JPH0248168A - Surface grinding - Google Patents

Surface grinding

Info

Publication number
JPH0248168A
JPH0248168A JP63197544A JP19754488A JPH0248168A JP H0248168 A JPH0248168 A JP H0248168A JP 63197544 A JP63197544 A JP 63197544A JP 19754488 A JP19754488 A JP 19754488A JP H0248168 A JPH0248168 A JP H0248168A
Authority
JP
Japan
Prior art keywords
axis
rotary body
work
workpiece
polishing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63197544A
Other languages
Japanese (ja)
Inventor
Mikio Yamashita
幹生 山下
Seiichi Hara
原 成一
Hiroyuki Matsunaga
博之 松永
Kiyoshi Mamiya
間宮 澄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP63197544A priority Critical patent/JPH0248168A/en
Priority to US07/315,414 priority patent/US5083401A/en
Publication of JPH0248168A publication Critical patent/JPH0248168A/en
Pending legal-status Critical Current

Links

Landscapes

  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

PURPOSE:To precisely grind a work by forming an annular groove on the external surface of a rotary body on the spindle of a machine tool, turning this rotary body, moving the work in the direction of the Z-axis, pressing it against the rotary body, and moving the work in the direction of the X-axis according to the pressing force or reciprocating the work in the direction of the Y-axis. CONSTITUTION:A metal block retained on the main spindle of a machine tool is turned and ground in the form of a rotary body 2 under the control of a computer and simultaneously, an annular groove 2a is formed on the external surface of the rotary body 2 during the turning and grinding operation. Then with abrasive grain supplied, the rotary body is turned on the main spindle and the work 1 held on an X-Y-Z-axis stage 3 is moved in the direction of the Z-axis until pressed by the rotary body 2. The work is moved in the direction of the X-axis while the pressing force is being measured by a pressure sensor 8 and controlled, and also moved in the reciprocating orbit 3a on the Y-axis plane, whereby grinding the surface of the work 1. As a result, the shaping precision for the work 1 is improved in both the longitudinal direction and the lateral direction and the suitable surface roughness may be provided.

