JPS63307825A - Antitumor agent and production thereof - Google Patents

Antitumor agent and production thereof

Info

Publication number
JPS63307825A
JPS63307825A JP14157387A JP14157387A JPS63307825A JP S63307825 A JPS63307825 A JP S63307825A JP 14157387 A JP14157387 A JP 14157387A JP 14157387 A JP14157387 A JP 14157387A JP S63307825 A JPS63307825 A JP S63307825A
Authority
JP
Japan
Prior art keywords
antitumor
polysaccharide
agent
chemotherapeutic agent
main chain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14157387A
Other languages
Japanese (ja)
Inventor
Naohito Ono
尚仁 大野
Toshirou Shiyukumae
宿前 利郎
Shozo Oikawa
及川 昭藏
Yoshiro Sato
吉朗 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Beet Sugar Manufacturing Co Ltd
Original Assignee
Nippon Beet Sugar Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Beet Sugar Manufacturing Co Ltd filed Critical Nippon Beet Sugar Manufacturing Co Ltd
Priority to JP14157387A priority Critical patent/JPS63307825A/en
Publication of JPS63307825A publication Critical patent/JPS63307825A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an antitumor agent having excellent effects free from side effects, consisting of a combined material of a polysaccharide of antitumor activity, having beta-1,3 bond glucan as a main chain, comprising repeating units of the main chain under a specific condition, and an anti-cancer chemotherapeutic agent, as an active ingredient. CONSTITUTION:An antitumor agent containing a combined material of a polysaccharide having antitumor activity, which has action function to bring about multiplication inhibition and destruction of tumor cell by activating immunological function of host, and a chemotherapeutic agent which directly acts on tumor cell to inhibit multiplying function of cell and has side effects to have bad influence on normal cell, as an active ingredient. This method not only extremely alleviates cytotoxicity of the chemotherapeutic agent by combination of the medicinal effects of both the agents is used, side effects are relived and frequent administration is made possible since the chemotherapeutic agent can be reduced in organism.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は抗腫瘍剤に係り、抗腫瘍活性を有するβ−1
,3結合グルカンを主鎖とし、主鎖のグルコース残基3
ヶ当りβ−1,6結合グルコース1ヶを分枝する構造の
多糖と抗癌化学療法剤の結合体に関する。
Detailed Description of the Invention (Industrial Field of Application) The present invention relates to antitumor agents, and
, 3-bonded glucan as the main chain, and 3 glucose residues in the main chain
The present invention relates to a conjugate of a polysaccharide having a structure in which one β-1,6-linked glucose is branched per month and an anticancer chemotherapeutic agent.

(従来の技術) 従来から主に担子菌に由来し、グルコースのみを構成糖
とする多糖が数多く知られており、これら多糖のある種
のものには抗腫瘍活性のあることも報告され・ている1
例えばシイタケやスエヒロタケより得られた多糖は抗癌
剤として臨床に供されており5坑癌化学療法剤との併用
あるいはその他の物理療法との組合せで用いられている
(Prior art) Many polysaccharides have been known that are mainly derived from basidiomycetes and have glucose as their only constituent sugar, and it has also been reported that some of these polysaccharides have antitumor activity. There is 1
For example, polysaccharides obtained from Shiitake mushrooms and Suehirotake mushrooms are clinically used as anticancer agents, and are used in combination with anticancer chemotherapeutic agents or other physical therapy.

(発明が解決しようとする問題点) 抗癌化学療法剤は癌治療薬としてすぐれた薬剤と認めら
れているが、その作用機作が直接細胞阻害であるため、
目的とする癌細胞のみならず正常細胞をも阻害して重要
な副作用を併発する不都合があり、さらに、化学療法剤
は微生物における薬剤耐性と類似の現象として耐性化さ
れた癌細胞を生み出し、癌完治を困難としている。
(Problems to be Solved by the Invention) Anticancer chemotherapeutic agents are recognized as excellent cancer treatment drugs, but their mechanism of action is direct cell inhibition;
Chemotherapeutic agents have the disadvantage of inhibiting not only the target cancer cells but also normal cells, causing important side effects.Furthermore, chemotherapeutic agents produce resistant cancer cells, a phenomenon similar to drug resistance in microorganisms, and can cause cancer. It is difficult to fully recover.

かかることから、抗癌化学療法剤の細胞毒性を緩和する
べく種々研究がなされているが本だ満足できぬ状況にあ
り、耐性化細胞に対しては構造上交叉耐性を示さない薬
剤を用いることにより切り抜けようとする試みもなされ
ているものの延命を助けるにとどまり完治させるまでに
は至っていない、前記のように、抗腫瘍活性多糖を化学
療法剤に併用し、免疫機能を高めることにより完治をめ
ざす療法は臨床上いくらかの効果を示してはいるものの
未だ満足できる形での問題解決には結びついていない。
For this reason, various studies have been carried out to alleviate the cytotoxicity of anticancer chemotherapeutic agents, but the situation remains unsatisfactory.Therefore, it is necessary to use drugs that do not structurally exhibit cross-resistance to resistant cells. Attempts have been made to overcome this condition, but they have only helped prolong life, but have not resulted in a complete cure.As mentioned above, attempts are being made to achieve a complete cure by using anti-tumor-active polysaccharides in combination with chemotherapeutic agents to enhance immune function. Although therapy has shown some clinical efficacy, it has not yet led to a satisfactory solution to the problem.

抗体の利用や態形変更による癌への薬物の特異的移行や
徐放効果による11作用の軽減、さらには温熱療法や放
射線療法等の物理療法を利用した所謂集約的治療法を使
っても未だ死亡率をそれほど下げるには至っていない現
状にあり、よりすぐれた抗腫瘍剤の出現が望まれている
Even with the use of antibodies, the specific transfer of drugs to cancer by morphological changes, the reduction of 11 effects through sustained release effects, and the use of so-called intensive treatment methods that utilize physical therapy such as hyperthermia and radiation therapy, there is still no cure. At present, the mortality rate has not been reduced significantly, and the emergence of better antitumor agents is desired.

(問題点を解決するための手段) この発明は、抗癌化学療法剤の薬効を低下させることな
く、細胞毒性を緩和した抗腫瘍剤について鋭意研究した
結果グルコースを構成糖とする。
(Means for Solving the Problems) The present invention uses glucose as a constituent sugar as a result of intensive research into antitumor agents that have alleviated cytotoxicity without reducing the efficacy of anticancer chemotherapeutic agents.

