JPH0248161B2 - - Google Patents

Info

Publication number
JPH0248161B2
JPH0248161B2 JP59108480A JP10848084A JPH0248161B2 JP H0248161 B2 JPH0248161 B2 JP H0248161B2 JP 59108480 A JP59108480 A JP 59108480A JP 10848084 A JP10848084 A JP 10848084A JP H0248161 B2 JPH0248161 B2 JP H0248161B2
Authority
JP
Japan
Prior art keywords
reaction
glucan
glucose
extraction
maitake
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59108480A
Other languages
Japanese (ja)
Other versions
JPS60255733A (en
Inventor
Shozo Oikawa
Yoshiro Sato
Toshiro Yadomae
Iwao Suzuki
Naohito Oono
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Beet Sugar Manufacturing Co Ltd
Original Assignee
Nippon Beet Sugar Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Beet Sugar Manufacturing Co Ltd filed Critical Nippon Beet Sugar Manufacturing Co Ltd
Priority to JP59108480A priority Critical patent/JPS60255733A/en
Publication of JPS60255733A publication Critical patent/JPS60255733A/en
Publication of JPH0248161B2 publication Critical patent/JPH0248161B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明はマイタケの新菌株グリフオラ・フロ
ンドツサ・バル・トカチアーナのマツト状菌糸塊
から抽出されたβ−D−グルカンに関する。 近年ある種の多糖類の制がん効果が知られてか
ら、当分野における多糖類に対する関心が高ま
り、種々研究がなされ、またその成果が発表され
ている。なかでも担子菌であるきのこ由来の多糖
類に関する研究が多く、例えばカワラタケの菌体
外培養生成物から得られた蛋白多糖体はすでに実
用化されている。マイタケ菌に属するきのこ菌株
についても同様に菌体外培養生成物から制がん多
糖体を得る方法が特公昭52−44386号公報に提案
されているが、培養済培地を原料とする場参には
分離、精製に多くのかつ複雑な手段を必要とする
ものであつた。 この発明は上記のように培養済の培地を原料と
するものでなく、かつ従来その利用が全く顧みら
れていなかつたマイタケの新菌株グリフオラ・フ
ロンドツサ・バル・トカチアーナの子実体培養後
の可食部を採取した後に残る可食に不適なマツト
状菌糸塊の中に意外にも抗腫瘍活性の高い物質の
含まれていることを見い出し、この知見に基き鋭
意研究した結果、この物質はβ−(1→3)結合
グルカンを主鎖とし、このβ−D−グルコース残
基3個ごとにC−6位の炭素にβ−(1→6)結
合するグルコース残基1個の分枝を有する構成を
繰り返し単位構造とするβ−D−グルカンである
ことを確認し、この発明に至つたものである。以
下これにつき詳細に説明する。 この発明に用いるマイタケのマツト状菌糸塊と
は今関六也、本卿次男共著「原色日本菌類図鑑」
(保育社)に準拠するサルノコシカケ科に属する
マイタケ属の新菌株グリフオラ・フロンドツサ・
バル・トカチアーナをおがくずを主体とし、これ
に各種栄養源を加えて調製した培地により人工栽
培したマイタケから、可食部となるかさの部分を
収穫した後に残る菌糸がマツト状に集積して形成
された部分であり、ビン栽培、袋栽培の場合には
通常完熱したマイタケの基底部約2〜3cmの長さ
の部分に相当し、マイタケ特有の芳香も弱く、か
つそしやく困難で従来は不可食部分として廃棄さ
れていたものであり、重量的には可食部(かさの
部分)100に対し8〜10の比となる。またマイタ
ケの高密度種菌を山林、その他土中に移植して栽
培する場合には若干その生長過程を異にし、完熟
形態も異なるが、この場合においても上記に要領
に準じて不可食部となるマツト状菌糸塊を使用す
ればよい。 この発明のβ−D−グルカンは原料であるマツ
ト状菌糸塊を熱水、低温あるいは高温アルカリ溶
液のいずれによつても抽出することができ、また
熱水抽出残渣について低温アルカリ抽出を行い、
更にこの抽出残渣について高温アルカリ抽出を施
すことにより、効率よく目的物質を抽出すること
ができる。 人工栽培されたマイタケから可食部を切り取つ
た残部のマツト状菌糸塊から付着する培地等の異
物を除去し清浄にしたマツト状菌糸塊を生ものの
場合に細切し、また乾燥品の場合には紛砕する。
この細切もしくは粉砕したマツト状菌糸塊をオー
トクレーブ等の圧力容器中で熱水抽出する。抽出
はマツト状菌糸塊の50〜100倍量の水を数回に分
けて使用し温度120〜125℃、50〜100分/回で十
分に行う。従来知られるきのこ成分の抽出に当つ
ては抽出に先立て脱脂を必要としたが、この発明
者らの経験から有機溶剤による脱脂を行つた場合
爾後の精製において除去負荷を高くして好ましく
なく、脱脂処理をせずとも何等支障のないことか
ら、この発明では脱脂を省略するのがよい。抽出
完了物を遠心分離あるいは過等の通常の分離手
段で抽出残渣と熱水抽出液(F−1)に分離す
る。次いで抽出残渣について、5〜10%の希アル
カリ溶液による低温抽出を行う。アルカリとして
は苛性ソーダ、苛性カリが用いられ、苛性ソーダ
が後の処理のために好ましい。抽出残渣の10〜15
倍量の前記アルカリ溶液を数回に分けて使用し3
〜5℃、20〜30時間/回で抽出する。抽出完了物
を前記同様に抽出残渣と抽出液(F−2)に分離
する。低温アルカリ抽出残渣について、前記と
ほゞ同程度のアルカリ溶液を用いて50〜70℃、20
〜30時間の熱アルカリ抽出を行い、前記同様に抽
出残渣と抽出液(F−3)に分離する。 上記で得た熱水抽出液(F−1)、冷アルカリ
抽出液(F−2)及び熱アルカリ抽出液(F−
3)の夫々について透析により低分子成分、塩類
を除去し、透析内液を濃縮した後エチルアルコー
ルによる沈でん分画をする。この場合、アルカリ
抽出液については酢酸、希塩酸等の酸で中和した
液を透析する。 上記抽出液F−1、F−2及びF−3のアルコ
ール分画によつて得た沈でん物はこの発明のグル
カンを高純度に含む粗画分であり、次いでこれら
粗画分を沸騰条件下で要すれば超音波照射を併用
し水に溶解し、もし溶解不十分な場合にはアルカ
リに溶解し中和後透析にかけてもよいが、溶解液
から遠沈によつて不溶性分を除き上澄液をゲル剤
に充填するカラムクロマトグラフイーに通して吸
着させ、水で溶離した水溶出画分を集める。ゲル
剤としてはDEAE−体のセフアデツクス、セフア
ロース、バイオ・ゲルあるいはセルロースを用い
ることができるが、HCO3型に調整されたDEAE
−セフアデツクス−A25が好適である。前記抽出
液F−1,F−2,F−3由来の各水溶出画分の
うちF−2,F−3由来の水溶出画分は透析処理
を行い、その濃縮液にエチルアルコールを加えて
沈でんを生成せしめるだけで殆んど100%純度の
グルカンを得るが、加熱処理を伴うF−1由来の
水溶出画分には目的とするグルカン以外の不要な
グルカン(α−型のもの)の混入するおそれがあ
るため、α−アミラーゼによる酵素処理を行いα
−グルカンを加水分解した後透析にかけ、濃縮物
にエチルアルコール分画を行うことにより、F−
2、F−3由来のアルコール沈でん物と同様のグ
ルカンを得ることができる。このようにして得た
グルカンは下記範囲の理化学的性質を有する。 (1) 元素分析値等 C:41.0〜44.2%、H:6.9〜7.3%、 N:定量限界以下、ハロゲン、硫黄は検出さ
れない。 フエノール硫酸法による全糖(グルコース
(分子量162)として)は93〜95%、Lowry−
Folin法による蛋白質は0.5%以下と定量される
が、この値は通常の精製手段にては除くことの
できない僅少で、この発明のβ−グルカンを特
徴ずけるのに本質的なものではない。 (2) 分子量 0.2M−NaOH平衡セフアローズCL−2B及び
CL−4B(フアーマシア・ジヤパン)カラムに
よるゲル過分布より分子量は50〜150万の範
囲と認められる。 (3) 融点 約230℃で熱分解する。 (4) 比旋光度 〔α〕20 D=+5〜+10(溶媒H2O、濃度C=
0.1) (5) 溶解性 アルカリ、水、ジメチルスルフオキシドに易
溶、酸にはやや難溶、エチルアルコール、メチ
ルアルコール、エーテル、アセトン他有機溶媒
に不溶。 (6) 水溶液のPH 1%水溶液のPH6〜7 (7) 構成糖の種類 この発明の物質に1M・三弗化酢酸
(CF3COOH)1mlを加えて100℃、5時間の条
件で加水分解し、生成物を常法によつて水素化
ホウ素ナトリウム(NaBH4)で還元し、ピリ
ジン−無水酢酸によりアセチル化してアルジト
ールアセテート誘導体に変えてガスクロマトグ
ラフイー(島津GC−6A)により、N2ガスを
60ml/minで送り、4℃/minで170℃から250
℃まで昇温し分析した結果、フコース、キシロ
ース、マンノース、ガラクトースは認めずグル
コースのみを明確に検出したことから構成糖は
グルコースのみであると認められる。 (8) 構成糖の結合様式 箱守法(S.Hakomori,J.Biochem,55,
205 1964)によるメチル化分析の手法により、
この発明の物質をヨウ化メチルで完全メチル化
した完全O−メチル化物を密封チユーブ内90%
蟻酸で分解(120℃、10時間)し、残留蟻酸を
蒸発除去した後、残渣を1M−三弗化酢酸で加
水分解(100℃、5時間)し、蒸発乾固して得
られた部分O−メチル化糖をNaBH4で還元
(室温、2時間)し、相当するアルジトールと
なし、次いで常法によつてアセチル化(ピリジ
ン−無水酢酸による)して生成した部分O−メ
チル化−アルジトールアセテートをガスクロマ
トグラフイー(GLC)及びガスクロマトグラ
フイー−質量分析(GLC−MS)によつて分析
した。 なお、ガスクロマトグラフイー(GLC)及
びガスクロマトグラフイー−質量分析(GLC
−MS)は共に0.3%OV−275+0.4%XF−
1150/Gas chromQのカラム0.3×200cmを使用
し、2℃/minで120℃から190℃に昇温して行
つた。分析結果を1.5−ジ−O−アセチル−2,
3,4,6−テトラー−O−メチル−D−グル
シトール(非還元性末端)を1.0として各O−
メチル化糖のアルジトールアセテートのモル比
として示すと第1表のとおりであり(モル比は
クロマトグラムの面積より求めた)