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は薄板セラミック等の表面研磨方法に関する。 〔従来の技術〕 近年、電子部品の基板には高精度に加工したセラミック
が多用されている。例えば、計算機用薄膜ヘッドの基板
にはアルミナチタンカーバイド(A j! z 03/
Tic)が使用され、ヘッド部のスロトハイトは寸法精
度1.5±0.5μm、平面度0.04μm、表面粗さ
0.02μmと非常に高精度なものが要求される。 従来、スロートハイドの研磨は、第4図、第5図に示す
ような工作機械を利用した曲面研磨装置で研磨を行って
いた。第4図において、工作機械Aは回転研削を行うも
ので、■は被加工物、2は円筒ラップ、4は砥粒、5は
砥粒供給装置、6は精密主軸、7はx、 y、  zス
テージ、8は圧力センサであり、9はプログラム作成用
パソコン、10は工作機械Aを制御するNCコントロー
ラである。 従来の研磨方法においては、工作機械Aの精密主軸6に
金属塊を取り付けた後、回転研削して回転体の円筒ラッ
プを加工し、該円筒ラップ2に対して、被加工物1をN
Cコントローラで制御されるxy、zステージ7により
移動させて、砥粒4を供給しながら表面研磨を行ってい
た。この時、研磨荷重、被加工物の各X座標でのX方向
の研磨量、Y軸移動量、単位速度当たりの研磨量等を初
期条件としてパソコン9にキー人力すれば、パソコン9
によりステージ7における3軸の移動量及び移動速度が
計算され、制御プログラムがNCコントローラ10に送
られ、それに基づいてX、 YZステージ7が動き、所
望の形状の加工面が得られるというものであった。ここ
で被加工物1の各X座標でのX方向の研磨量とは、第5
図に示した代表点δ1.δ2.−  δ、−δ7に相当
し、予め点接触形表面計測器等で測定した値を用い、そ
の間は補間して研摩量関数δ(x)を求め、それに見合
うX軸の移動速度を計算し、研磨を行うという方法をと
っていた。第6図は、この従来の装置により研磨した結
果を示したもので、1bはHeNeレーザを使用して平
面度を測定した時の干渉縞を示し、第5図と同一または
相当部分には同一符号を付している。 〔発明が解決しようとする課題〕 しかしながら上記従来の研磨方法では、0.3μm以下
の形状精度が短時間に得られるものの、被加工物の短手
方向(第5.6図のY軸方向)全域に渡って約0.4μ
mのだれが生じる上に、表面粗さが0.09μmと大き
くなるという問題点があった。 本発明は、上述のような問題点を除去し、特に被加工物
の短手方向(Y方向)の形状精度及び表面粗さの良好な
加工面が得られる表面研磨方法を提供することを目的と
している。 〔課題を解決するための手段〕 この発明においては、計算機制御による工作機械の主軸
上に把持した金属塊を回転研削して回転体2を形成する
とともに、この回転体2の外周に回転研削により円環溝
2aを形成し、砥粒を供給しながら該回転体2を主軸上
で回転させ、互いに直交するX、Y、Z軸ステージ3上
に載置した被工作物1をZ軸方向に移動させて該回転体
2に圧接し、この圧接力を圧力センサ7で計測して制御
し、X軸方向に移動させるとともに、Y軸方向に往復揺
動3aさせながら該被加工物1の表面を研磨する。 〔作用〕 円環溝2aを備えた円筒ランプ2の回転する外周に、被
加工物lにY軸方向の往復揺動を与えながら表面を研磨
する。被加工物1の長手方向(第3図のX軸方向)、短
手方向(第3図のY軸方向)共に形状精度が良く、かつ
表面粗さも良好な加工面が得られる。 〔実施例〕 以下この発明を図面を参照して説明する。第1図は回転
研削を行う工作機械のステージ及び加工工具等の拡大斜
視図を示している。同図において、3はXY、Zステー
ジであり、このステージ3は図示外のNCコントローラ
により移動が制御される。ステージ3上には略長方体の
被加工物■が圧力センサ8を介して載置されており、2
は図示外の精密主軸に回転可能に装着された回転体の円
筒ランプである。この円筒ラップ2には円周方向に複数
の円環a2aが回転研削により形成されている。この円
筒ラップ2は所定の例えば錫等の金属塊を工作機械の主
軸に取り付は回転研削して、精密な円筒形に加工し、次
に別の工具でこの円筒の外周を一部削除して精密な円環
溝2aを数条形成して作ったものである。 図示外のNCコントローラで、円筒ラップ2を回転させ
るとともに、x、 y、  z軸ステージ3を移動させ
る。この時工業用ダイヤモンドの砥粒を供給しながら、
被加工物1を回転する円筒ラップ2に、プログラムされ
た押圧力で圧接させ、この押圧力を圧力センサ8で測定
し、NCコントロラ等でモニタしなから砥粒を介して研
磨する。この時、研磨荷重、被加工物の各X座標でのX
方向の研磨量、Y軸揺動量、単位速度当たりの研磨量等
を初期条件とするプログラムを予めパソコン等に入力し
ておく。このパソコン等から図示外のNCコントローラ
にプログラムを送り、工作機械を制御させ上記動作を実
行させる。特に、ステジ3をX方向に移動しながら、予
めプログラムした周期でY方向に往復揺動させる。これ
により円環溝2aの角部が被加工物1の表面を回転に加
えたY方向移動で研削する。かくしてX方向の一端から
始めて、その終端までジグザグ軌跡で研磨加工が実行さ
れる。 第2図、第3図は、この研磨方法により実際に加工した
結果を示したもので、第3図の1aばHe −N eレ
ーザを使用して平面度を測定した時の干渉縞を示す。第
2図に示すように揺動速度を上げるとY軸方向の表面粗
さが向上し、Rmax値で、0.09μmであったもの
が500鰭/ m i n以上の揺動を付加することに
より、0.025μmまで向上することがわかる。又、
第3図に示すように、従来約0.4μmであった平面度
が、0.15μmまで改善されることがわかる。 なお、」二記実施例では、円筒ランプを使用したが、被
加工物の仕上面形状によっては円錐ランプ等を使用する
ことも考えられる。又、上記実施例では、揺動付加方法
は制御プロゲラl、により行ったが、ピエゾ素子の発振
を使う等の方法も適用できる。更に、砥粒としては、−
船釣に使用されているダイヤモンド以外に、コロイダル
シリカ(粒径0.02〜0.12μm)等の微細砥粒も
使用でき、平面度を0.04μm程度にすることも可能
である。 〔発明の効果〕 以上説明してきたように、この発明によれば、計算機制
御による工作機械の主軸上に把持した金属塊を回転研削
して回転体を形成するとともに、この回転体の外周に回
転研削により円環溝を形成し、砥粒を供給しながら該回
転体を主軸上で回転させ、互いに直交するX、Y、Z軸
ステージ上に載置した被工作物をZ軸方向に移動させて
該回転体に圧接し、この圧接力を圧力センサで計測して
制御し、X軸方向に移動させるとともに、Y軸方向に往
復揺動させながら該被加工物の表面を研磨するようにし
たので、極薄のセラミック板等の被加工物を長手方向(
X軸方向)、短手方向(Y軸方向)共に形状精度が良く
、かつ表面粗さも良好な加工面が得られる効果がある。
[Industrial Field of Application] The present invention relates to a method for polishing the surface of thin plate ceramics and the like. [Prior Art] In recent years, highly precisely processed ceramics have been frequently used for substrates of electronic components. For example, alumina titanium carbide (A j! z 03/
Tic) is used, and the slot height of the head portion is required to have a dimensional accuracy of 1.5±0.5 μm, a flatness of 0.04 μm, and a surface roughness of 0.02 μm, which are extremely high precision. Conventionally, throat hide has been polished using a curved surface polishing device using a machine tool as shown in FIGS. 4 and 5. In Fig. 4, machine tool A performs rotary grinding, ■ is a workpiece, 2 is a cylindrical lap, 4 is abrasive grains, 5 is an abrasive grain supply device, 6 is a precision spindle, 7 is x, y, z stage, 8 is a pressure sensor, 9 is a personal computer for creating a program, and 10 is an NC controller that controls the machine tool A. In the conventional polishing method, after a metal block is attached to the precision spindle 6 of the machine tool A, a cylindrical lap of the rotating body is machined by rotary grinding, and the workpiece 1 is placed N against the cylindrical lap 2.
Surface polishing was performed while supplying abrasive grains 4 by moving an xy, z stage 7 controlled by a C controller. At this time, if the initial conditions such as the polishing load, the amount of polishing in the X direction at each X coordinate of the workpiece, the amount of Y-axis movement, and the amount of polishing per unit speed are entered into the computer 9, the computer 9
The amount of movement and movement speed of the three axes of the stage 7 are calculated, the control program is sent to the NC controller 10, and the X, YZ stage 7 is moved based on the program to obtain a machined surface of the desired shape. Ta. Here, the polishing amount in the X direction at each X coordinate of the workpiece 1 is the fifth
Representative point δ1 shown in the figure. δ2. - δ, - δ7, using the values measured in advance with a point contact type surface measuring instrument, etc., interpolate between them to find the polishing amount function δ(x), calculate the corresponding X-axis moving speed, The method used was polishing. Figure 6 shows the results of polishing with this conventional device. 1b shows the interference fringes when flatness was measured using a HeNe laser, and the same or equivalent parts as in Figure 5 are the same. A symbol is attached. [Problems to be Solved by the Invention] However, although the conventional polishing method described above can obtain shape accuracy of 0.3 μm or less in a short time, Approximately 0.4μ over the entire area
