ジメチルホルムアミド中、メタンスル
ホニルクロリドの存在下に反応せしめることにより上記
式(2)化合物を容易に合成することができる。
6-chloro-1,2:3,5 of the above formula (2) as a starting material
-di-0-isopropylidene-α-D-glucofuranose can be easily obtained by reacting D-glucose of formula (5) in the presence of zinc chloride and sulfuric acid to easily obtain 1 of formula (4).
,2:5,6-di-0-isopropylidene-α,D-glucofuranose can be derived from the following linear equation (4)
The compound of formula (2) can be easily synthesized by reacting the compound in dimethylformamide in the presence of methanesulfonyl chloride, for example.

例えば、上述のように合成することのできる式(2)化
合物から上記式(1)−1化合物を合成するには、式(
2)化合物を還元触媒の存在下に接触還元反応すること
により容易に合成することができる。該反応の条件とし
ては、例えば、水素圧は約60〜130Kg/cm2、
より好ましくは約80〜110Kg/cm2程度の範囲
を例示することができる。又、反応温度としては、例え
ば約506C〜120°C1より好ましくは約709C
〜100”C程度の範囲を挙げることができる0反応時
閏は上記条件によっても異なるが、例えば、約8時間〜
20時間程度の範囲の反応時間を好ましく例示すること
ができる。
For example, in order to synthesize the above formula (1)-1 compound from the formula (2) compound that can be synthesized as described above, the formula (
2) It can be easily synthesized by subjecting the compound to a catalytic reduction reaction in the presence of a reduction catalyst. The reaction conditions include, for example, hydrogen pressure of about 60 to 130 Kg/cm2;
A more preferable range is approximately 80 to 110 kg/cm2. Further, the reaction temperature is, for example, about 506C to 120C, preferably about 709C.
The zero reaction time, which can be in the range of about 100"C, varies depending on the above conditions, but for example, about 8 hours to 100"C.
A preferable example of the reaction time is a range of about 20 hours.

上記反応に使用する還元触媒としては、例えば、ラネー
ニッケル、パラジウムカーボンなどをあげることができ
る。このような触媒の使用量には特別の制限はなく適宜
選択すればよいが、例えば式(2)化合物に対して、約
2〜10%程度の範囲で使用することができる。又、反
応は有aS媒中で行うのがよく、このような有機溶媒と
しては、例えばエタノール、メタノールなどを例示する
ことができる。これら有8N溶媒の使用量には特別の制
限はなく幅広く使用することができるが、例えば、式(
2)化合物に対して約1〜50屯量倍程度の範囲を例示
することができる。上記接触還元反応は、所望により例
えば水酸化カリウム、水酸化ナトリウムのごときアルカ
リの存在下に行うこともできる0反応終了後は常法に従
って、使用した触媒を除去し溶媒を留去して、例えばカ
ラムクロマトで精製して高純度の式(1)−1を得るこ
とができる。
Examples of the reduction catalyst used in the above reaction include Raney nickel and palladium carbon. The amount of such a catalyst to be used is not particularly limited and may be selected as appropriate, but it can be used, for example, in a range of about 2 to 10% based on the compound of formula (2). Further, the reaction is preferably carried out in an aS-containing medium, and examples of such organic solvents include ethanol, methanol, and the like. There is no particular restriction on the amount of these 8N-containing solvents to be used, and they can be used in a wide range of ways.
2) A range of approximately 1 to 50 times the volume of the compound can be exemplified. The above catalytic reduction reaction may be carried out in the presence of an alkali such as potassium hydroxide or sodium hydroxide, if desired. After the reaction is completed, the catalyst used is removed and the solvent is distilled off, e.g. Highly pure formula (1)-1 can be obtained by purification with column chromatography.