The present invention relates to β-D-glucan extracted from the pine-like mycelial mass of a new strain of maitake, Glyfuora frondotsa bal tocatiana. In recent years, since the anticancer effects of certain polysaccharides have been known, interest in polysaccharides has increased in this field, and various studies have been conducted and the results have been published. In particular, there has been much research into polysaccharides derived from basidiomycete mushrooms, and for example, protein polysaccharides obtained from the extracellular culture of Corsicolor versicolor have already been put to practical use. A similar method for obtaining anticancer polysaccharides from extracellular culture products for mushroom strains belonging to Maitake fungi was proposed in Japanese Patent Publication No. 52-44386; requires many and complicated means for separation and purification. This invention does not use a cultured medium as a raw material as mentioned above, and the edible part of a new strain of maitake, Grifola frondotsa bal tocatiana, whose use has not been considered at all, after culturing the fruiting body. It was discovered that the pine-like mycelial mass that remained after the collection of the edible hyphae contained a substance with high antitumor activity, and based on this knowledge, intensive research revealed that this substance was β 1 → 3) A structure in which the main chain is a bonded glucan, and for every three β-D-glucose residues, there is a branch of one glucose residue that is β-(1 → 6) bonded to the carbon at the C-6 position. It was confirmed that this is a β-D-glucan having a repeating unit structure, leading to the present invention. This will be explained in detail below. What is the pine-like mycelial mass of maitake used in this invention? “Primary Colored Japanese Fungi Illustrated Encyclopedia” co-authored by Mutsuya Imazeki and Tsuneo Motoki
A new strain of the genus Maitake, Glyfuora frondotsa, which belongs to the family Salmonaceae, according to (Nursery Company)
Maitake mushrooms are artificially cultivated in a medium prepared by adding various nutrients to maitake, mainly consisting of sawdust, and the mycelium that remains after harvesting the edible cap is formed by a pine-shaped accumulation. In the case of bottle cultivation or bag cultivation, this corresponds to the base part of the fully heated maitake, which is about 2 to 3 cm in length. This was discarded as an edible portion, and the weight ratio is 8 to 10 to 100 edible portions (bulk portions). In addition, when a high-density maitake seed is transplanted into a mountain forest or other soil and cultivated, the growth process is slightly different and the form of ripening is also different, but in this case as well, the inedible parts will become inedible according to the above procedure. A pine-like mycelial mass may be used. The β-D-glucan of the present invention can be obtained by extracting the raw material, the pine-like mycelial mass, with hot water, low temperature or high temperature alkaline solution, and performing low temperature alkali extraction on the hot water extraction residue.
Furthermore, by subjecting this extraction residue to high-temperature alkali extraction, the target substance can be efficiently extracted. After removing the edible part from artificially cultivated maitake mushrooms, foreign matter such as the attached medium is removed from the remaining pine-like mycelial mass, and the cleaned pine-like mycelial mass is finely chopped in the case of fresh products, or finely chopped in the case of dried products. is destroyed.
The finely chopped or crushed pine-like mycelial mass is extracted with hot water in a pressure vessel such as an autoclave. Extraction is carried out in several batches using 50 to 100 times the amount of water as the pine-like mycelial mass, at a temperature of 120 to 125°C, and for 50 to 100 minutes per batch. Conventionally known extraction of mushroom components requires degreasing prior to extraction, but the inventors' experience has shown that degreasing with an organic solvent increases the removal load during subsequent purification, which is undesirable. Since there is no problem even without degreasing, it is preferable to omit degreasing in this invention. The extracted product is separated into an extraction residue and a hot water extract (F-1) by a conventional separation means such as centrifugation or filtration. The extraction residue is then subjected to low-temperature extraction with a 5-10% dilute alkaline solution. As the alkali, caustic soda and caustic potash are used, with caustic soda being preferred for subsequent treatment. 10-15 of extraction residue
Divide the amount of the alkaline solution into several times and use 3
Extract at ~5°C for 20-30 hours/time. The extracted product is separated into an extraction residue and an extract (F-2) in the same manner as described above. Regarding the low-temperature alkali extraction residue, use an alkaline solution of approximately the same level as above and heat it at 50 to 70℃ for 20 minutes.
Hot alkaline extraction is performed for ~30 hours, and the extract is separated into an extraction residue and an extract (F-3) in the same manner as above. Hot water extract (F-1), cold alkaline extract (F-2) and hot alkaline extract (F-1) obtained above.
For each of 3), low molecular weight components and salts are removed by dialysis, the dialyzed solution is concentrated, and then precipitated with ethyl alcohol. In this case, the alkaline extract is neutralized with an acid such as acetic acid or diluted hydrochloric acid and then dialyzed. The precipitate obtained by alcohol fractionation of the above extracts F-1, F-2 and F-3 is a crude fraction containing the glucan of the present invention with high purity, and these crude fractions are then separated under boiling conditions. If necessary, it can be dissolved in water using ultrasonic irradiation, and if the dissolution is insufficient, it can be dissolved in alkali and subjected to dialysis after neutralization. The liquid is adsorbed through a column chromatography packed in a gel agent, and the aqueous eluate fraction eluted with water is collected. As a gel agent, DEAE-type Cephadex, Cepharose, bio-gel or cellulose can be used, but DEAE adjusted to HCO 3 type can be used.
-Sephadex-A25 is preferred. Among the water elution fractions derived from the extracts F-1, F-2, and F-3, the water elution fractions derived from F-2 and F-3 were subjected to dialysis treatment, and ethyl alcohol was added to the concentrated solution. Almost 100% pure glucan can be obtained by simply producing a precipitate, but the water eluted fraction derived from F-1 that involves heat treatment contains unnecessary glucan (α-type) other than the desired glucan. Since there is a risk of contamination, enzyme treatment with α-amylase is performed to remove α.
-F-
2. Glucan similar to the alcohol precipitate derived from F-3 can be obtained. The glucan thus obtained has the following physicochemical properties. (1) Elemental analysis values, etc. C: 41.0-44.2%, H: 6.9-7.3%, N: below the limit of quantification, no halogen or sulfur detected. Total sugar (as glucose (molecular weight 162)) by phenol sulfuric acid method is 93-95%, Lowry-
Although the protein content is determined to be less than 0.5% by the Folin method, this value is so small that it cannot be removed by ordinary purification methods, and is not essential for characterizing the β-glucan of the present invention. (2) Molecular weight 0.2M-NaOH equilibrium Sepharose CL-2B and
The molecular weight is recognized to be in the range of 500,000 to 1,500,000 based on gel overdistribution using a CL-4B (Pharmacia Japan) column. (3) Melting point: Decomposes thermally at approximately 230℃. (4) Specific rotation [α] 20 D = +5 to +10 (solvent H 2 O, concentration C =
0.1) (5) Solubility Easily soluble in alkalis, water, and dimethyl sulfoxide, slightly soluble in acids, and insoluble in ethyl alcohol, methyl alcohol, ether, acetone, and other organic solvents. (6) PH of aqueous solution PH of 1% aqueous solution 6-7 (7) Type of constituent sugar Add 1 ml of 1M trifluoroacetic acid (CF 3 COOH) to the substance of this invention and hydrolyze at 100°C for 5 hours. Then, the product was reduced with sodium borohydride (NaBH 4 ) by a conventional method, acetylated with pyridine-acetic anhydride to convert it into an alditol acetate derivative, and purified with N 2 by gas chromatography (Shimadzu GC-6A). gas
Feed at 60ml/min, from 170℃ to 250℃ at 4℃/min
As a result of raising the temperature to ℃ and analyzing it, only glucose was clearly detected without detecting fucose, xylose, mannose, or galactose, which indicates that glucose is the only constituent sugar. (8) Binding mode of constituent sugars Hakomori method (S. Hakomori, J.Biochem, 55,
205 (1964), the methylation analysis method
90% of the substance of this invention is completely methylated with methyl iodide in a sealed tube.
After decomposition with formic acid (120°C, 10 hours) and removing residual formic acid by evaporation, the residue was hydrolyzed with 1M trifluoroacetic acid (100°C, 5 hours) and evaporated to dryness. - Partially O-methylated-alditols produced by reduction of methylated sugars with NaBH4 (room temperature, 2 hours) to give the corresponding alditols, followed by acetylation (with pyridine-acetic anhydride) in a conventional manner. Acetate was analyzed by gas chromatography (GLC) and gas chromatography-mass spectrometry (GLC-MS). In addition, gas chromatography (GLC) and gas chromatography-mass spectrometry (GLC)
−MS) are both 0.3%OV−275+0.4%XF−
A 1150/Gas chromQ column of 0.3 x 200 cm was used, and the temperature was raised from 120°C to 190°C at 2°C/min. The analysis results were converted to 1.5-di-O-acetyl-2,
Each O-
The molar ratio of alditol acetate to methylated sugar is shown in Table 1 (molar ratio was determined from the area of the chromatogram).

【表】 第1表で2,3,4,6−テトラーO−Me
−D−Gのアルジトールアセテートを1.0とす
るときの2,4,6−トリ−O−Me−D−G
と2,4−ジ−O−Me−D−Gのアルジトー
ルアセテート夫々のモル比は1.9〜2.0及び0.9〜
1.1であり、その他の2,3,4−トリ−O−
Me−D−G、2,3,6−トリ−O−Me−D
−G及び3,4,6−トリ−O−Me−D−G
のアルジトールアセテートのそれはいずれも0
〜痕跡であることから、前記(7)で知れたグルコ
ースの結合様式は
[Table] In Table 1, 2,3,4,6-tetra O-Me
2,4,6-tri-O-Me-D-G when the alditol acetate of -D-G is 1.0
The molar ratio of alditol acetate of 2,4-di-O-Me-D-G is 1.9 to 2.0 and 0.9 to
1.1 and other 2,3,4-tri-O-
Me-D-G, 2,3,6-tri-O-Me-D
-G and 3,4,6-tri-O-Me-D-G
of alditol acetate are both 0
~Since it is a trace, the binding mode of glucose known from (7) above is

【式】即ち(1 →3)結合グルコース残基3個ごとに主鎖のグ
ルコースのうちの一つのC−6位に(1→6)
結合するグルコース単位の分枝を有する結合様
式であることが認められる。 (9) Smith分解生成物とそのメチル化物 Smith分解(生化学講座4糖質の化学(下)
日本生化学会編P479〜495、1982)によりこの
発明の物質をメタ過ヨウ素酸ナトリウム
(NaIO4)で酸化後水素化ホウ素ナトリウム
(NaBH4)で還元して多糖ポリアルコールとな
し、(i)0.5〜1.0N−硫酸で加水分解(完全
Smith分解)した結果、生成物としてグルコー
ス、グリセリンを検出し、(ii)0.1N−硫酸加水
分解(緩和Smith分解)物を透析し、透析外液
からグリセロールを、内液の加水分解からグル
コースのみを夫々検出された。(i)と(ii)の結果か
ら(1→3)結合とC−6に分枝点を有する構
造のグルカンであることが知られる。 更に前記多糖ポリアルコール及び前記(ii)の透
析内液を前記(8)と同様に処理して相当するアル
ジトールアセテート誘導体に変えてGLC及び
GLC−MS分析した結果第2表を得、この結果
から(1→3)結合の主鎖グルカンに一定間隔
で1個のグルコースが分枝する構造であること
が認められる。
[Formula] That is, (1 → 3) for every 3 bonded glucose residues (1 → 6) at the C-6 position of one of the glucoses in the main chain
It is recognized that the mode of attachment is with branches of the glucose units attached. (9) Smith degradation products and their methylation Smith degradation (Biochemistry Course 4 Chemistry of Carbohydrates (Part 2)
(edited by the Japanese Biochemical Society, P479-495, 1982), the substance of this invention was oxidized with sodium metaperiodate (NaIO 4 ) and then reduced with sodium borohydride (NaBH 4 ) to give a polysaccharide polyalcohol, (i)0.5 ~ Hydrolyzed with 1.0N-sulfuric acid (completely
As a result of (Smith decomposition), glucose and glycerin were detected as products, and (ii) the 0.1N-sulfuric acid hydrolyzate (relaxed Smith decomposition) was dialyzed, and glycerol was obtained from the external dialysis fluid, and only glucose was obtained from the hydrolysis of the internal fluid. were detected respectively. From the results (i) and (ii), it is known that the glucan has a structure having a (1→3) bond and a branch point at C-6. Furthermore, the polysaccharide polyalcohol and the dialysate solution of (ii) above are treated in the same manner as in (8) above to convert them into the corresponding alditol acetate derivatives, and GLC and
Table 2 was obtained as a result of GLC-MS analysis, and from this result, it was recognized that the structure was such that one glucose branched from the main chain glucan with (1→3) bonds at regular intervals.

【表】 (10) β−グルカナーゼ分解生成物 この発明の物質にエキソ型β−(1→3)−D
−グルカナーゼ(Basidiomvcetes sp由来、シ
グマ社製)をPH4.8、37℃、24時間で作用させ、
残留酵素を失活させて反応液をBio−GelP−2
(ポリアクリルアミドゲル)カラムにかけてク
ロマト分離した結果、ゲンチビオース(6−O
−(β−D−グルコピラノシル)−D−グルコピ
ラノース)とグルコースを検出し、他の物質を
検出しなかつたことから、前記(8)、(9)の(1→
3)グルカンがβ型のD−グルコースで、C−
6位点の分枝がβ−型のD−グルコース1個で
あることが知られる。 (11) 13C−核磁気共鳴(NMR)スペクトル分析 この発明の物質を重水素化溶媒としての重ジ
メチルスルフオキシド(DMSO−d6)に溶解
し、JEOL−FX200スペクトルメータにより60
℃で測定した得たスペクトル図を第1図に示
す。スペクトルはフーリエ変換NMRモードで
水素核の完全デカツプリング条件下で操作され
たものである。第1図でδ値86ppm域に認める
3つのピークからなるシグナルS1はβ(1→3)
結合する3個のD−グルコピラノシル残基A,
B,C の夫々C−3位の炭素に帰属し、また68.2ppm
に認めるシグナルS2はβ(1→6)結合を含む
ハイドロオキシメチルC−6位炭素に帰属する
ものである。従つて第1図に現われた2つの特
徴的なシグナルS1,S2から結合構造についてβ
−(1→3)結合するD−グルコース残基3個
ごとにβ(1→6)結合D−グルコース残基1
個の分枝を有するβ−グルカンの構造を知るこ
とができる。 (12) 赤外線吸収スペクトル分析 JASCO IRA−1型分光々度計を用い、この
発明の物質を赤外測定用KBr(粉末)と混合、
常法により錠剤化し測定したスペクトル図を第
2図に示す。第2図において波数878cm-1に認
める吸収(P)はβ−グリコシド結合に特有の
ものでこの発明の物質がβ−グリコシド結合す
るグルコースから構成されるグルカンであるこ
とが知られる。 (13) 呈色反応 呈色反応名 反応色 判定 モーリツシユ反応 紫赤色 陽性 アンスロン硫酸反応 緑色 陽性 フエノール硫酸反応 褐色 陽性 ニンヒドリン反応 発色なし 陰性 ニンヒドリン反応が陰性であることから蛋白
質を含まない糖類から構成される多糖であるこ
とが知られる。 以上の諸理化学的性質の分析結果から、この発
明のβ−D−グルカンは構成糖がβ−D−グルコ
ースで、その結合様式はβ(1→3)結合のD−
グルコース残基3個ごとにC−6位の炭素にβ
(1→6)結合するグルコース残基1個の分枝を
有する構造即ち、
[Table] (10) β-glucanase degradation products The substance of this invention contains exo-type β-(1→3)-D
- Glucanase (derived from Basidiomvcetes sp, manufactured by Sigma) was applied at PH4.8, 37°C for 24 hours,
Deactivate the residual enzyme and transfer the reaction solution to Bio-GelP-2
As a result of chromatographic separation using a (polyacrylamide gel) column, gentibiose (6-O
-(β-D-glucopyranosyl)-D-glucopyranose) and glucose were detected, and no other substances were detected. Therefore, (1→
3) Glucan is β-type D-glucose, and C-
It is known that the branch at the 6th position is one β-type D-glucose. (11) 13 C-Nuclear Magnetic Resonance (NMR) Spectral Analysis The substance of this invention was dissolved in deuterated dimethyl sulfoxide (DMSO-d 6 ) as a deuterated solvent, and 60
The resulting spectrum, measured at 0.degree. C., is shown in FIG. The spectra were operated in Fourier transform NMR mode under conditions of complete decoupling of hydrogen nuclei. In Figure 1, the signal S 1 consisting of three peaks observed in the δ value region of 86 ppm is β (1 → 3)
three D-glucopyranosyl residues A,
B,C are assigned to the carbon at the C-3 position, and 68.2ppm
The signal S 2 observed in is attributed to the hydroxymethyl carbon at the C-6 position, which contains a β (1→6) bond. Therefore, from the two characteristic signals S 1 and S 2 that appeared in Figure 1, β
- (1→6) for every 3 bonded D-glucose residues 1 (1→6) bonded D-glucose residue
The structure of β-glucan, which has several branches, can be known. (12) Infrared absorption spectrum analysis Using a JASCO IRA-1 type spectrometer, the substance of this invention was mixed with KBr (powder) for infrared measurement,
Fig. 2 shows a spectrum diagram obtained by tableting and measuring by a conventional method. In FIG. 2, the absorption (P) observed at a wave number of 878 cm -1 is characteristic of β-glycosidic bonds, and it is known that the substance of the present invention is a glucan composed of glucose having β-glycosidic bonds. (13) Color reaction Color reaction name Reaction color Judgment Moritsch reaction Purple-red positive Anthrone sulfuric acid reaction Green positive Phenol sulfuric acid reaction Brown positive Ninhydrin reaction No color development Negative As the ninhydrin reaction is negative, it is composed of sugars that do not contain protein. It is known to be a polysaccharide. From the above analysis results of various physical and chemical properties, the constituent sugar of the β-D-glucan of the present invention is β-D-glucose, and its binding mode is β (1 → 3) bond D-
β at carbon C-6 for every 3 glucose residues
(1→6) A structure with one branched glucose residue bonded, i.e.,

【式】を繰り 返し単位構造とし、この単位が鎖状に多数結合し
て構成されているβ−D−グルカンであると認め
られ、そしてこの発明のβ−グルカンは後記の実
施例で説明するようにマウスによる実験の結果、
1回当りの投与量がマウス体重27〜30g当り20〜
100μg範囲の少量投与で移植サルコーマ180固形
肉腫の増殖抑制率93〜97%ときわめて高い抗腫瘍
活性を有し、また一時的に大量投与した場合にお
いても極立つた変化は認められないものである。
かような生理活性からこの説明のβ−D−グルカ
ンは薬用としても有用で、腹腔内投与、腫瘍内投
与、静脈内投与のほか経口投与としての適用も可
能な多種形の制がん剤用途を有するものである。
以下実施例によつて更に具体的に説明する。 実施例 1 1容広口ポリエチレンびん40本にならおがく
ずを主体とするおがくず、大豆粕、〓および土壌
の抽出液から調製した培地を詰め、これにマイタ
ケ菌株グリフオラ・フロンドツサ・バル・トカチ
アーナ(微工研菌寄第4979号)を接種し、約60日
間培養栽培して得た完熟マイタケを栽培びんから
取り出し、基底部約3cmを残し、上部を可食部と
して採取した。この重量は約5100gであつた。上
記基底部約3cm長さの部分を集め付着培地等の異
物を除去し、マツト状菌糸塊約410gを得た。こ
れをすすぐ程度に水洗して天日乾燥品とし、小型
粉砕器(サンプルミル、回転数10000r.p.m)にか
けて粉末とした。この粉末の水分は5.2%であつ
た。この粉末65gを水600ml/回、121℃、60分の
条件(オートクレーブ使用)で熱水抽出し、この
操作を7回反復し、遠心分離によつて抽出残渣と
抽出液(洗液を含め)4.8を得た。この抽出液
全量を、約400ml容に減圧濃縮し、これに99%以
上のエチルアルコール400mlを加えて緩く撹拌し、
アルコール不溶画分を沈でんせしめ15000p.m、
10分で遠心分離して沈でんを集め、アセトン・エ
ーテルで乾燥して粉末9.73gを得た。この粉末粗
画分3gを5mg溶質/ml−水の濃度に超音波を併
用して沸騰下で加熱溶解し、冷却後600mlの溶解
液をDEAE−セフアデツクスA25(HCO- 3型)50
mlカラムに300mg溶質/回で通液吸着させ水200
ml/回で溶離し、水溶出画分2000mlを得、これを
セルロースチユーブ(白井松器械製)を用いて脱
塩水中で24時間透析し、透析内液を約100mlに濃
縮し、塩濃度、PHを0.1M Tris−HCl緩衝液PH6.9
に調整し、(腐敗防止のため0.1%NaN3使用)、結
晶α−アミラーゼ(シグマ社)3mgを加え37℃、
24時間処理し、加熱して酵素失活をはかり、反応
液を更に24時間脱塩水中で透析にかけ、透析内液
を100ml容に減圧濃縮した後、15000r.p.m、15分
で遠心分離して得た上澄液に99%以上のエチルア
ルコール150mlを加え生成した沈でんを遠心分離
によつて集めアセトン・エーテルで十分に乾燥し
て殆んど白色の粉末460mgを得た。この粉末は第
3表にまとめる理化学的性質を示し、この発明の
β−D−グルカンである。 実施例 2 実施例1で得た熱水抽出残渣に尿素5%を含む
10%苛性ソーダ溶液600ml/回を加え、4℃、20
時間の条件で抽出する操作を3回反復し、遠心分
離によつて抽出残渣と抽出液(洗液を含め)約2
を得た。この抽出液を濃酢酸で中和した後
viskingセルロースチユーブを用いて流水中で8
日間透析し、透析内液を15000r.p.m10分で遠心分
離して得た上澄液を約400ml容に濃縮し、これに
99%以上のエチルアルコール400mlを加えてアル
コール不溶画分を沈でんせしめ15000r.p.m、10分
で遠心分離して沈でんを集めアセトン・エーテル
で乾燥して粉末(粗画分)4.07gを得た。 上記粉末3gを実施例1と同様にDEAE−セフア
デツクスA25カラム処理して得た水溶画出分2000
mlを前記セルロースチユーブを用いて脱塩水中で
24時間透析して得た内液を100ml容に減圧濃縮し、
遠沈によつて得た上澄液99%以上のエチルアルコ
ール150mlを加え生成した沈でんを遠心分離によ
り集めアセトン・エーテルで十分乾燥し殆んど白
色の粉末450mgを得た。この粉末は第3表にまと
める理化学的性質を示し、この発明のβ−D−グ
ルカンである。 実施例 3 実施例2で得た低温アルカリ抽出残渣に尿素5
%を含む10%苛性ソーダ溶液600mlを加え65℃、
60分で熱アルカリ抽出を行い抽出液(洗液を含
め)800mlを得た。この抽出液を冷却後濃酢酸で
中和した後実施例2と同様に処理して粉末(粗画
分)2.88gを得た。この粉末全量を実施例2と同
様に処理して殆んど白色の粉末460mgを得た。こ
の粉末は第3表にまとめる理化学的性質を示し、
この発明のβ−D−グルカンである。
[Formula] is a repeating unit structure, and it is recognized that this unit is a β-D-glucan composed of a large number of linked units, and the β-glucan of this invention is as explained in the examples below. As a result of experiments using mice,
Dosage per dose: 20 to 30 g per mouse body weight
It has extremely high antitumor activity with a 93-97% growth inhibition rate for transplanted Sarcoma 180 solid sarcoma when administered in small doses in the 100 μg range, and no significant changes are observed even when temporarily administered in large doses. .
Because of its physiological activity, the β-D-glucan described above is also useful as a medicinal agent, and can be used as an anticancer drug in a variety of ways, including intraperitoneal administration, intratumoral administration, intravenous administration, and oral administration. It has the following.
This will be explained in more detail below using Examples. Example 1 Forty 1-volume wide-mouth polyethylene bottles were filled with a medium prepared from sawdust, soybean meal, soybean meal, and soil extract, and the maitake fungus strain Glyfuora frondotsa bal tocatiana (Feikoken The mature maitake mushrooms were inoculated with Mycobacterium no. 4979) and cultured for about 60 days. The mature maitake mushrooms were removed from the cultivation bottle, leaving about 3 cm of the base, and the upper part was collected as the edible part. This weight was approximately 5100g. A portion approximately 3 cm long at the base was collected and foreign substances such as attached medium were removed to obtain approximately 410 g of a pine-like mycelium mass. This was washed with water to the extent of rinsing, dried in the sun, and then ground in a small pulverizer (sample mill, rotation speed: 10,000 rpm) to form a powder. The moisture content of this powder was 5.2%. 65 g of this powder was extracted with hot water using 600 ml of water/time at 121°C for 60 minutes (using an autoclave). This operation was repeated 7 times, and the extraction residue and extract liquid (including washing liquid) were separated by centrifugation. Got 4.8. The entire amount of this extract was concentrated under reduced pressure to a volume of about 400 ml, and 400 ml of ethyl alcohol of 99% or higher was added thereto and gently stirred.
Precipitate the alcohol-insoluble fraction at 15,000 p.m.
The precipitate was collected by centrifugation for 10 minutes and dried with acetone/ether to obtain 9.73 g of powder. 3 g of this powder crude fraction was dissolved by heating under boiling using ultrasonic waves to a concentration of 5 mg solute/ml water, and after cooling, 600 ml of the solution was dissolved in DEAE-Sephadex A25 (HCO - type 3 ) 50
Pass 300 mg of solute/time through a ml column and adsorb it with 200 mg of water.
ml/time to obtain 2000 ml of water elution fraction, which was dialyzed in demineralized water for 24 hours using a cellulose tube (manufactured by Shiraimatsu Kikai).The dialyzed solution was concentrated to about 100 ml, and the salt concentration, PH 0.1M Tris-HCl buffer PH6.9
(use 0.1% NaN3 to prevent spoilage), add 3 mg of crystalline α-amylase (Sigma), and heat at 37°C.
The reaction solution was treated for 24 hours, heated to inactivate the enzyme, dialyzed in demineralized water for another 24 hours, concentrated the dialyzed solution under reduced pressure to a volume of 100 ml, and centrifuged at 15,000 rpm for 15 minutes. 150 ml of 99% or higher ethyl alcohol was added to the obtained supernatant, and the resulting precipitate was collected by centrifugation and thoroughly dried with acetone/ether to obtain 460 mg of an almost white powder. This powder exhibits the physicochemical properties summarized in Table 3 and is the β-D-glucan of the present invention. Example 2 The hot water extraction residue obtained in Example 1 contains 5% urea.
Add 10% caustic soda solution 600ml/time, 4℃, 20
The extraction operation was repeated three times under different conditions, and the extraction residue and extract liquid (including washing liquid) were separated by centrifugation.
I got it. After neutralizing this extract with concentrated acetic acid
8 in running water using visking cellulose tubes
Dialysis was carried out for several days, and the dialysis fluid was centrifuged at 15,000 r.p.m for 10 minutes. The supernatant obtained was concentrated to a volume of about 400 ml, and
The alcohol-insoluble fraction was precipitated by adding 400 ml of 99% or more ethyl alcohol, centrifuged at 15,000 rpm for 10 minutes, the precipitate was collected, and dried with acetone/ether to obtain 4.07 g of powder (crude fraction). Aqueous fraction 2000 obtained by treating 3 g of the above powder with DEAE-Sephadex A25 column in the same manner as in Example 1
ml in demineralized water using cellulose tubes.
The internal solution obtained by dialysis for 24 hours was concentrated under reduced pressure to a volume of 100 ml.
150 ml of 99% or more ethyl alcohol was added to the supernatant obtained by centrifugation, and the resulting precipitate was collected by centrifugation and sufficiently dried with acetone/ether to obtain 450 mg of an almost white powder. This powder exhibits the physicochemical properties summarized in Table 3 and is the β-D-glucan of the present invention. Example 3 Urea 5 was added to the low-temperature alkaline extraction residue obtained in Example 2.
Add 600 ml of 10% caustic soda solution containing 65°C.
Hot alkaline extraction was performed for 60 minutes to obtain 800 ml of extract (including washing liquid). This extract was cooled, neutralized with concentrated acetic acid, and treated in the same manner as in Example 2 to obtain 2.88 g of powder (crude fraction). The entire amount of this powder was treated in the same manner as in Example 2 to obtain 460 mg of almost white powder. This powder shows the physical and chemical properties summarized in Table 3,
It is the β-D-glucan of this invention.

【表】【table】

【表】 実施例 4 この発明のグルカンの一つである実施例2で得
たグルカンについてマウスを検体として毒性並び
に抗腫瘍活性を試験した。 (1) 大量投与による体重変化 ICR系統6週令のマウス(雄、体重27〜30g)
を未処理群(6匹)、腹腔内投与群(5匹)、静
脈内投与群(5匹)、経口投与群(5匹)に分
け経口投与量6mg/マウス、その他の投与量を
1mg/マウス及び3mg/マウスとして一時に投
与し、投与後10日間の体重変化を観測した結果
は第4表に示すように全体として極立つた変化
は認められない。
[Table] Example 4 The glucan obtained in Example 2, which is one of the glucans of the present invention, was tested for toxicity and antitumor activity using mice as specimens. (1) Body weight change due to large dose ICR mouse, 6 weeks old (male, weight 27-30g)
was divided into an untreated group (6 mice), an intraperitoneal administration group (5 mice), an intravenous administration group (5 mice), and an oral administration group (5 mice).The oral dose was 6 mg/mouse, and the other doses were 1 mg/mouse. The product was administered to mice at a dose of 3 mg/mouse, and body weight changes were observed for 10 days after administration. As shown in Table 4, no significant changes were observed overall.

【表】【table】

【表】 (2) 抗腫瘍活性 この発明のグルカンとその過程で得る粗画分
について試験した。 ICR−系統7週令のマウス(雄、体重27〜
30g)を検体とし、このマウスの右そけい部に
サルコーマ180固形肉腫細胞5×106個/マウス
で移植し、その翌日から1回/1日の投与スケ
ジユールで試験量を連日10日投与し、1週間ご
とに肉腫の大きさ(最大径×最小径mm2)を測定
し、また35日目に摘出した肉腫重量を測定して
増殖抑制率、完全退縮を調査した。これらの結
果を第3図及び第5表に示す。
[Table] (2) Antitumor activity The glucan of this invention and the crude fraction obtained in the process were tested. ICR-strain 7-week-old mice (male, weight 27~
Sarcoma 180 solid sarcoma cells (5 x 106 cells/mouse) were transplanted into the right inguinal region of the mouse, and the test amount was administered every day for 10 days from the next day on a once/day dosing schedule. The size of the sarcoma (maximum diameter x minimum diameter mm 2 ) was measured every week, and the weight of the sarcoma removed on the 35th day was measured to investigate the growth inhibition rate and complete regression. These results are shown in FIG. 3 and Table 5.

【表】【table】

【表】【table】 【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の物質の 13C−核磁気共鳴
(NMR)スペクトルであり、第2図は同物質の
赤外吸収スペクトルを示す。また第3図は同物質
の抗腫瘍活性の一例を説明するグラフで、同物質
及びその粗画分の投与によるマウスに移植したサ
ルコーマ180の経時による消長の様子を示すもの
である。第3図に示す(イ)〜(ト)の意味は次の表に示
す通りである。
FIG. 1 shows the 13 C-nuclear magnetic resonance (NMR) spectrum of the substance of the present invention, and FIG. 2 shows the infrared absorption spectrum of the same substance. FIG. 3 is a graph illustrating an example of the antitumor activity of the same substance, and shows the progress over time of Sarcoma 180 transplanted into mice by administration of the same substance and its crude fraction. The meanings of (a) to (g) shown in FIG. 3 are as shown in the following table.

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】 1 マイタケ菌株グリフオラ・フロンドツサ・バ
ル・トカチアーナの培養子実体のマツト状菌糸塊
の抽出にて得られる下記理化学的性質を有するβ
−1,3結合を主鎖とし、該β−1,3結合グル
コース残基3個ごとにβ−1,6結合グルコース
1個を分枝する構造を繰り返し単位とすることを
特徴とするβ−D−グルカン。 (イ) 元素分析値 C 41.0〜44.2% H 6.9〜 7.3% N 定量限界値以下 (ロ) 分子量(ゲル過法)50〜150万 (ハ) 融点 約230℃で分解 (ニ) 比旋光度〔α〕20 D=+5〜+10(C=0.1、
H2O) (ホ) 赤外線吸収スペクトル(kBr錠剤法) 第2図に示す。 (ヘ) 13C−NMRスペクトル 第1図に示す。 (ト) 溶剤に対する溶解性 アルカリ、水、ジメチルスルフオキシドに易
溶、酸にはやや難溶、エチルアルコール、メチ
ルアルコール、エーテル、アセトン等有機溶剤
に不溶 (チ) 呈色反応 モーリツシユ反応、アンスロン硫酸反応、フ
エノール硫酸反応いずれも陽性、ニンヒドリン
反応陰性 (リ) 塩基性、酸性、中性の区別 1%水溶液は微酸性ないし中性(PH6〜7) (ヌ) 物質の色及び形状 殆ど白色の粉末体。
[Scope of Claims] 1 β having the following physicochemical properties obtained by extraction of the pine-like mycelial mass of the cultured fruiting body of the Maitake strain Glyfuora frondotsa bal tocatiana.
β- characterized in that the main chain is a β-1,3 bond, and the repeating unit is a structure in which one β-1,6-linked glucose is branched for every three β-1,3-linked glucose residues. D-glucan. (a) Elemental analysis values C 41.0-44.2% H 6.9-7.3% N Below the quantification limit (b) Molecular weight (gel filtration method) 500,000-1,500,000 (c) Melting point Decomposes at approximately 230°C (d) Specific optical rotation [ α〕 20 D = +5 to +10 (C = 0.1,
H 2 O) (e) Infrared absorption spectrum (kBr tablet method) Shown in Figure 2. (f) 13 C-NMR spectrum shown in Figure 1. (g) Solubility in solvents Easily soluble in alkalis, water, and dimethyl sulfoxide, slightly soluble in acids, insoluble in organic solvents such as ethyl alcohol, methyl alcohol, ether, and acetone (h) Color reaction Moritsch reaction, Anthrone Both sulfuric acid reaction and phenol sulfuric acid reaction are positive, ninhydrin reaction is negative (li) Distinction between basic, acidic and neutral 1% aqueous solution is slightly acidic to neutral (PH6-7) (n) Color and shape of substance Almost white Powder body.
JP59108480A 1984-05-30 1984-05-30 Beta-d-glucan Granted JPS60255733A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59108480A JPS60255733A (en) 1984-05-30 1984-05-30 Beta-d-glucan

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59108480A JPS60255733A (en) 1984-05-30 1984-05-30 Beta-d-glucan

Publications (2)

Publication Number Publication Date
JPS60255733A JPS60255733A (en) 1985-12-17
JPH0248161B2 true JPH0248161B2 (en) 1990-10-24

Family

ID=14485818

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59108480A Granted JPS60255733A (en) 1984-05-30 1984-05-30 Beta-d-glucan

Country Status (1)

Country Link
JP (1) JPS60255733A (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0692441B2 (en) * 1986-03-03 1994-11-16 株式会社林原生物化学研究所 β-D-glucan, production method and use thereof
JPS63307825A (en) * 1987-06-08 1988-12-15 Nippon Beet Sugar Mfg Co Ltd Antitumor agent and production thereof
JP2753935B2 (en) * 1993-04-30 1998-05-20 株式会社雪国まいたけ Method for producing immunosuppressant
JP2732008B2 (en) * 1993-04-30 1998-03-25 株式会社雪国まいたけ Method for producing hair growth promoter
US5519009A (en) * 1993-10-01 1996-05-21 Donzis; Byron A. Solubilized yeast glucan
JP2859843B2 (en) * 1996-03-08 1999-02-24 株式会社雪国まいたけ Antitumor substance extracted from Maitake
US6866875B2 (en) 2001-09-26 2005-03-15 Tampa Bay Research Institute Pine cone extracts and uses thereof
US7838046B2 (en) 2001-09-26 2010-11-23 Tampa Bay Research Institute Plant extracts and uses thereof
CN103059160B (en) * 2011-10-20 2015-12-02 中国科学院上海药物研究所 Beta-glucan GFPBW1 and its production and use
CN103304680B (en) * 2012-03-09 2017-02-08 中国科学院上海药物研究所 Beta-glucan, and extraction method and application thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5461112A (en) * 1977-10-24 1979-05-17 Ono Pharmaceut Co Ltd Oncostatic polysaccharide* its preparation* and oncostatic drugs containing it as an effective component
JPS5836395A (en) * 1981-08-26 1983-03-03 Nippon Beet Sugar Mfg Co Ltd Preparation of polysaccharide
JPS59210901A (en) * 1983-05-17 1984-11-29 Nippon Kinoko Kenkyusho Glucan having beta-1,6 bond-containing main chain, obtained from maitake and antineoplastic agent comprising same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5461112A (en) * 1977-10-24 1979-05-17 Ono Pharmaceut Co Ltd Oncostatic polysaccharide* its preparation* and oncostatic drugs containing it as an effective component
JPS5836395A (en) * 1981-08-26 1983-03-03 Nippon Beet Sugar Mfg Co Ltd Preparation of polysaccharide
JPS59210901A (en) * 1983-05-17 1984-11-29 Nippon Kinoko Kenkyusho Glucan having beta-1,6 bond-containing main chain, obtained from maitake and antineoplastic agent comprising same

Also Published As

Publication number Publication date
JPS60255733A (en) 1985-12-17

Similar Documents

Publication Publication Date Title
Ohno et al. Antitumor activity and structural characterization of glucans extracted from cultured fruit bodies of Grifola frondosa
US4225673A (en) Method of preparing glucan having antitumor activity
EP0733647B1 (en) Polysaccharides and preparation thereof
JP5102435B2 (en) Chitosan-containing polysaccharide, its production method and use
Misaki et al. Structure of pestalotan, a highly branched (1→ 3)-β-D-glucan elaborated by Pestalotia sp. 815, and the enhancement of its antitumor activity by polyol modification of the side chains
CN111978421B (en) Phellinus igniarius polysaccharide and preparation and application thereof
Zevenhuizen et al. Structure of the insoluble hyphal wall glucan of Phytophthora cinnamomi
JPH0248161B2 (en)
CN110283255A (en) A kind of preparation method and application of modified Morchella esculenta (L.) Pers polysaccharide
Yaghmaei et al. Production of chitosan by submerged fermentation from Aspergillus niger
US4398023A (en) β-1,3-Glucanpolyol, process for preparation thereof, and utilization thereof
US4614733A (en) Polysaccharides pharmaceutical compositions and the use thereof
KR870001930B1 (en) Preparation method of polysaccharides,ron
Bhanja et al. Structural analysis of two bioactive components of an edible mushroom, Termitomyces microcarpus
JPH026761B2 (en)
Fujisue et al. Preparation and antioxidative activity of 1, 5-anhydrofructose
Kooiman The chemical structure of the extracellular “starch” produced by Cryptococcus albidus and C. laurentii var. flavescens
NANBA et al. The chemical structure of an antitumor polysaccharide in mycelia of Cochliobolus miyabeanus
CN111285940A (en) Method for extracting and purifying dendrobium huoshanense active polysaccharide
CA1086720A (en) Polysaccharides and process for the preparation thereof
JPH07238031A (en) Antihyperglycemic agent
JPH05117304A (en) Water-soluble polysaccharide originating from yamabushitake (fungus) and antitumor agent mainly containing the same
JPS60199001A (en) Antitumor polysaccharide derivative
SU961565A3 (en) Process for producing mucopolysaccharides
JPH01275602A (en) Polysaccharide and manufacture thereof