There were problems in that not only sag in m occurred, but also the surface roughness increased to 0.09 μm. An object of the present invention is to provide a surface polishing method that eliminates the above-mentioned problems and provides a machined surface with good shape accuracy and surface roughness, especially in the transverse direction (Y direction) of the workpiece. It is said that [Means for Solving the Problems] In the present invention, a metal block held on the main shaft of a machine tool is rotary-ground by computer control to form a rotary body 2, and the outer periphery of this rotary body 2 is rotary-grinded. An annular groove 2a is formed, and the rotary body 2 is rotated on the main axis while supplying abrasive grains, and the workpiece 1 placed on mutually orthogonal X, Y, and Z axis stages 3 is moved in the Z axis direction. The surface of the workpiece 1 is moved to press against the rotating body 2, and this pressure contact force is measured and controlled by the pressure sensor 7, and the surface of the workpiece 1 is moved in the X-axis direction and reciprocated in the Y-axis direction. Polish. [Operation] The surface of the rotating outer periphery of the cylindrical lamp 2 provided with the annular groove 2a is polished while giving the workpiece l a reciprocating swing in the Y-axis direction. A machined surface with good shape accuracy in both the longitudinal direction (X-axis direction in FIG. 3) and the transverse direction (Y-axis direction in FIG. 3) of the workpiece 1 and good surface roughness can be obtained. [Example] The present invention will be described below with reference to the drawings. FIG. 1 shows an enlarged perspective view of the stage, processing tools, etc. of a machine tool that performs rotary grinding. In the figure, 3 is an XY, Z stage, and the movement of this stage 3 is controlled by an NC controller not shown. A substantially rectangular workpiece ■ is placed on the stage 3 via a pressure sensor 8.
is a rotating cylindrical lamp rotatably mounted on a precision main shaft (not shown). A plurality of rings a2a are formed in the cylindrical wrap 2 in the circumferential direction by rotary grinding. This cylindrical wrap 2 is made by attaching a predetermined metal block, such as tin, to the main shaft of a machine tool, rotating it and processing it into a precise cylindrical shape, and then removing part of the outer periphery of this cylinder using another tool. It is made by forming several precise annular grooves 2a. An NC controller (not shown) rotates the cylindrical wrap 2 and moves the x-, y-, and z-axis stages 3. At this time, while supplying industrial diamond abrasive grains,
The workpiece 1 is brought into pressure contact with a rotating cylindrical wrap 2 with a programmed pressing force, and this pressing force is measured by a pressure sensor 8 and monitored by an NC controller, etc., and polished using abrasive grains. At this time, polishing load, X at each X coordinate of the workpiece
A program with initial conditions such as the amount of polishing in the direction, the amount of Y-axis oscillation, the amount of polishing per unit speed, etc. is input into a personal computer or the like in advance. A program is sent from this personal computer or the like to an NC controller (not shown) to control the machine tool and execute the above operations. In particular, while moving the stage 3 in the X direction, it is reciprocated in the Y direction at a preprogrammed period. As a result, the corner of the annular groove 2a grinds the surface of the workpiece 1 by rotation and movement in the Y direction. In this way, polishing is performed in a zigzag trajectory starting from one end in the X direction and ending at the end. Figures 2 and 3 show the results of actual processing using this polishing method, and Figure 1a in Figure 3 shows interference fringes when flatness was measured using a He-Ne laser. . As shown in Figure 2, increasing the rocking speed improves the surface roughness in the Y-axis direction, and the Rmax value, which was 0.09 μm, can be increased to more than 500 fins/min. It can be seen that the thickness is improved to 0.025 μm. or,
As shown in FIG. 3, it can be seen that the flatness, which was conventionally about 0.4 μm, has been improved to 0.15 μm. In the second embodiment, a cylindrical lamp was used, but a conical lamp or the like may be used depending on the shape of the finished surface of the workpiece. Further, in the above embodiment, the method of adding vibration was performed using the control progera l, but a method such as using oscillation of a piezo element may also be applied. Furthermore, as an abrasive grain, −
In addition to the diamond used for boat fishing, fine abrasive grains such as colloidal silica (particle size 0.02 to 0.12 μm) can also be used, and it is also possible to make the flatness about 0.04 μm. [Effects of the Invention] As described above, according to the present invention, a metal block held on the main shaft of a machine tool is rotary ground by computer control to form a rotating body, and a rotating body is formed on the outer periphery of this rotating body. An annular groove is formed by grinding, and the rotating body is rotated on the main axis while supplying abrasive grains, and the workpiece placed on mutually orthogonal X, Y, and Z axis stages is moved in the Z axis direction. The workpiece is brought into pressure contact with the rotating body, and this pressure contact force is measured and controlled by a pressure sensor, and the surface of the workpiece is polished while being moved in the X-axis direction and reciprocated in the Y-axis direction. Therefore, when processing workpieces such as ultra-thin ceramic plates in the longitudinal direction (
This has the effect of providing a machined surface with good shape accuracy in both the X-axis direction) and the lateral direction (Y-axis direction) and with good surface roughness.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の実施例による曲面研磨部分拡大図、
第2図は表面粗さに関する実験結果を示す図、第3図は
形状精度に関する実験結果を示す図、第4図は従来の装
置システム図、第5図は従来の研磨部分拡大図、第6図
は従来の形状精度に関する実験結果を示す図である。 図において、■は被加工物、1aはHe−Neレーザを
使用して平面度を測定した時の本発明による研磨面の干
渉縞、1bはHe−Neレーザを使用して平面度を測定
した時の従来法による研磨面の干渉縞、2は円筒ランプ
、2aは円環溝、3はx、 y、  z軸ステージ、3
aは揺動軌跡、8は圧力センサである。 代理人  大  岩  増  雄(ほか2名)報 手続補正書(自発) 5 補正の対象 明細書全文。 6 補正の内容 明細書全文を別紙のとおり補正する。 以上 2、発明の名称 表面研磨方法 3、補正をする者 事件との関係 特許出願人 住 所    東京都千代田区丸の内二丁目2番3号名
 称  (601)三菱電機株式会社代表者志岐守哉 4、代理人 住所 東京都千代田区丸の内二丁目2番3号 明   細   書 (仝丈し浦゛正)1、発明の名称 表面研磨方法 2、特許請求の範囲 計算機制御による工作機械の主軸上に把持した金属塊を
回転四囲して回転体を形成するとともに、この回転体の
外周に回転凹皿により円環溝を形成し、砥粒を供給しな
がら該回転体を主軸上で回転させ、互いに直交するX、
Y、Z軸ステージ上に載置した被工作物をZ軸方法に移
動させて該回転体に圧接し、この圧接力を圧力センサで
計測して制御し、X軸方向に移動させるとともに、Y軸
方向に往復揺動させながら該被加工物の表面を研磨する
表面研磨方法。 3、発明の詳細な説明 〔産業上の利用分野〕 本発明は薄板セラミック等の表面研磨方法に関する。 〔従来の技術〕 近年、電子部品の基板には高精度に加工したセラミック
が多用されている。例えば、計算機用薄膜ヘッドの基板
にはアルミナチタンカーバイド(A 12203 /T
IC)が使用され、ヘッド部のスロトハイトは寸法精度
1.5±0.5μm、平面度0.04μm、表面粗さ0
.02μmと非常に高精度なものが要求される。 従来、スロートハイドの研磨は、第4図、第5図に示す
ような工作機械を利用した曲面研磨装置で研磨を行って
いた。第4図において、工作機械Aは回転切削を行うも
ので、1は被加工物、2は円筒ランプ、4は砥粒、5は
砥粒供給装置、6は精密主軸、7はX、Y、Zステージ
、8は圧力センサであり、9はプログラム作成用パソコ
ン、10は工作機械Aを制御するNCコントローラであ
る。 従来の研磨方法においては、工作機械Aの精密主軸6に
金属塊を取り付けた後、回転切削して回転体の円筒ラン
プを加工し、該円筒ラップ2に対して、被加工物1をN
Cコントローラで制御されるXY、Zステージ7により
移動させて、砥粒4を供給しながら表面研磨を行ってい
た。この時、研磨荷重、被加工物の各X座標でのX方向
の研磨量、Y軸移動量、単位速度当たりの研磨量等を初
期条件としてパソコン9にキー人力すれば、パソコン9
によりステージ7における3軸の移動量及び移動速度が
計算され、制御プログラムがNCコントローラ10に送
られ、それに基づいてX、Y。 Zステージ7が動き、所望の形状の加工面が得られると
いうものであった。ここで被加工物1の各X座標でのX
方向の研磨量とは、第5図に示した代表点δ1.δ2.
−  δ、−δ、に相当し、予めウェハー製造プロセス
で各チップごとに取41けたセンサー又は研磨マーク等