又、上記式(1)化合物に包含される上記式(1)−2
の5−C−メチル−1,2:3,5−ジー0−イソプロ
ピリデン−α−D−キシロフラノースを合成するには、
先ず上記式(2)化合物を例えば有機溶媒中、1.8−
ジアザビシクロ[5,4,01−7−ウンデセンと反応
して、上記式%式% −スを得る0次いで、式(3)化合物をたとえば有機溶
媒中、還元触媒の存在下に接触還元反応することにより
、式(1)−2化合物を容易に合成することができる。
In addition, the above formula (1)-2 included in the above formula (1) compound
To synthesize 5-C-methyl-1,2:3,5-di-0-isopropylidene-α-D-xylofuranose,
First, the above formula (2) compound is dissolved in, for example, an organic solvent with 1.8-
React with diazabicyclo[5,4,01-7-undecene to obtain the above formula % -s. Then, the compound of formula (3) is subjected to a catalytic reduction reaction in, for example, an organic solvent in the presence of a reduction catalyst. Accordingly, the compound of formula (1)-2 can be easily synthesized.

上記式(3)化合物を合成するのに使用するl、8−ジ
アザビシクロ[5,4,O] −7−ウンデセンの使用
量としては、例えば式(2)化合物に対して、約1−1
0モル程度の範囲を好ましく例示することができる。又
、使用する有機溶媒としては、例えば、テトラヒドロフ
ラン、ジオキサン、ジエチルエーテルなどのごとき溶媒
を例示することができる。これらの溶媒の使用量には、
特別のル1限はなく適宜選択して行う事ができるが、例
えば、式(2)化合物に対して約1〜60重量倍程度の
範囲を好ましく例示することができる。
The amount of 1,8-diazabicyclo[5,4,O]-7-undecene used to synthesize the compound of formula (3) is, for example, about 1-1 with respect to the compound of formula (2).
A preferable example is a range of about 0 mol. Further, examples of the organic solvent to be used include solvents such as tetrahydrofuran, dioxane, and diethyl ether. The usage of these solvents includes:
Although there is no particular limit and the amount can be selected as appropriate, a preferred example is a range of about 1 to 60 times the weight of the compound of formula (2).

この反応は例えば、約lO°〜90°C程度の温度範囲
および例えば、約1〜50重量度の反応時間で行うこと
ができる0反応終了後は、常法に従って洗浄して、油層
を分離し濃縮後、例えばカラムクロマトで精製して式(
3)化合物を得ることができる。
This reaction can be carried out, for example, in a temperature range of about 10° to 90°C and for a reaction time of about 1 to 50°C. After the reaction is completed, the oil layer is separated by washing according to a conventional method. After concentration, the formula (
3) A compound can be obtained.

上述のようにして得ることのできる式(3)化合物の接
触還元反応は、例えば、水素圧約5〜60Kg/cm2
程度の範囲、より好ましくは約10〜30Kg/cm2
 N度の範囲で、約1〜8時間程度の反応時間で行うこ
とができる。この反応に使用する触媒としては、例えば
、ラネーニッケル、パラジウム−カーボン、ラネーコバ
ルトなどを例示することができる。これら触媒の使用量
は、適宜選択して行うことができるが、例えば式(3)
化合物に対して、約0.1〜20重量%重量%箱囲を好
ましく例示することができる。又、使用する有8N溶媒
としては、例えばヘキサン、酢酸エチル、メタノール、
エタノールなどの溶媒をあげることができる。これら有
機溶媒の使用量も適宜選択すれば良いが、例えば式(3
)化合物に対して、約1〜50重量倍程度の範囲を例示
することができる0反応終了後は、触媒を除去し濃縮後
、例えばカラムクロマトで精製して式(1)−2化合物
を容易に得ることができる。 かくして、上述のように
して合成することのできる式(1)−1及び式(1) 
−2化合物は、前記の工程図に示したように香料物質と
して有用なフラネオールに容易に導くことができる。
The catalytic reduction reaction of the compound of formula (3) that can be obtained as described above can be carried out, for example, at a hydrogen pressure of about 5 to 60 Kg/cm2.
range of degrees, more preferably about 10 to 30 Kg/cm2
The reaction can be carried out within a range of N degrees and for a reaction time of about 1 to 8 hours. Examples of the catalyst used in this reaction include Raney nickel, palladium-carbon, and Raney cobalt. The amount of these catalysts to be used can be selected as appropriate, but for example, formula (3)
A preferable example is about 0.1 to 20% by weight of the compound. In addition, examples of the 8N solvent used include hexane, ethyl acetate, methanol,
Examples include solvents such as ethanol. The amount of these organic solvents used may be selected appropriately, but for example, the formula (3
) After the completion of the reaction, the catalyst is removed, concentrated, and purified by column chromatography, for example, to easily obtain the compound of formula (1)-2. can be obtained. Thus, formula (1)-1 and formula (1) can be synthesized as described above.
The -2 compound can be easily converted into furaneol, which is useful as a perfume material, as shown in the process diagram above.