β−1,3結合グルカンを主鎖とし、この主鎖のグルコ
ース残基3ヶ当りβ−1,6結合グルコース1ヶを分枝
する構造を繰り返し単位とする抗II4瘍活性多糖と抗
癌化学療法剤を化学的に結合せしめた結合体が化学療法
剤の薬効を低下させることなく徐放化をもたらし、これ
により細胞毒性を緩和し更には多糖の抗腫瘍活性と相俟
って薬効を相乗的に高めることを知り、この知見に基づ
き、この発明を完成させた。
Anti-II4 tumor-active polysaccharide and anticancer chemistry with a repeating unit consisting of β-1,3-linked glucan as the main chain and one β-1,6-linked glucose branch for every three glucose residues in the main chain. A conjugate that chemically binds a therapeutic agent provides sustained release without reducing the efficacy of the chemotherapeutic agent, thereby alleviating cytotoxicity and synergizing the efficacy of the drug in conjunction with the antitumor activity of the polysaccharide. Based on this knowledge, they completed this invention.

(作  用  ) この発明に用いるβ−1,3結合グルカンな主鎖とし、
この主鎖のグルコース残基3ヶ当りβ−1゜6結合グル
コースlケを分枝する構造を繰り返し単位とする抗腫瘍
活性多糖は例えば担子菌を利用することによって得るこ
とができ、例えばm子菌であるきのこ菌を培養して得る
子実体や菌糸体の熱水抽出あるいはアルカリ溶液による
抽出液から、あるいはまた前記きのこ菌の液体培養濾液
からアルコール等の糖不溶性有機溶媒による沈でん法に
よって得ることができ、更にほこの発明者らの開発にな
る担子菌の培a菌糸体を糖質に接触させることにより、
はとんど純粋な形で得ることができるものであるが、特
にこれらに限定されるものではなく、上記のように説明
する多Mlli造と抗腫瘍活性を有するものであればい
ずれのものを用いてもよく、もう一方の有効成分となる
抗癌化学療法剤も特別なものではなく広く投薬に供され
ている例えばメルフアラン、 ACNIJ等のアルキル
化削、サイトシンアラビノシド、メソトレキセート等の
代謝拮抗剤、マイトマイシンC,アドリアマイシン、塩
酸ダウノルビシン等の制癌性抗生物質を挙げることがで
きる。上記抗腫瘍活性多糖は、多くの免疫学的研究によ
り、その作用機作が宿主の免疫機能を活性化することに
より、腫瘍細胞の増殖抑Iljや破壊をもたらすことが
知られている。
(Function) The main chain of β-1,3-linked glucan used in this invention is
An antitumor-active polysaccharide whose repeating unit is a structure in which one β-1°6-linked glucose is branched per three glucose residues in the main chain can be obtained, for example, by using basidiomycetes; Obtained from hot water extraction or alkaline solution extraction of fruiting bodies and mycelium obtained by culturing a mushroom fungus, or from a liquid culture filtrate of the mushroom fungus by a precipitation method with a sugar-insoluble organic solvent such as alcohol. Furthermore, by contacting the basidiomycete culture a mycelium developed by the inventors of Hoko with carbohydrates,
can be obtained in almost pure form, but it is not particularly limited to these, and any substance that has multi-Milli structure and antitumor activity as explained above can be used. The other active ingredient, an anticancer chemotherapeutic agent, is not special and is widely used, such as alkylation agents such as melphalan and ACNIJ, and antimetabolites such as cytosin arabinoside and methotrexate. Anticancer antibiotics such as mitomycin C, adriamycin, and daunorubicin hydrochloride can be mentioned. It has been known from numerous immunological studies that the antitumor-active polysaccharide has a mechanism of action that activates the immune function of the host, thereby inhibiting the proliferation or destroying tumor cells.

一方、化学療法剤は腫瘍細胞に直接作用して細胞の増殖
機能を阻害するため、腫瘍細胞のみならず、正常細胞を
阻害するので、これによる重要な副作用のあることが知
られる。
On the other hand, since chemotherapeutic agents directly act on tumor cells and inhibit their proliferation function, they inhibit not only tumor cells but also normal cells, which is known to have important side effects.

この発明は以上のような両薬剤の薬効をふまえ、これを
化学的に結合せしめたところ、意外にも結合により化学
療法剤の細胞毒性が顕著に緩和するばかりではなく抗I
l!I!瘍効果が増強されることが知れた。
In this invention, based on the medicinal effects of both drugs as described above, by chemically bonding them, surprisingly, the bond not only significantly alleviated the cytotoxicity of the chemotherapeutic drug, but also increased the anti-I.
l! I! It was found that the tumor effect was enhanced.

この発明はかかる知見に基づいてなされたもので、以下
これにつき説明する。
This invention was made based on this knowledge, and will be explained below.