で測定した値を用い、その間は補間して研磨量関数δ(
x)を求め、それに見合うX軸の移動速度を計算し、研
磨を行うという方法をとっていた。第6図は、この従来
の装置により研磨した結果を示したもので、1bはHe
Neレーザを使用して平面度を測定した時の干渉縞を示
し、第5図と同一または相当部分には同一符号を付して
いる。 〔発明が解決しようとする課題〕 しかしながら上記従来の研磨方法では、0.3μm以下
の形状精度が短時間に得られるものの、被加工物の短手
方向(第5,6図のY軸方向)全域に渡って約0.4μ
mのだれが生じる上に、表面粗さが0.09μmと大き
くなるという問題点があった。 本発明は、上述のような問題点を除去し、特に被加工物
の短手方向(Y方向)の形状精度及び表面粗さの良好な
加工面が得られる表面研磨方法を提供することを目的と
している。 〔課題を解決するための手段〕 この発明においては、計算機制御による工作機械の主軸
上に把持した金属塊を回転切削して回転体2を形成する
とともに、この回転体2の外周に回転切削により円環溝
2aを形成し、砥粒を供給しながら該回転体2を主軸上
で回転させ、互いに直交するX、Y、Z軸ステージ3上
に載置した被工作物1をX軸方向に移動させて該回転体
2に圧接し、この圧接力を圧力センサ7で計測して制御
し、X軸方向に移動させるとともに、Y軸方向に往復揺
動3aさせながら該被加工物1の表面を研磨する。 〔作用〕 円環溝2aを備えた円筒ラップ2の回転する外周に、被
加工物1にY軸方向の往復揺動を与えながら表面を研磨
する。被加工物1の長手力向く第3図のX軸方向)、短
手方向(第3図のY軸方向)共に形状精度が良く、かつ
表面粗さも良好な加工面が得られる。 〔実施例〕 以下この発明を図面を参照して説明する。第1図は回転
切削を行う工作機械のステージ及び加工工具等の拡大斜
視図を示している。同図において、3はX、Y、Zステ
ージであり、このステージ3は図示外のNCコントロー
ラにより移動が制御される。ステージ3上には略長方体
の被加工物lが圧力センサ8を介して載置されており、
2は図示外の精密主軸に回転可能に装着された回転体の
円筒ランプである。この円筒ラップ2には円周方向に複
数の円環溝2aが回転切削により形成されている。この
円筒ラップ2は所定の例えば錫等の金属塊を工作機械の
主軸に取り付は回転切削して、精密な円筒形に加工し、
次に別の工具でこの円筒の外周を一部削除して精密な円
環溝2aを数条形成して作ったものである。 図示外のNCコントローラで、円筒ラップ2を回転させ
るとともに、X、Y、Z軸ステージ3を移動させる。こ
の時工業用ダイヤモンドの砥粒を供給しながら、被加工
物1を回転する円筒ラップ2に、プログラムされた押圧
力で圧接させ、この押圧力を圧力センサ8で測定し、N
Cコントロラ等でモニタしなから砥粒を介して研磨する
。この時、研磨荷重、被加工物の各X座標でのX方向の
研磨量、Y軸揺動量、単位速度当たりの研磨量等を初期
条件とするプログラムを予めパソコン等に入力しておく
。このパソコン等から図示外のNCコントローラにプロ
グラムを送り、工作機械を制御させ上記動作を実行させ
る。特に、ステジ3をX方向に移動しながら、予めプロ
グラムした周期でY方向に往復揺動させる。これにより
円環溝2aの角部が被加工物lの表面を回転に加えたY
方向移動で研磨する。かくしてX方向の一端から始めて
、その終端までジグザグ軌跡で研磨加工が実行される。 第2図、第3図は、この研磨方法により実際に加工した
結果を示したもので、第3図の1aはHe−Neレーザ
を使用して平面度を測定した時の干渉縞を示す。第2図
に示すように揺動速度を上げるとY軸方向の表面粗さが
向上し、Rrnax値で、0.09μmであったものが
5001璽/min以上の揺動を付加することにより、
0.025μmまで向上することがわかる。又、第3図
に示すように、従来約0.4μmであった平面度が、0
.15μmまで改善されることがわかる。 なお、上記実施例では、円筒ランプを使用したが、被加
工物の仕上面形状によっては円錐ランプ等を使用するこ
とも考えられる。又、上記実施例では、揺動付加方法は
制御プログラムにより行ったが、ピエグ素子の発振を使
う等の方法も適用できる。更に、砥粒としては、−船釣
に使用されているダイヤモンド以外に、コロイダルシリ
カ(粒径0.02〜0.12μm)等の微細砥粒も使用
でき、平面度を0.04μm程度にすることも可能であ
る。 〔発明の効果] 以上説明してきたように、この発明によれば、計算機制
御による工作機械の主軸上に把持した金属塊を回転切削
して回転体を形成するとともに、この回転体の外周に回
転切削により円環溝を形成し、砥粒を供給しながら該回
転体を主軸上で回転させ、互いに直交するX、Y、Z軸
ステージ上に載置した被工作物をZ軸方向に移動させて
該回転体に圧接し、この圧接力を圧力センサで計測して
制御し、X軸方向に移動させるとともに、Y軸方向に往
復揺動させながら該被加工物の表面を研磨するようにし
たので、極薄のセラミック板等の被加工物を長手方向(
X軸方向)、短手方向(Y軸方向)共に形状精度が良く
、かつ表面粗さも良好な加工面が得られる効果がある。
FIG. 1 is a partial enlarged view of curved surface polishing according to an embodiment of the present invention;
Fig. 2 is a diagram showing the experimental results regarding surface roughness, Fig. 3 is a diagram showing the experimental results regarding shape accuracy, Fig. 4 is a conventional equipment system diagram, Fig. 5 is an enlarged view of a conventional polishing part, and Fig. 6 is a diagram showing experimental results regarding surface roughness. The figure is a diagram showing experimental results regarding conventional shape accuracy. In the figure, ■ is the workpiece, 1a is the interference pattern of the polished surface according to the present invention when the flatness was measured using a He-Ne laser, and 1b is the interference pattern when the flatness was measured using the He-Ne laser. 2 is a cylindrical lamp, 2a is an annular groove, 3 is an x, y, and z axis stage, 3
a is a swing locus, and 8 is a pressure sensor. Agent Masuo Oiwa (and 2 others) Report procedure amendment (voluntary) 5. Full text of the specification to be amended. 6. Contents of the amendment The entire text of the specification shall be amended as shown in the attached sheet. Above 2. Name of the invention Surface polishing method 3. Relationship with the case of the person making the amendment Patent applicant address 2-2-3 Marunouchi, Chiyoda-ku, Tokyo Name (601) Mitsubishi Electric Corporation Representative Moriya Shiki 4 , Agent address: 2-2-3 Marunouchi, Chiyoda-ku, Tokyo Description (Masasa Shiura) 1. Name of the invention Surface polishing method 2. Claims Gripping on the main shaft of a machine tool by computer control A rotating body is formed by rotating the metal block, and an annular groove is formed on the outer periphery of this rotating body using a rotating concave plate.The rotating body is rotated on its main axis while supplying abrasive grains, and the grooves are perpendicular to each other. X to do,
The workpiece placed on the Y- and Z-axis stage is moved in the Z-axis direction and pressed against the rotating body, and this pressure contact force is measured and controlled by a pressure sensor, and the workpiece is moved in the X-axis direction and A surface polishing method in which the surface of the workpiece is polished while reciprocating in the axial direction. 3. Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a method for polishing the surface of thin plate ceramics and the like. [Prior Art] In recent years, highly precisely processed ceramics have been frequently used for substrates of electronic components. For example, alumina titanium carbide (A 12203/T
IC) is used, and the slot height of the head part has a dimensional accuracy of 1.5 ± 0.5 μm, a flatness of 0.04 μm, and a surface roughness of 0.
.. Very high precision of 0.02 μm is required. Conventionally, throat hide has been polished using a curved surface polishing device using a machine tool as shown in FIGS. 4 and 5. In Fig. 4, machine tool A performs rotary cutting, 1 is a workpiece, 2 is a cylindrical lamp, 4 is an abrasive grain, 5 is an abrasive grain supply device, 6 is a precision spindle, 7 is an X, Y, In the Z stage, 8 is a pressure sensor, 9 is a computer for creating a program, and 10 is an NC controller that controls the machine tool A. In the conventional polishing method, after a metal block is attached to the precision spindle 6 of the machine tool A, a cylindrical lamp of the rotating body is machined by rotary cutting, and the workpiece 1 is placed against the cylindrical lap 2.
Surface polishing was performed while supplying abrasive grains 4 by moving an XY and Z stage 7 controlled by a C controller. At this time, if the initial conditions such as the polishing load, the amount of polishing in the X direction at each X coordinate of the workpiece, the amount of Y-axis movement, and the amount of polishing per unit speed are entered into the computer 9, the computer 9
The movement amount and movement speed of the three axes of the stage 7 are calculated, and the control program is sent to the NC controller 10, and based on it, the X, Y. The Z stage 7 was moved to obtain a machined surface of a desired shape. Here, X at each X coordinate of workpiece 1
The polishing amount in the direction is defined as the polishing amount at the representative point δ1. shown in FIG. δ2.