以下に本発明の数態様につき、参考例及び実施例をあげ
て更に詳細に説明する。
Below, several aspects of the present invention will be explained in more detail by giving reference examples and examples.

(参考例) (1)1,2:5,6−ジー0−イソプロピリデン−α
、D−グルコフラノース式(4)の合成。
(Reference example) (1) 1,2:5,6-di-0-isopropylidene-α
, D-glucofuranose formula (4).

D−グルコース150g (0,83モル)、アセトン
10100O,ZnCj2 120g中に85%燐酸7
.5gを加え室温下30時間反応後、−10°Cに冷却
し、1時間撹拌、その後減圧下未反応のD−グルコース
を回収した。濾液を冷却し50%水酸化ナトリウム水溶
液170gを0〜5°Cにて滴下し中和した。生成する
塩を減圧下に11別し、濾液・を濃縮、残香に150m
1の水を加え、クロロホルム抽出(150mlX3)L
/、クロロホルム層を100m1の水で洗浄し、硫酸マ
グネシウムで乾燥、濃縮することにより、粗結晶を11
5gを得た。この粗結晶をn−ヘキサン230g、酢酸
エチル4(3gを用いて再結晶し、式(4)化合物96
g1t得た。(収率ニア0%)(2)6−クロロ−1,
2:3,5−ジーO−イソプロピリデン−α−D−グル
コフラノース式(%式% 式(4)化合物15.6g (59,9ミリモル)、乾
燥ジメチルホルムアミド150m1を仕込み、メタンス
ルホニルクロリド13.8g (120,5ミリモル)
を加え、90°C,6時間反応し、反応終了後、反応液
を氷冷した炭酸水素ナトリウム水溶液/エーテル中に注
ぎ、油層を分離し、水層をエーテル抽出し油層を合わせ
、硫酸ナトリウムで乾燥し濃縮後、IKgのシリカゲル
を用いてカラムクロマト(トルエン/酢酸エチル=9/
1)精製を行い式(2)化合物を13.03g(78,
1%)得た。
85% phosphoric acid 7 in D-glucose 150g (0.83 mol), acetone 10100O, ZnCj2 120g
.. After adding 5 g of the mixture and reacting at room temperature for 30 hours, the mixture was cooled to -10°C, stirred for 1 hour, and unreacted D-glucose was collected under reduced pressure. The filtrate was cooled and neutralized by dropping 170 g of a 50% aqueous sodium hydroxide solution at 0 to 5°C. The resulting salt was separated under reduced pressure, and the filtrate was concentrated, leaving a residual aroma of 150 m
Add water from step 1 and extract with chloroform (150ml x 3) L
/, the chloroform layer was washed with 100 ml of water, dried over magnesium sulfate, and concentrated to give 11
5g was obtained. The crude crystals were recrystallized using 230 g of n-hexane and 3 g of ethyl acetate to obtain compound 96 of formula (4).
I got glt. (yield near 0%) (2) 6-chloro-1,
2: 3,5-di-O-isopropylidene-α-D-glucofuranose formula (% formula % Formula (4) 15.6 g (59.9 mmol) and 150 ml of dry dimethylformamide were charged, and methanesulfonyl chloride 13. 8g (120,5 mmol)
was added and reacted at 90°C for 6 hours. After the reaction was completed, the reaction solution was poured into ice-cooled aqueous sodium bicarbonate solution/ether, the oil layer was separated, the aqueous layer was extracted with ether, the oil layers were combined, and the mixture was diluted with sodium sulfate. After drying and concentration, column chromatography (toluene/ethyl acetate = 9/
1) Purification was performed to obtain 13.03g (78,
1%) was obtained.