いま、この発明の抗腫瘍剤の一方の成分である抗腫瘍活
性多糖を担子菌サルノコシカケ科に属するマイタケ菌糸
を利用して得、これに他の結合成分である抗癌化学療法
剤を化学的に結合せしめる。予め培養により増殖したマ
イタケ菌糸を糖質のみ(例えばグルコース)を含む酸性
(PH約4)水溶液に添加し、20〜30℃で2〜8日
間通気撹拌下で接触反応せしめた後菌糸を適当な手段例
えば布を用いた遠心分離で除去した後の分離液に糖不溶
性のアルコール等の有機溶媒を加えると生成した多糖が
沈でんとなって析出するので、この沈でんを分離し、必
要な場合には再度溶解、溶媒沈でんを行なった後得た沈
でんを尿素溶液に溶かしカラムクロマト処理にかけて流
出液の中性画分を採取し、チューブ透析で脱塩、低分子
成分を除去した内液にアルコールを加えて沈でん生成せ
しめこれを分離して例えば凍結乾燥により乾燥すると白
色綿状の多糖を得る。この多糖はβ−1,3結合する主
鎖グルコース残基3ヶ当りβ−1,6結合グルコースl
ケを分枝する構造を繰り返し単位とする多糖で、ICR
−系マウスに移植した実験症サルコーマ180(固形)
細胞の増殖抑制に対し、強い活性を示し、この発明で使
用できる抗腫瘍活性多糖(以下単に「多糖」という、)
である、ここで得た多糖と抗癌化学療法剤の結合は、両
者の化学的に結合可能な反応基を考慮し、この反応に要
する結合助剤(例えば縮合剤や架橋剤など)の存在下で
行なう、多糖はグルコースのみを構成糖とするから結合
に関与する反応基はハイドロキシル基で、直接結合可能
な化学療法剤は遊離のカルボキシル基を持つ例えばメル
フアラン(アルキル化M)、メソトレキセート(代謝拮
抗剤)が挙げられ、エステル結合により容易に結合させ
ることができる、反応基としてハイドロキシル基やアミ
ノ基を持つ化学療法剤の結合は、二官能基を有する例え
ばグルタルアルデヒドやジエチルマロンイミデート等の
架橋剤を用いて結合せしめるか、或は多糖にカルボキシ
ル基やアミノ基を化学修飾により導入させることにより
結合させることができる。多糖にカルボキシル基を導入
する方法は種々考えられるが、例えば炭素数1〜5範囲
のモノクロロあるいはモノブロモ脂肪族カルボン酸を作
用させることにより、カルボキシアルキル(−CH,−
(C1lオ)、、−COOt(、n = 0〜4)を導
入することができる。かくして遊離のカルボキシル基を
持った多糖は遊離のアミノ基を持つメルフアラン、AC
NU(アルキル化剤)、シタラビン、メソトレキセート
(代謝拮抗剤)、アクナノマイシン。マイトマイシンC
1塩酸プレオマイシン、塩酸ダウノビルシン、アドリア
マイシン(制癌性抗生物質)と結合させることができる
。また、多糖にアミノ基を導入するに)を作用させて後
アンモニアを添加することにより、炭素数3の脂肪族ア
ミンが導入される。かくして遊離アミノ基を持った多糖
は遊離のカルボキシル基を持つ化学療法剤例えばメルフ
アラン(アルキル化剤)、メソトレキセート(代謝拮抗
剤)と結合させることができる。また、多糖を部分分解
することによってカルボキシル基を導入することもでき
、例えば多糖を過ヨウ素酸塩で処理するとβ−1,6結
合グルコース(分枝グルコース)のピラノース環を構成
する炭素番号第2位〜第4位間の結合が開裂し開裂木端
にアルデヒドを形成するので、これを酸化してカルボキ
シル基に変えることができる。
Now, an antitumor-active polysaccharide, which is one component of the antitumor agent of this invention, is obtained using Maitake mycelium, which belongs to the Basidiomycete family, and the other binding component, an anticancer chemotherapeutic agent, is chemically added to this polysaccharide. to combine. Maitake mycelium grown in advance by culture is added to an acidic (pH about 4) aqueous solution containing only carbohydrates (e.g. glucose), and a contact reaction is carried out at 20 to 30°C for 2 to 8 days with aeration and stirring. Means: For example, when an organic solvent such as a sugar-insoluble alcohol is added to the separated solution after centrifugation using a cloth, the polysaccharide produced will precipitate out, so this precipitate can be separated, and if necessary, After redissolution and solvent precipitation, the resulting precipitate was dissolved in a urea solution and subjected to column chromatography to collect the neutral fraction of the effluent, desalted by tube dialysis, and alcohol was added to the inner solution from which low molecular components had been removed. A precipitate is formed, which is separated and dried, for example by freeze-drying, to obtain a white flocculent polysaccharide. This polysaccharide consists of 1 β-1,6-linked glucose per 3 β-1,3-linked glucose residues in the main chain.
ICR is a polysaccharide whose repeating unit is a branched structure.
- Experimental Sarcoma 180 (solid) transplanted into mice
Antitumor active polysaccharides (hereinafter simply referred to as "polysaccharides") that exhibit strong activity in suppressing cell proliferation and can be used in this invention
The binding of the polysaccharide obtained here and the anticancer chemotherapeutic agent takes into account the chemically bondable reactive groups of both, and the presence of binding aids (e.g. condensing agents, cross-linking agents, etc.) required for this reaction. As explained below, since polysaccharide has glucose as its only constituent sugar, the reactive group involved in the bonding is a hydroxyl group, and chemotherapeutic agents that can be directly bonded have a free carboxyl group, such as melphalan (alkylated M), methotrexate ( The bonding of chemotherapeutic agents that have a hydroxyl group or amino group as a reactive group, which can be easily bonded by an ester bond, can be done using a difunctional group such as glutaraldehyde or diethylmalonimidate. The bonding can be carried out using a crosslinking agent such as, or by introducing a carboxyl group or an amino group into the polysaccharide by chemical modification. Various methods can be considered for introducing carboxyl groups into polysaccharides, but for example, by reacting with a monochloro or monobromo aliphatic carboxylic acid having 1 to 5 carbon atoms, carboxyalkyl (-CH,-
(C1lO), -COOt (, n = 0 to 4) can be introduced. Thus, polysaccharides with free carboxyl groups include melphalan, AC, which has free amino groups.
NU (alkylating agent), cytarabine, methotrexate (antimetabolite), acnanomycin. Mitomycin C
It can be combined with pleomycin monohydrochloride, daunovircin hydrochloride, and adriamycin (anticancer antibiotic). In addition, an aliphatic amine having 3 carbon atoms can be introduced by adding ammonia after the reaction (in order to introduce an amino group into a polysaccharide). Thus, polysaccharides with free amino groups can be conjugated with chemotherapeutic agents with free carboxyl groups, such as melphalan (alkylating agent), methotrexate (antimetabolite). Carboxyl groups can also be introduced by partially decomposing polysaccharides; for example, when polysaccharides are treated with periodate, the carbon number 2 of the pyranose ring of β-1,6-linked glucose (branched glucose) can be introduced. The bond between the positions 1 to 4 is cleaved to form an aldehyde at the end of the cleavage, which can be oxidized and converted into a carboxyl group.

上記の如く、多糖を化学療法剤と化学的に結合せしめる
ことは、多糖を原形のま\5あるいは化学修飾により遊
離の反応基を導入することによって行ないつるが、化学
修飾により多糖の抗腫瘍活性が低下することは好ましく
ない。これについて検討した結果、反応基導入の度合(
グルコース残基当り導入された反応基のパーセントで示
し、これを置換率という、)によって抗腫瘍活性が影響
をうけることが知れた。すなわち、多糖にモノクロロ酢
酸を作用させて置換率25%及び50%のカルボキシメ
チル化多糖を調製し、これをサルコーマ 180(固形
)細胞を移植したマウスに投与したときの夫々の抑止傾
向は第1表に示す如きで、置換率25%では無修飾の活
性の約71%を保持しているが、50%では約30%ま
で低下する。このことから、化学修飾による反応基の置
換率を20%〜30%の範囲とすることが必要となる。
As mentioned above, chemically binding a polysaccharide with a chemotherapeutic agent can be carried out by introducing a free reactive group into the polysaccharide in its original form or by chemical modification. It is undesirable for the value to decrease. As a result of considering this, we found that the degree of introduction of reactive groups (
It has been found that antitumor activity is influenced by the substitution rate (expressed as the percentage of reactive groups introduced per glucose residue). In other words, when carboxymethylated polysaccharides with a substitution rate of 25% and 50% were prepared by reacting monochloroacetic acid with polysaccharides, and these were administered to mice transplanted with Sarcoma 180 (solid) cells, the respective inhibition tendencies were the first. As shown in the table, at a substitution rate of 25%, about 71% of the unmodified activity is retained, but at a substitution rate of 50%, it decreases to about 30%. From this, it is necessary to set the substitution rate of the reactive group by chemical modification in the range of 20% to 30%.