- δ, -δ, using the value measured in advance with a 41-digit sensor or polishing mark etc. for each chip in the wafer manufacturing process, and interpolating between them to calculate the polishing amount function δ (
x), calculate the corresponding moving speed of the X-axis, and then perform polishing. Figure 6 shows the results of polishing with this conventional device, where 1b is He
This figure shows interference fringes when the flatness was measured using a Ne laser, and the same or equivalent parts as in FIG. 5 are given the same reference numerals. [Problems to be Solved by the Invention] However, in the conventional polishing method described above, although a shape accuracy of 0.3 μm or less can be obtained in a short time, Approximately 0.4μ over the entire area
There were problems in that not only sag in m occurred, but also the surface roughness increased to 0.09 μm. An object of the present invention is to provide a surface polishing method that eliminates the above-mentioned problems and provides a machined surface with good shape accuracy and surface roughness, especially in the transverse direction (Y direction) of the workpiece. It is said that [Means for Solving the Problems] In the present invention, the rotating body 2 is formed by rotary cutting a metal block held on the main shaft of a machine tool under computer control, and the outer periphery of the rotating body 2 is formed by rotary cutting. An annular groove 2a is formed, and the rotary body 2 is rotated on the main axis while supplying abrasive grains, and the workpiece 1 placed on mutually orthogonal X, Y, and Z axis stages 3 is moved in the X axis direction. The surface of the workpiece 1 is moved to press against the rotating body 2, and this pressure contact force is measured and controlled by the pressure sensor 7, and the surface of the workpiece 1 is moved in the X-axis direction and reciprocated in the Y-axis direction. Polish. [Operation] The surface of the rotating outer periphery of the cylindrical wrap 2 provided with the annular groove 2a is polished while giving the workpiece 1 reciprocating rocking in the Y-axis direction. A machined surface with good shape accuracy and good surface roughness can be obtained in both the longitudinal direction (X-axis direction in FIG. 3) and the transverse direction (Y-axis direction in FIG. 3) of the workpiece 1. [Example] The present invention will be described below with reference to the drawings. FIG. 1 shows an enlarged perspective view of the stage, processing tools, etc. of a machine tool that performs rotary cutting. In the figure, 3 is an X, Y, and Z stage, and the movement of this stage 3 is controlled by an NC controller not shown. A substantially rectangular workpiece l is placed on the stage 3 via a pressure sensor 8.
2 is a rotating cylindrical lamp rotatably mounted on a precision main shaft (not shown). A plurality of annular grooves 2a are formed in the cylindrical wrap 2 in the circumferential direction by rotary cutting. This cylindrical wrap 2 is made by attaching a predetermined metal block, such as tin, to the main shaft of a machine tool and cutting it rotary to form a precise cylindrical shape.
Next, using another tool, a portion of the outer periphery of this cylinder was removed to form several precise annular grooves 2a. An NC controller (not shown) rotates the cylindrical wrap 2 and moves the X, Y, and Z axis stages 3. At this time, while supplying industrial diamond abrasive grains, the workpiece 1 is brought into pressure contact with the rotating cylindrical wrap 2 with a programmed pressing force, and this pressing force is measured by the pressure sensor 8.
Polishing is performed using abrasive grains while monitoring with a C controller or the like. At this time, a program whose initial conditions include the polishing load, the amount of polishing in the X direction at each X coordinate of the workpiece, the amount of Y-axis oscillation, the amount of polishing per unit speed, etc. is input into a personal computer or the like in advance. A program is sent from this personal computer or the like to an NC controller (not shown) to control the machine tool and execute the above operations. In particular, while moving the stage 3 in the X direction, it is reciprocated in the Y direction at a preprogrammed period. As a result, the corner of the annular groove 2a rotates the surface of the workpiece l by Y
Polish by directional movement. In this way, polishing is performed in a zigzag trajectory starting from one end in the X direction and ending at the end. 2 and 3 show the results of actual processing using this polishing method, and 1a in FIG. 3 shows interference fringes when the flatness was measured using a He--Ne laser. As shown in Fig. 2, increasing the rocking speed improves the surface roughness in the Y-axis direction.
It can be seen that the thickness is improved to 0.025 μm. In addition, as shown in Figure 3, the flatness, which was conventionally about 0.4 μm, has decreased to 0.
.. It can be seen that the thickness is improved to 15 μm. Although a cylindrical lamp is used in the above embodiment, a conical lamp or the like may be used depending on the shape of the finished surface of the workpiece. Further, in the above embodiments, the method of adding vibration was performed using a control program, but a method such as using oscillation of a Pieg element may also be applied. Furthermore, as the abrasive grains, - in addition to diamonds used for boat fishing, fine abrasive grains such as colloidal silica (particle size 0.02 to 0.12 μm) can also be used to achieve a flatness of about 0.04 μm. It is also possible. [Effects of the Invention] As explained above, according to the present invention, a metal block held on the main shaft of a machine tool is rotatably cut by computer control to form a rotating body, and a rotating body is formed on the outer periphery of the rotating body. An annular groove is formed by cutting, the rotating body is rotated on the main axis while supplying abrasive grains, and the workpiece placed on mutually orthogonal X, Y, and Z axis stages is moved in the Z axis direction. The workpiece is brought into pressure contact with the rotating body, and this pressure contact force is measured and controlled by a pressure sensor, and the surface of the workpiece is polished while being moved in the X-axis direction and reciprocated in the Y-axis direction. Therefore, when processing workpieces such as ultra-thin ceramic plates in the longitudinal direction (
This has the effect of providing a machined surface with good shape accuracy in both the X-axis direction) and the lateral direction (Y-axis direction) and with good surface roughness.

【図面の簡単な説明】[Brief explanation of the drawing]

=7 第1図は、本発明の実施例による曲面研磨部分拡大図、
第2図は表面粗さに関する実験結果を示す図、第3図は
形状精度に関する実験結果を示す図、第4図は従来の装
置システム図、第5図は従来の研磨部分拡大図、第6図
は従来の形状精度に関する実験結果を示す図である。 図において、1は被加工物、1aはHe−Neレーザを
使用して平面度を測定した時の本発明による研磨面の干
渉縞、1bはHe−Neレーザを使用して平面度を測定
した時の従来法による研磨面の干渉縞、2は円筒ランプ
、2aは円環溝、3はX、Y、Z軸ステージ、3aは揺
動軌跡、8は圧力センサである。
=7 FIG. 1 is a partial enlarged view of curved surface polishing according to an embodiment of the present invention.
Fig. 2 is a diagram showing the experimental results regarding surface roughness, Fig. 3 is a diagram showing the experimental results regarding shape accuracy, Fig. 4 is a conventional equipment system diagram, Fig. 5 is an enlarged view of a conventional polishing part, and Fig. 6 is a diagram showing experimental results regarding surface roughness. The figure is a diagram showing experimental results regarding conventional shape accuracy. In the figure, 1 is the workpiece, 1a is the interference pattern of the polished surface according to the present invention when the flatness was measured using a He-Ne laser, and 1b is the interference pattern when the flatness was measured using the He-Ne laser. 2 is a cylindrical lamp, 2a is an annular groove, 3 is an X, Y, and Z axis stage, 3a is a swing locus, and 8 is a pressure sensor.

Claims (1)

【特許請求の範囲】[Claims] 計算機制御による工作機械の主軸上に把持した金属塊を
回転研削して回転体を形成するとともに、この回転体の
外周に回転研削により円環溝を形成し、砥粒を供給しな
がら該回転体を主軸上で回転させ、互いに直交するX、
Y、Z軸ステージ上に載置した被工作物をZ軸方法に移
動させて該回転体に圧接し、この圧接力を圧力センサで
計測して制御し、X軸方向に移動させるとともに、Y軸
方向に往復揺動させながら該被加工物の表面を研磨する
表面研磨方法。
A metal lump held on the main shaft of a machine tool is rotary-ground by computer control to form a rotary body, and an annular groove is formed on the outer periphery of this rotary body by rotary grinding, and the rotary body is rotated while supplying abrasive grains. are rotated on the main axis, and X, which are perpendicular to each other,
The workpiece placed on the Y- and Z-axis stage is moved in the Z-axis direction and pressed against the rotating body, and this pressure contact force is measured and controlled by a pressure sensor, and the workpiece is moved in the X-axis direction and A surface polishing method in which the surface of the workpiece is polished while reciprocating in the axial direction.
JP63197544A 1988-08-08 1988-08-08 Surface grinding Pending JPH0248168A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP63197544A JPH0248168A (en) 1988-08-08 1988-08-08 Surface grinding
US07/315,414 US5083401A (en) 1988-08-08 1989-02-23 Method of polishing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63197544A JPH0248168A (en) 1988-08-08 1988-08-08 Surface grinding

Publications (1)

Publication Number Publication Date
JPH0248168A true JPH0248168A (en) 1990-02-16

Family

ID=16376246

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63197544A Pending JPH0248168A (en) 1988-08-08 1988-08-08 Surface grinding

Country Status (1)

Country Link
JP (1) JPH0248168A (en)

Similar Documents

Publication Publication Date Title
JP4668872B2 (en) Grinding method and grinding apparatus
JP4261493B2 (en) Dressing device, grinding device, dressing method, and numerical control program
JP3071640B2 (en) Deep hole inner surface grinding method for workpieces
JP2020179431A (en) Dressing method for grinding wheel and correction device for grinding wheel
KR20040044778A (en) a micro cutting and grinding machine make use of ultrasonic vibration
JPH0248168A (en) Surface grinding
JP2001353645A (en) Cutting edge forming method and grinding machining device of machining tool
JP2000263393A (en) Grinding device
JP2003103460A (en) Method and device for grinding workpiece surface into superfinished surface having oil retaining part
JP4526027B2 (en) Dressing device, grinding device, dressing method, and numerical control program
JP2565385B2 (en) Combined processing method and apparatus of electrolytic dressing grinding method and polishing method using conductive whetstone as tool
JPH1190799A (en) Machine tool for crank pin machining and machining method for crank pin
JPH08257923A (en) Shaft-equipped grinding wheel and tool holder
JPH0248167A (en) Grinding method
JPH0448580B2 (en)
Suzuki et al. Precision machining and measurement of micro aspheric molds
JPH0531669A (en) Grinding device
JP4253424B2 (en) Cutting method for cutting edge of cutting tool for ferrous material
JPS6133858A (en) Accurate polishing device
JP2005103668A (en) Free-form surface machining method and device
JP2002160103A (en) Curved surface machine method and its device
JPH04331058A (en) Concave lens finishing method and device
JPH0224047A (en) Grinding method for internal surface
JP2883279B2 (en) Wrap jig and lap processing method using the same
JPS62282852A (en) Grinding method