(実施例) (1)6−ジオキシ−1,2:3,5−ジー〇−イソプ
ロピリデン−α、D−グルコフラノース式%式% 式(2)化合物8.5g (30,5ミリモル)、水酸
化カリウム2.1gを溶解した99%エタノール400
m1.ラネーニッケルIgをオートクレーブ中に仕込み
、85°C1水素圧100Kg/cm2にて15時間反
応した後、触媒を除去し、溶媒を留去した後、シリカゲ
ル500gを用いてカラムクロマト(トルエン/酢酸エ
チル=9575)精製を行い、式(1)−1化合物を5
−43g (72,8%収率)を得た。
(Example) (1) 6-dioxy-1,2:3,5-di〇-isopropylidene-α,D-glucofuranose formula % formula % formula (2) compound 8.5 g (30.5 mmol), 99% ethanol 400 in which 2.1g of potassium hydroxide was dissolved
m1. Raney nickel Ig was charged into an autoclave and reacted at 85°C and hydrogen pressure of 100 kg/cm2 for 15 hours. After removing the catalyst and distilling off the solvent, column chromatography was performed using 500 g of silica gel (toluene/ethyl acetate = 9575 ) to purify the compound of formula (1)-1 to 5
-43 g (72.8% yield) was obtained.

(2)5.6−ジヒドロ−1,2:3,5−ジー0−イ
ソプロピリデン−α−D−グルコフラノース式(3)の
合成。
(2) Synthesis of 5,6-dihydro-1,2:3,5-di-0-isopropylidene-α-D-glucofuranose formula (3).

式(2)化合物47.4g (0,17モル)、テトラ
ヒドロフラン150m1,1.8−ジアザビシクロ[5
,4,0コー7−ウンデセン77゜7g(0,51モル
)の溶液を還流下に8時間反応し、反応終了後溶媒を留
去し、残香にエーテル300 m lを加え、水洗、1
%塩酸水溶液洗浄、重曹水溶液洗浄を順次行い、硫酸マ
グネシウムで乾燥した後IKgのシリカゲルを用いてカ
ラムクロマト(トルエン/酢酸エチル=9/1)精製す
ることにより、式(3)化合物28.46g (収率6
9%)。
47.4 g (0.17 mol) of formula (2) compound, 150 ml of tetrahydrofuran, 1,8-diazabicyclo[5
A solution of 77.7 g (0.51 mol) of ,4,0-7-undecene was reacted under reflux for 8 hours. After the reaction, the solvent was distilled off, 300 ml of ether was added to the residual aroma, and the mixture was washed with water.
% hydrochloric acid aqueous solution and sodium bicarbonate aqueous solution, dried over magnesium sulfate, and purified by column chromatography (toluene/ethyl acetate = 9/1) using I kg of silica gel to obtain 28.46 g of the compound of formula (3) ( Yield 6
9%).

(3)5−C−メチル−1,2:3,5−ジー〇−α−
D−キシロフラノース式(1) −2の合成式(3)化
合物8−5g (35,5ミリモル)、n−ヘキサン9
0m1.5%パラジウム−カーボン2gをオートクレー
ブ中に仕込み、水素圧10Kg/cm2.401C〜5
0°Cの条件下に接触還元反応し、反応終了後触媒を除
去し溶媒を留去して残香を500gのシリカゲルを用い
てカラムクロマト(トルエン/酢酸エチル=9/1)精
製を行い式(1)−2化合物を7.61g(収率87.
9%)得た。
(3) 5-C-methyl-1,2:3,5-G〇-α-
Synthetic formula (3) compound of D-xylofuranose formula (1) -2 8-5 g (35.5 mmol), n-hexane 9
0ml 1.5% palladium-carbon 2g was charged into an autoclave, hydrogen pressure 10Kg/cm2.401C~5
A catalytic reduction reaction was carried out under conditions of 0°C, and after the completion of the reaction, the catalyst was removed, the solvent was distilled off, and the residual aroma was purified by column chromatography (toluene/ethyl acetate = 9/1) using 500 g of silica gel. 1)-2 compound 7.61g (yield 87.
9%) obtained.