置換率   投  与   腫瘍重量 抑止率1%  
     /マウス In    !M      +
SD      %25    250x 5  1.
95±2.211  67.5051    250X
 5  4.25±2.85  29.17無修飾多W
s100X5  0.26fO,6295,67対  
照”            6.00±4.0ロ  
   −試験要領 IC111−系6退会のマウス(雄、体重27〜30g
)1群10匹を使用し、そけい部皮下に固形サルコーマ
+80細胞の5XIO’ケを移植し、翌日をスタート日
としてIn、 +2.14.16及び18日に生理食塩
水に溶かした各試料を腹腔内に投与、35日1に解ぶJ
して測定。
Replacement rate Administration Tumor weight Inhibition rate 1%
/Mouse In! M +
SD %25 250x 5 1.
95±2.211 67.5051 250X
5 4.25±2.85 29.17 Unmodified polyW
s100X5 0.26fO, 6295, 67 pairs
Teru” 6.00±4.0ro
-Test procedure IC111-Series 6 withdrawn mouse (male, weight 27-30g
) Using 10 animals per group, 5XIO'ke of solid sarcoma +80 cells was transplanted subcutaneously in the groin area, and each sample was dissolved in physiological saline on In, +2.14.16 and 18th, with the next day as the starting day was administered intraperitoneally and released on day 35.
and measure.

1 )  (1−T/C) X100 C・・・対照群の腫瘍重量平均(g) T・・・試験群の腫瘍重量平均(g) 2)対照群には生理食塩水を投与 更に前記要領により置換率20〜30%の範囲としてカ
ルボキシル基及びアミノ基を導入した多糖の抗腫瘍活性
の状況を第2表に示す。
1) (1-T/C) Table 2 shows the antitumor activity of polysaccharides into which carboxyl groups and amino groups were introduced at a substitution rate of 20 to 30%.

(以下余白、) 第2表 試験要領及び表示は第1表に同じ。(Margin below) Table 2 The test procedure and display are the same as in Table 1.

第2表の結果から、置換率20〜30%の範囲では遊離
基に付く直鎖部分の長短は炭素数5程度までは活性に影
響しないことが示唆される。
The results in Table 2 suggest that in the substitution rate range of 20 to 30%, the length of the linear moiety attached to the free radical does not affect the activity up to about 5 carbon atoms.

以上の結果から、反応基の置換率を20〜30%の範囲
とすることがこの発明においては本質的ではあるが、ま
たある場合には結合体の投与形態によっては水に易溶な
ものを得たい場合も起り得ることで、かかる場合には、
結合体自体の抗腫瘍活性を損なわない限りにおいて、カ
ルボキシル基の置換率を高めるとか多糖を蟻酸もしくは
超音波で処理して低分子化した後上記要領で化学修飾す
ればよい、かように多糖を低分子化した場合の分子量と
活性の関係は第3表に示す如くで、分子屓約20.00
0が低分子化の限界となる。
From the above results, it is essential in this invention that the substitution rate of the reactive group is in the range of 20 to 30%, but in some cases, depending on the dosage form of the conjugate, it is possible to use a conjugate that is easily soluble in water. It may happen that you want to get it, and in such a case,
As long as the antitumor activity of the conjugate itself is not impaired, the polysaccharide can be chemically modified by increasing the substitution rate of carboxyl groups or by treating the polysaccharide with formic acid or ultrasound to reduce the molecular weight, and then chemically modifying the polysaccharide as described above. The relationship between molecular weight and activity when the molecular weight is reduced is as shown in Table 3, and the molecular weight is approximately 20.00.
0 is the limit for lowering the molecular weight.

(以下余白、) 第3表 投与経路を2系路とした以外は第1表に同じ。(Margin below) Table 3 Same as Table 1 except that two routes of administration were used.

以上にて多糖と抗癌化学療法剤を化学的に結合せしめる
条件等を詳細説明したが、次に多糖と制癌性抗生物質の
1種であるマイトマイシンCとの結合体について説明す
ると、多糖をアルカリ水溶液に溶解し、これに過剰量の
モノクロロ酢酸を加え40〜70℃で3〜6時間撹拌下
で反応させた後反応液を透析して脱塩と低分子成分を除
去し、内液を凍結範燥すると白色のカルボキシメチル化
多糖を得る。得られたカルボキシメチル化多糖を分析し
たところカルボキシメチル基の置換率は20〜30%の
範囲内であった。このカルボキシメチル化多糖を水に溶
かし、PHを4〜6とし、約1/+011のマイトマイ
シンCを加え縮合剤として水溶性カルボジイミドを加え
PHを4〜6に保持しながら10〜20℃で3〜6時間
撹拌下で反応させると沈でんを生ずるに至る。この沈で
んを遠心分離し水洗後凍結乾燥すると紫色をしたこの発
明の結合物を得る。
The conditions for chemically bonding a polysaccharide and an anticancer chemotherapy agent have been explained above in detail.Next, we will explain the conjugate between a polysaccharide and mitomycin C, which is a type of anticancer antibiotic. Dissolve in an alkaline aqueous solution, add an excess amount of monochloroacetic acid, react at 40 to 70°C for 3 to 6 hours with stirring, and then dialyze the reaction solution to desalt and remove low molecular components. When frozen and dried, a white carboxymethylated polysaccharide is obtained. Analysis of the obtained carboxymethylated polysaccharide revealed that the substitution rate of carboxymethyl groups was within the range of 20 to 30%. Dissolve this carboxymethylated polysaccharide in water, adjust the pH to 4 to 6, add about 1/+011 mitomycin C, add water-soluble carbodiimide as a condensing agent, and keep the pH at 4 to 6 at 10 to 20°C. Reaction under stirring for 6 hours leads to the formation of a precipitate. This precipitate is centrifuged, washed with water, and then freeze-dried to obtain a purple-colored conjugate of the present invention.

この結合体についてヤイトマイシンCの結合量を測定(
波長340nmによる分光分析)した結果、結合体10
0μg中3〜5μgの範囲であった。このマイトマイシ
ンCの結合量は理論値(100μg中約33μg)に比
べて過少であるが、その原因の1つに多糖の瓜雑な立体
配座により立体障害を受はマイトマイシンCがカルボキ
シル基へ接近できないことが考えられる。しかしながら
、結合体自体の抗腫瘍活性を損なわない限度においてカ
ルボキシメチル基の置換率をコントロールすることによ
ってマイトマイシンCの結合量を高めることが可能と思
われる。
The amount of yaitomycin C bound to this conjugate was measured (
As a result of spectroscopic analysis at a wavelength of 340 nm, the conjugate 10
It was in the range of 3 to 5 μg in 0 μg. This bound amount of mitomycin C is smaller than the theoretical value (approximately 33 μg in 100 μg), but one of the reasons for this is that mitomycin C approaches the carboxyl group due to steric hindrance due to the complex conformation of the polysaccharide. It is possible that it cannot be done. However, it seems possible to increase the amount of mitomycin C bound by controlling the substitution rate of the carboxymethyl group within a limit that does not impair the antitumor activity of the conjugate itself.

上記で得た結合体は、PH6,6の緩衝液中で徐々に加
水分解してマイトマイシンCを遊離する傾向を示し、そ
の半減期はおよそ6時間と見積もられる。この様子を第
1図に示す、このPH値は略々生体内のPH環境に相当
することを考慮するとき、結合体とすることにより生体
内においてマイトマイシンCの徐放が起りうることを予
測するに困難はなく、この徐放化によりマイトマイシン
Cの細胞dI性緩和がもたらされることが十分期待され
る。
The conjugate obtained above shows a tendency to gradually hydrolyze in a pH 6.6 buffer to liberate mitomycin C, and its half-life is estimated to be approximately 6 hours. This situation is shown in Figure 1. Considering that this PH value roughly corresponds to the PH environment in the living body, it is predicted that sustained release of mitomycin C may occur in the living body by forming a conjugate. There is no difficulty in this, and it is fully expected that this sustained release will alleviate the cellular dI properties of mitomycin C.

そこで正常マウス(ff1.体重27〜30g)にこの
結合体、マイトマイシンC800μ、カルボキシメチル
化多糖とマイトマイシンCの併用をマイトマイシンCの
投与量が同量となるようにして多量投与してその生存傾
向を調査したところ、その傾向は第2図の如くで、マイ
トマイシンC単独800μg/マウス投与(イ)では6
日経過で約90%が死亡し、マイトマイシンC800μ
g/7ウス、カルボキシメチル北条31201g/マウ
ス投与(ロ)では同日経過で約60%が死亡したに比べ
、結合体20mg/マウス(マイトマイシンC600〜
1000μg、平均800μg結合)投与(ハ)では同
日経過時点では100%生存し、なおこの状態を持続す
る傾向を示した。このことは、マイトマイシンCの毒性
が結合体によって緩和したことを明らかに示し、併用の
場合に認められない大きな特徴点である。
Therefore, we administered a large amount of this conjugate, mitomycin C 800μ, carboxymethylated polysaccharide, and mitomycin C to normal mice (ff1. weight 27-30 g) so that the dose of mitomycin C was the same, and examined their survival tendency. When investigated, the tendency was as shown in Figure 2, and when mitomycin C alone was administered at 800 μg/mouse (A), 6
Approximately 90% died within a day, and mitomycin C800μ
g/7 mice, carboxymethyl Hojo 31201 g/mouse (b), approximately 60% died on the same day;
In the case of administration (c) of 1000 μg (average 800 μg binding), 100% of the mice survived on the same day, and this state tended to persist. This clearly indicates that the toxicity of mitomycin C was alleviated by the conjugate, which is a major feature that is not observed in the case of combination use.

次にこの結合体の抗腫瘍性について試験した結果を説明
すると、ICR−系のマウス(雄9体重27〜30g1
1群10匹を2群用意し、それぞれに腹水形サルコーマ
180細胞lXl0’ケを腹腔内に移植し、移植後すぐ
に結合体及びマイトマイシンCを生理食塩水に溶かして
腹腔内に投与し、移植口から7日日に解剖して測定した
結果、マイトマイシンCの等量による抑止率は第3図の
如くで、マイトマイシンC等型で両者を比較するとき、
結合体による抑止率(イ)の傾向がマイトマイシンC単
独の抑止率(ロ)の傾向をはるかに上まわることが認め
られ、このことはマイトマイシンCを多糖に結合したこ
とによりもたらされる薬効の増強を意味し、両者結合体
による抗腫瘍効果が相乗的であることを教える。このよ
うな活性増強も結合体としたことによりもたらされる大
きな特徴の1つである。
Next, to explain the results of testing the antitumor properties of this conjugate, ICR-strain mice (9 males weighing 27-30g1
Two groups of 10 animals per group were prepared, and 180 ascites-type sarcoma cells 1X10' were intraperitoneally transplanted into each group. Immediately after transplantation, the conjugate and mitomycin C were dissolved in physiological saline and administered intraperitoneally, and transplanted. As a result of dissection and measurement from the mouth on the 7th day, the inhibition rate by the equivalent amount of mitomycin C is as shown in Figure 3. When comparing the two with the equivalent amount of mitomycin C,
It was observed that the tendency of the inhibition rate (a) by the conjugate far exceeds the tendency of the inhibition rate (b) of mitomycin C alone, and this indicates that the enhancement of the drug efficacy brought about by binding mitomycin C to the polysaccharide. This indicates that the antitumor effects of both conjugates are synergistic. Such activity enhancement is also one of the major features brought about by forming a conjugate.

以上の例で明らかなように、多糖と化学療法剤の結合体
は化学療法剤の抗腫瘍性を低下させることがないばかり
でなく、むしろ相乗的に活性が高められ、生体内におい
て化学療法剤を徐放化して細胞毒性を緩和することが期
待されるので、従来化学療法剤の投与に当って間顕とな
っている副作用を改善することと相俟って高い薬効が期
待できるものである。かように、薬剤としてすぐれた作
用を有する、多糖と化学療法剤の結合体を有効成分とす
る薬剤は各種腫瘍の治療に有用な抗腫瘍剤であり、各種
態形及び経路で投与でき、投与に当っては多糖自体は天
然物で毒性を示さないものであるから、結合する化学療
法剤の通常の投与処決に従って投与されてよいものであ
る。以下実施例により具体的に説明する。
As is clear from the above examples, the conjugate of a polysaccharide and a chemotherapeutic drug not only does not reduce the antitumor activity of the chemotherapeutic drug, but also synergistically enhances the activity of the chemotherapeutic drug in vivo. It is expected to release the drug in a sustained manner and alleviate cytotoxicity, and together with improving the side effects that have become apparent when administering conventional chemotherapy drugs, it is expected to have high drug efficacy. . As described above, drugs containing a conjugate of a polysaccharide and a chemotherapeutic agent as an active ingredient, which have excellent effects as a drug, are useful antitumor agents for the treatment of various tumors, and can be administered in various forms and routes. Since the polysaccharide itself is a natural product and does not exhibit toxicity, it may be administered according to the usual administration regimen for the chemotherapeutic agent to which it is attached. This will be explained in detail below using Examples.

(実施例) (イ)多糖の3I!58I サルノコシカケ科に属するマイタケ菌株グリフォラ・フ
ロンドッサ・パル・トカチアーナ(Gri−fola 
frondosa var tokachiana) 
 (特公昭56−53351号記載、微工研菌寄第49
79号)の継代斜面培地面から3X3mmの切片2片を
取り出し、これを初発種として3段培養して得た菌糸を
グルコース5%、クエン酸0.5%、PH4,0の糖質
溶液2Lを収容する3L容量ジャーファーメンタ−に加
えζ通気量0.5VMM、28℃、250 r、p、m
で2日間反応後、内容物を遠心分離して菌糸を分離除去
した上澄液にエタノール濃度40容鼠%になるまでエタ
ノールを加えて沈でんを生成せしめ、これを遠心分離で
集め凍結乾燥により乾燥物2.1gを得た。
(Example) (a) 3I of polysaccharides! 58I Maitake fungus strain Gri-fola frondosa pal tocatiana (Gri-fola
frondosa var tokachiana)
(Described in Special Publication No. 56-53351, Microtechnical Research Institute No. 49
Two sections of 3 x 3 mm were taken from the surface of the passage slant medium of No. 79), and these were cultured in three stages as the initial seeds. 3L capacity jar fermentor containing 2L plus ζ air flow 0.5VMM, 28℃, 250r, p, m
After reacting for 2 days, the contents were centrifuged to separate and remove the mycelium. Ethanol was added to the supernatant until the ethanol concentration reached 40% by volume to produce a precipitate, which was collected by centrifugation and dried by freeze-drying. 2.1 g of the product was obtained.

この乾燥物2gを8モル尿素水溶液に溶解し、DEAE
−セファデックスA −25(HCO3−型)のカラム
にかけて流出液から中性画分を分取しセルロースチュー
ブ(白井松器械)で透析して得た内液に1.5倍量のエ
タノールを加えて沈でんを生成せしめ、これを集めて凍
結乾燥して白色の綿状の物質1.2gを得たに の物質を分析したところ、グルコースのみを構成糖とし
たβ−1,3結合グルカンを主鎖とし、主鎖グルコース
残基3ヶ当りβ−1,6グルコース!ケを分枝する構造
を繰り返し単位とする多糖で、マウスに移植した固形サ
ルコーマ180細胞に対し高い抑止率を示した。
Dissolve 2 g of this dry material in an 8 molar urea aqueous solution, and
- Sephadex A -25 (HCO3- type) column to separate the neutral fraction from the effluent, dialyze it with a cellulose tube (Shirai Matsu Kikai), and add 1.5 times the amount of ethanol to the obtained internal solution. The resulting precipitate was collected and lyophilized to obtain 1.2 g of a white flocculent substance. Analysis of this substance revealed that it was mainly composed of β-1,3-linked glucan with only glucose as its constituent sugar. chain, β-1,6 glucose per 3 main chain glucose residues! It is a polysaccharide whose repeating unit is a branched structure, and it showed a high inhibition rate against solid sarcoma 180 cells transplanted into mice.

(ロ)カルボキシメチル化多糖のJLX!(イ)で得た
多p70hgをlN−Na01170111に溶解し、
モノクロロ酸Ni(試薬特級) 5gを加え60℃、3
時間撹拌しながら反応させ、反応液をセルロースチュー
ブ(面記に同じ)を用い透析し、内液を凍結乾燥して白
色乾燥物753mgを得た。これを分析した結果、カル
ボキシメチル基の置換率は25%であった。
(b) JLX of carboxymethylated polysaccharide! The polyp70hg obtained in (a) was dissolved in lN-Na01170111,
Add 5g of Ni monochloroate (special grade reagent) and heat at 60℃ for 3
The reaction was allowed to proceed with stirring for a period of time, and the reaction solution was dialyzed using a cellulose tube (same as above), and the internal solution was freeze-dried to obtain 753 mg of a white dry product. As a result of analyzing this, the substitution rate of carboxymethyl groups was 25%.

(ハ)多糖−マイトマイシンC結合物の調製上記(ロ)
で得た乾燥物30hgを蒸留水3hlに溶解し、塩酸で
PH4,0に調整した後マイトマイシンC(市販品)3
0B加え、縮合剤として水溶性カルボジイミド(EDC
) 2gを加え、I’Hを6.0に保ちながら15℃で
4時間反応させ、反応液を遠心分離して生成した沈でん
を果め、冷水で洗滌後凍結乾燥して紫色の乾燥物238
mgを得た。この乾燥物を分析した結果、マイトマイシ
ンCの結合量は100μg中4μgであった。
(c) Preparation of polysaccharide-mitomycin C conjugate (b) above
Dissolve 30 hg of the dried product obtained in 3 hl of distilled water, adjust the pH to 4.0 with hydrochloric acid, and add 3 ml of mitomycin C (commercial product).
In addition to 0B, water-soluble carbodiimide (EDC) was added as a condensing agent.
) was added and reacted for 4 hours at 15°C while keeping I'H at 6.0. The reaction solution was centrifuged to remove the precipitate, washed with cold water, and lyophilized to obtain a purple dried product.
mg was obtained. As a result of analyzing this dried product, the amount of mitomycin C bound was 4 μg per 100 μg.

(ニ)結合物の抗腫瘍性 IRC−系ノマウス(ts1体m 27〜30gJ l
 群9匹を6群用意し、夫々の群に腹水型サルコーマ+
80細胞I X 10’ケを腹腔内に移植し、移植日の
翌日をスタート日としてl、 2.3.4及び5日に生
理食塩水に溶かしたマイトマイシンC0上記(ロ)のカ
ルボキシメチル化多糖及び上記(ハ)の結合物を夫々腹
腔内に投与し、延命を調査した。この結果を第4表に示
す。
(d) Antitumor properties of the conjugate in IRC-type mice (ts1 body m 27-30 gJ l
Six groups of nine animals were prepared, and each group had ascites-type sarcoma +
80 cells I x 10' cells were transplanted intraperitoneally, and the carboxymethylated polysaccharide of (b) above was dissolved in saline on days 1, 2.3.4 and 5, with the next day of transplantation as the starting day. The conjugates of (c) and (c) above were each administered intraperitoneally to investigate survival prolongation. The results are shown in Table 4.

(以下余白。) 第5表 1)     (T/CXl0ロ )  −100C対
照群の生存時間平均(日) T 試験群の生存時間平均(日) 2)()内はマイトマイシンCの量 *  pro、 05   $41  p<0.001
(効 果) この発明の抗腫瘍剤を用いるときは生体内で化?療法剤
を徐放化できるので、化学療法剤の薬効を低下させるこ
となく細胞毒性を緩和して副作用の軽減をもたらすから
頻回投与を可能とする。また結合体の他の成分である多
糖が免疫機能を活性するので両者相俟って効果的な制癌
作用をもたらすことになるのできわめて有益である。
(Margins below.) Table 5 1) (T/CXl0ro) -100C Average survival time of control group (days) T Average survival time of test group (days) 2) The amount in parentheses is the amount of mitomycin C* pro, 05 $41 p<0.001
(Efficacy) When using the antitumor agent of this invention, does it change in vivo? Since the therapeutic agent can be released in a sustained manner, cytotoxicity can be alleviated without reducing the efficacy of the chemotherapeutic agent, resulting in a reduction in side effects, allowing for frequent administration. In addition, since the other component of the conjugate, the polysaccharide, activates the immune function, the two together provide an effective anticancer effect, which is extremely beneficial.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はPH6,6wi衝液中における結合体の加水分
解の様子を示し、第2図は結合体をマウスに大m投与し
たときの生存の状況を示し、第3図は結合体の移植腫瘍
に対する抑止傾向を示す。
Figure 1 shows the hydrolysis of the conjugate in PH6,6wi buffer, Figure 2 shows the survival status when the conjugate was administered to mice at a large dose, and Figure 3 shows the transplanted tumor of the conjugate. It shows a tendency to inhibit.

Claims (6)

【特許請求の範囲】[Claims] (1)β−1,3結合グルカンを主鎖とし、この主鎖の
グルコース残基3ケ当りβ−1,6結合グルコース1ケ
を分枝する構造を繰り返し単位とする抗腫瘍活性多糖と
抗癌化学療法剤の結合体を有効成分とすることを特徴と
する抗腫瘍剤。
(1) An antitumor-active polysaccharide with a repeating unit consisting of β-1,3-linked glucan as a main chain and one β-1,6-linked glucose branch for every three glucose residues in this main chain. An antitumor agent characterized by containing a conjugate of a cancer chemotherapeutic agent as an active ingredient.
(2)抗腫瘍活性多糖が担子菌に属するマイタケを利用
することにより得られる多糖である特許請求の範囲第(
1)項記載の抗腫瘍剤。
(2) The antitumor active polysaccharide is a polysaccharide obtained by utilizing Maitake mushroom belonging to Basidiomycete (
The antitumor agent described in section 1).
(3)抗癌化学療法剤がアルキル化剤、代謝拮抗剤、制
癌性抗生物質の群から選ばれたものである特許請求の範
囲第(1)項記載の抗腫瘍剤。
(3) The antitumor agent according to claim (1), wherein the anticancer chemotherapeutic agent is selected from the group of alkylating agents, antimetabolites, and anticancer antibiotics.
(4)β−1,3結合グルカンを主鎖とし、この主鎖の
グルコース残基3ケ当りβ−1,6結合グルコース1ケ
を分枝する構造を繰り返し単位とする抗腫瘍活性多糖を
原形または化学修飾により反応基を導入した誘導体を架
橋剤または縮合剤の存在下で抗癌化学療法剤と反応させ
ることにより前記抗腫瘍活性多糖と抗癌化学療法剤の結
合体を生成せしめることを特徴とする抗腫瘍剤の製法。
(4) Antitumor-active polysaccharide with β-1,3-linked glucan as the main chain and a repeating unit with a structure in which one β-1,6-linked glucose is branched for every three glucose residues in this main chain. Alternatively, a conjugate of the antitumor active polysaccharide and the anticancer chemotherapeutic agent is produced by reacting a derivative into which a reactive group has been introduced by chemical modification with the anticancer chemotherapeutic agent in the presence of a crosslinking agent or a condensing agent. A method for producing an antitumor agent.
(5)抗腫瘍活性多糖が担子菌に属するマイタケを利用
することにより得られる多糖である特許請求の範囲第(
4)項記載の抗腫瘍剤の製法。
(5) The antitumor active polysaccharide is a polysaccharide obtained by utilizing Maitake mushroom belonging to Basidiomycete (
4) The method for producing the antitumor agent described in section 4).
(6)抗癌化学療法剤がアルキル化剤、代謝拮抗剤、制
癌性抗生物質の群から選ばれたものである特許請求の範
囲第(4)項記載の抗腫瘍剤の製法。
(6) The method for producing an antitumor agent according to claim (4), wherein the anticancer chemotherapeutic agent is selected from the group of alkylating agents, antimetabolites, and anticancer antibiotics.
JP14157387A 1987-06-08 1987-06-08 Antitumor agent and production thereof Pending JPS63307825A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14157387A JPS63307825A (en) 1987-06-08 1987-06-08 Antitumor agent and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14157387A JPS63307825A (en) 1987-06-08 1987-06-08 Antitumor agent and production thereof

Publications (1)

Publication Number Publication Date
JPS63307825A true JPS63307825A (en) 1988-12-15

Family

ID=15295121

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14157387A Pending JPS63307825A (en) 1987-06-08 1987-06-08 Antitumor agent and production thereof

Country Status (1)

Country Link
JP (1) JPS63307825A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000069919A (en) * 1998-08-31 2000-03-07 Api Co Ltd Propolis-containing food
CN1313497C (en) * 2004-03-30 2007-05-02 中国海洋大学 Ramification of polysaccharide carboxymethyl in ash tree flower and preparation method
US7462607B2 (en) 2001-01-16 2008-12-09 Sloan-Kettering Institute For Cancer Research Therapy-enhancing glucan
US8323644B2 (en) 2006-01-17 2012-12-04 Sloan-Kettering Institute For Cancer Research Therapy-enhancing glucan

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53134060A (en) * 1977-04-28 1978-11-22 Kaken Pharmaceut Co Ltd Novel polysaccharide
JPS5461112A (en) * 1977-10-24 1979-05-17 Ono Pharmaceut Co Ltd Oncostatic polysaccharide* its preparation* and oncostatic drugs containing it as an effective component
JPS5497691A (en) * 1978-01-19 1979-08-01 Kyowa Hakko Kogyo Co Ltd New mitomycin derivative
JPS5840301A (en) * 1981-09-03 1983-03-09 Takara Shuzo Co Ltd Beta-1,3-glucan having antitumor activity
JPS6067503A (en) * 1983-09-24 1985-04-17 Kyowa Hakko Kogyo Co Ltd Compound binding mitomycin with polysaccharide
JPS6067493A (en) * 1983-09-24 1985-04-17 Agency Of Ind Science & Technol 1-beta-d-arabinofuranosylcytosine derivative and its preparation
JPS6067490A (en) * 1983-09-24 1985-04-17 Agency Of Ind Science & Technol Anthracycline antibiotic derivative and its preparation
JPS6081197A (en) * 1983-10-13 1985-05-09 Agency Of Ind Science & Technol 5-fluorouridine derivative and production thereof
JPS60255733A (en) * 1984-05-30 1985-12-17 Nippon Beet Sugar Mfg Co Ltd Beta-d-glucan

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53134060A (en) * 1977-04-28 1978-11-22 Kaken Pharmaceut Co Ltd Novel polysaccharide
JPS5461112A (en) * 1977-10-24 1979-05-17 Ono Pharmaceut Co Ltd Oncostatic polysaccharide* its preparation* and oncostatic drugs containing it as an effective component
JPS5497691A (en) * 1978-01-19 1979-08-01 Kyowa Hakko Kogyo Co Ltd New mitomycin derivative
JPS5840301A (en) * 1981-09-03 1983-03-09 Takara Shuzo Co Ltd Beta-1,3-glucan having antitumor activity
JPS6067503A (en) * 1983-09-24 1985-04-17 Kyowa Hakko Kogyo Co Ltd Compound binding mitomycin with polysaccharide
JPS6067493A (en) * 1983-09-24 1985-04-17 Agency Of Ind Science & Technol 1-beta-d-arabinofuranosylcytosine derivative and its preparation
JPS6067490A (en) * 1983-09-24 1985-04-17 Agency Of Ind Science & Technol Anthracycline antibiotic derivative and its preparation
JPS6081197A (en) * 1983-10-13 1985-05-09 Agency Of Ind Science & Technol 5-fluorouridine derivative and production thereof
JPS60255733A (en) * 1984-05-30 1985-12-17 Nippon Beet Sugar Mfg Co Ltd Beta-d-glucan

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000069919A (en) * 1998-08-31 2000-03-07 Api Co Ltd Propolis-containing food
US6106867A (en) * 1998-08-31 2000-08-22 Api Co., Ltd. Gelatinized propolis food products
US7462607B2 (en) 2001-01-16 2008-12-09 Sloan-Kettering Institute For Cancer Research Therapy-enhancing glucan
US7507724B2 (en) 2001-01-16 2009-03-24 Sloan-Kettering Institute For Cancer Research Therapy-enhancing glucan
US8791252B2 (en) 2001-01-16 2014-07-29 Sloan-Kettering Institute For Cancer Research Therapy-enhancing glucan
US9480700B2 (en) 2001-01-16 2016-11-01 Sloan-Kettering Institute For Cancer Research Therapy-enhancing glucan
US9211304B2 (en) 2003-07-16 2015-12-15 Sloan-Kettering Institute For Cancer Research Therapy-enhancing glucan
CN1313497C (en) * 2004-03-30 2007-05-02 中国海洋大学 Ramification of polysaccharide carboxymethyl in ash tree flower and preparation method
US8323644B2 (en) 2006-01-17 2012-12-04 Sloan-Kettering Institute For Cancer Research Therapy-enhancing glucan

Similar Documents

Publication Publication Date Title
ES2339531T3 (en) PROCEDURE FOR THE PREPARATION OF HYDROLYSIS PRODUCTS OF THE PECTINE.
CA2134348C (en) Polysaccharide derivatives and drug carriers
FI88109C (en) Process for the preparation of soluble phosphorylated glucan
KR100680014B1 (en) Imine-forming polysaccharides, preparation thereof and the use thereof as adjuvants and immunostimulants
US4401592A (en) Pharmaceutical composition having antitumor activity
BG108274A (en) Conjugate of hydroxyalkyl starch and an active agent
EP1206252A1 (en) Amplification of folate-mediated targeting to tumor cells using polymers
WO2000074721A1 (en) Vitamin directed dual targeting therapy
CN101448875A (en) Polymer conjugate of podophyllotoxin
US3987166A (en) Treatment of tumors with glucan compositions in mice and rats
EP0028641B1 (en) Hydroxyalkyl starch drug carrier
WO2001079302A1 (en) A complex between folic acid and polysaccharides, its preparation method and a pharmaceutical composition comprising said complex as active component
US20050220754A1 (en) Vitamin directed targeting therapy
JPS63307825A (en) Antitumor agent and production thereof
KR100278928B1 (en) A novel use of polysaccharide substance isolated from phellinus linteus
OHMORI et al. Component analysis of protein-bound polysaccharide (SN-C) from Cordyceps ophioglossoides and its effects on syngeneic murine tumors
JP2545729B2 (en) Polymer conjugate of methotrexate derivative and pyran copolymer and method for producing the same
JPH0248000B2 (en)
JPH04288304A (en) High-molecular mitomycin c derivative and production thereof
CN113164474A (en) Water-soluble polymer derivative of Venetok
JP2583183B2 (en) Process for producing bioactive glycogen and bioactivity
JP2007531697A (en) Compositions and methods for the delivery of hydrophobic drugs
JPH09124512A (en) Water-soluble medicine-pullulan combination preparation for targeting liver
JPS60226819A (en) Fibronectin complex
JP2623280B2 (en) Antitumor agent