(参考例) (3)6−ゾオキシーD−グルコビラノース式(%式% 式(1)−1化合物3.85g (15,8ミリモル)
、水30 m l 、アンバーリスト−151゜0gを
50°C57時間反応し、反応終了後樹脂を除去、減圧
下濃縮することにより、粗製の式(a)  化合物を3
.36gを得た。このものをシリカゲル150gを用い
てカラムクロマト(クロロホルム/メタノール=4/1
)精製を行い式(a)  の 化合物を2.38g (
92,0%収率)を得た。
(Reference example) (3) 6-zooxy-D-glucobylanose formula (% formula % formula (1)-1 compound 3.85 g (15.8 mmol)
, 30 ml of water, and 151.0 g of Amberlyst-150 were reacted at 50°C for 57 hours. After the reaction, the resin was removed and concentrated under reduced pressure to obtain the crude compound of formula (a) 3.
.. 36g was obtained. This was subjected to column chromatography (chloroform/methanol = 4/1) using 150 g of silica gel.
) Purification to obtain 2.38g of the compound of formula (a) (
92.0% yield) was obtained.

(4)フラネオール式(b)の合成。(4) Synthesis of furaneol formula (b).

式(a) 化合物2.38g (14,5ミ’)%ル)
、99%エタノール20 m lの溶液中に室温下とベ
リジン714mg、酢酸1.19gを加えた後、加熱還
流下8時間反応し、反応終了後冷却し、減圧上濃縮して
粗製4.1gを得た。これを76gのシリカゲルを用い
てカラムクロマト(ヘキサン/酢酸エチル:2/1)精
製し、式(b)化合物1.32g (71,0%収率)
を得た。
Formula (a) compound 2.38 g (14,5 m')% le)
After adding 714 mg of veridine and 1.19 g of acetic acid to a solution of 20 ml of 99% ethanol at room temperature, the mixture was reacted under heating under reflux for 8 hours. After the reaction was completed, the mixture was cooled and concentrated under reduced pressure to obtain 4.1 g of crude product. Obtained. This was purified by column chromatography (hexane/ethyl acetate: 2/1) using 76 g of silica gel to obtain 1.32 g of the compound of formula (b) (71.0% yield).
I got it.

(発明の効果) 本発明によれば、香料物質として極めて有用なフラネオ
ール(2,5−ジメチル−3−ヒドロキシ−4オキソ−
4,5−ジヒドロフラン)の合成中間体として利用でき
る下記式(1) で表されるD−グルコフラノース又はD−キシロフラノ
ース誘導体を、全く新しい製法で有利に合成できる方法
を提供することができる。
(Effects of the Invention) According to the present invention, furaneol (2,5-dimethyl-3-hydroxy-4oxo-
It is possible to provide a method that can advantageously synthesize D-glucofuranose or D-xylofuranose derivatives represented by the following formula (1), which can be used as synthetic intermediates for 4,5-dihydrofuran), using a completely new manufacturing method. .

Claims (1)

【特許請求の範囲】 1、下記式(2) ▲数式、化学式、表等があります▼(2) で表される6−クロロ−1,2:3,5−ジ−0−イソ
プロピリデン−α−D−グルコフラノースを還元触媒の
存在下に接触還元反応させるか若しくは1,8−ジアザ
ビシクロ[5,4,0]−7−ウンデセンと反応させ、
次いで還元触媒の存在下に接触還元反応させることを特
徴とする下記式(1) ▲数式、化学式、表等があります▼(1) で表されるD−グルコフラノース又はD−キシロフラノ
ース誘導体の製法。
[Claims] 1. 6-chloro-1,2:3,5-di-0-isopropylidene-α represented by the following formula (2) ▲ Numerical formulas, chemical formulas, tables, etc. ▼ (2) -D-glucofuranose is subjected to a catalytic reduction reaction in the presence of a reduction catalyst or reacted with 1,8-diazabicyclo[5,4,0]-7-undecene,
A method for producing D-glucofuranose or D-xylofuranose derivatives represented by the following formula (1) ▲There are mathematical formulas, chemical formulas, tables, etc.▼(1), which is characterized by carrying out a catalytic reduction reaction in the presence of a reduction catalyst. .
JP19796988A 1988-08-10 1988-08-10 Process for producing D-glucofuranose or D-xylofuranose derivative Expired - Fee Related JPH0762024B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19796988A JPH0762024B2 (en) 1988-08-10 1988-08-10 Process for producing D-glucofuranose or D-xylofuranose derivative

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19796988A JPH0762024B2 (en) 1988-08-10 1988-08-10 Process for producing D-glucofuranose or D-xylofuranose derivative

Publications (2)

Publication Number Publication Date
JPH0248594A true JPH0248594A (en) 1990-02-19
JPH0762024B2 JPH0762024B2 (en) 1995-07-05

Family

ID=16383337

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19796988A Expired - Fee Related JPH0762024B2 (en) 1988-08-10 1988-08-10 Process for producing D-glucofuranose or D-xylofuranose derivative

Country Status (1)

Country Link
JP (1) JPH0762024B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3971172A1 (en) 2020-09-18 2022-03-23 Xiamen Oamic Biotechnology Co., Ltd. Method for catalytically synthesizing furaneol

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3971172A1 (en) 2020-09-18 2022-03-23 Xiamen Oamic Biotechnology Co., Ltd. Method for catalytically synthesizing furaneol

Also Published As

Publication number Publication date
JPH0762024B2 (en) 1995-07-05

Similar Documents

Publication Publication Date Title
JPH0248594A (en) Production of d-glucofuranose or d-xylofuranose
CN115850304A (en) Method for stereoselectively preparing 2-alkyl-4-boron-based heterocyclic compound
US4231962A (en) 3-Phenoxybenzylideneamines and 3-benzylbenzylideneamines
CN112778189A (en) (3R,4S) -N-substituent-3-carboxylic acid-4-ethyl pyrrolidine, intermediate and lapatinib
JPS6044296B2 (en) Production method of octenitrile derivatives
JPS6289660A (en) Production of 4-oxo-4,5,6,7-tetrahydroindole
JP2736916B2 (en) Manufacturing method of cibeton
Koen et al. Reaction of 4-ethoxycarbonyl-2-phenyl-4, 5-dihydrooxazol-5-one with organolead (IV) triacetates. A route to some α-arylglycine and α-vinylglycine derivatives
JPH02108647A (en) 2(z)-pentenyl-substituted cyclopentanes and novel intermediate thereof
JPH0597735A (en) Production of optically active secondary alcohol
JPH10287657A (en) Production of radiosensitizer
CN115785104A (en) Method for synthesizing spiro [ indoline-3, 3' -pyrrolidine ] derivative catalyzed by monovalent gold
JP2791572B2 (en) Macrocyclic compound and method for producing the same
JPH0791264B2 (en) N- (2-amino-3-hydroxybenzoyl) -L-prolinal acetal and process for producing the same
JPH03176463A (en) Pyrrolidinol derivative and its production
JPS594404B2 (en) 2,10-dehydro-4-homobrendan and its production method
JPH0291064A (en) Production of propiophenone derivative
JPH035377B2 (en)
HU176890B (en) Process for preparing 1-/tetrahydro-2furyl/-5-fluoro-uracyl,1,3bis-/tetrahydro-2-furyl/-5-fluoro-uracyl or the mixture of these ywo compounds
JPS6036414B2 (en) 2-(2-pentynyl)cyclopentanol derivative and method for producing the same
JPS61271258A (en) Production of optically active amino alcohol
JPS625414B2 (en)
JPS5858335B2 (en) Alpha - Chikanacetone no Seizouhou
KR20010099122A (en) Resolution process for preparing l-muscone or d-muscone
JPS6159303B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees