JPH0247886B2 - - Google Patents
Info
- Publication number
- JPH0247886B2 JPH0247886B2 JP57204283A JP20428382A JPH0247886B2 JP H0247886 B2 JPH0247886 B2 JP H0247886B2 JP 57204283 A JP57204283 A JP 57204283A JP 20428382 A JP20428382 A JP 20428382A JP H0247886 B2 JPH0247886 B2 JP H0247886B2
- Authority
- JP
- Japan
- Prior art keywords
- frequency
- saw
- electrodes
- substrate
- interdigital transducer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000034 method Methods 0.000 claims description 15
- 239000000758 substrate Substances 0.000 claims description 11
- 229910052751 metal Inorganic materials 0.000 claims description 10
- 239000002184 metal Substances 0.000 claims description 10
- 238000000151 deposition Methods 0.000 claims description 8
- 238000010897 surface acoustic wave method Methods 0.000 description 18
- 238000010586 diagram Methods 0.000 description 5
- 238000012544 monitoring process Methods 0.000 description 5
- 229910052782 aluminium Inorganic materials 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 4
- 230000008021 deposition Effects 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000007740 vapor deposition Methods 0.000 description 3
- 238000001039 wet etching Methods 0.000 description 3
- 239000003989 dielectric material Substances 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 239000007769 metal material Substances 0.000 description 2
- 238000001020 plasma etching Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- WSMQKESQZFQMFW-UHFFFAOYSA-N 5-methyl-pyrazole-3-carboxylic acid Chemical compound CC1=CC(C(O)=O)=NN1 WSMQKESQZFQMFW-UHFFFAOYSA-N 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- VVNXEADCOVSAER-UHFFFAOYSA-N lithium sodium Chemical compound [Li].[Na] VVNXEADCOVSAER-UHFFFAOYSA-N 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000001259 photo etching Methods 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
- 238000007790 scraping Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 238000000992 sputter etching Methods 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H3/00—Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
- H03H3/007—Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
- H03H3/08—Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of resonators or networks using surface acoustic waves
- H03H3/10—Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of resonators or networks using surface acoustic waves for obtaining desired frequency or temperature coefficient
Landscapes
- Physics & Mathematics (AREA)
- Acoustics & Sound (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)
Description
【発明の詳細な説明】
本発明は圧電基板表面にインタデイジタル・ト
ランスジユーサ電極を付着して前記基板表面に励
起する弾性表面波(SAW)或は表面直下のバル
ク内を伝播する波(SSBW)等を利用する共振デ
バイスの周波数微細調整方法に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention provides interdigital transducer electrodes attached to the surface of a piezoelectric substrate to generate surface acoustic waves (SAW) excited on the surface of the substrate or waves propagating in the bulk just below the surface (SSBW). ) etc., and relates to a method for finely adjusting the frequency of a resonant device.
従来、圧電基板表面にインタデイジタル・トラ
ンスジユーサ電極を付着し前記基板表面又はバル
ク内に励起した音響的波動を利用するSAW或は
SSBWデバイスの共振周波数の微細調整方法とし
てはウエツト・エツチングと称しエツチング液中
で付着電極を溶出したりイオン或はプラズマ・エ
ツチングと称してガス中でイオン化したガス微粒
子又はプラズマを高速で電極に衝突させ電極を削
り取る等してデバイス表面に付着した電極質量を
減少せしめたり、陽極酸化法と称して付着電極を
酸化せしめ結合した酸素の質量分だけ電極質量を
増大させて共振周波数を微細に調整することが行
なわれている。 Conventionally, SAW or SAW technology utilizes acoustic waves excited within the surface or bulk of the piezoelectric substrate by attaching interdigital transducer electrodes to the surface of the piezoelectric substrate.
Fine adjustment methods for the resonant frequency of SSBW devices include wet etching, in which adhering electrodes are eluted in an etching solution, and ion or plasma etching, in which ionized gas particles or plasma collide with the electrode at high speed. Finely adjust the resonant frequency by reducing the mass of the electrodes attached to the device surface by scraping off the electrodes, or by oxidizing the deposited electrodes using a method called anodic oxidation to increase the mass of the electrodes by the mass of the bonded oxygen. things are being done.
しかしながらこれらはいずれも所定の装置を必
要とする上、ウエツト・エツチング、プラズマ・
エツチング等は共振周波数をモニタしながら調整
作業を行うことが不可能である為、能率が悪く実
用的ではないという欠点があつた。又、斯るデバ
イスの表面に誘電体物質を蒸着するという手法も
提案されてはいるが、誘電体物質は一般に融点が
高く蒸発せしめるのに工夫を要する為、格別の装
置を必要とするという欠点があつた。 However, all of these require specific equipment, and they also require wet etching, plasma etching, etc.
Etching and the like have the drawback of being inefficient and impractical because it is impossible to perform adjustment work while monitoring the resonance frequency. Also, methods have been proposed in which dielectric materials are deposited on the surface of such devices, but dielectric materials generally have a high melting point and require special efforts to evaporate, so this method has the disadvantage of requiring special equipment. It was hot.
本発明は上述の如きSAWデバイス等に対する
周波数調整方法の欠点を除去する為になされたも
のであつて、SAWデバイス等の圧電基板表面、
電極付着全面或は所要の部分に金属を当該デバイ
スの共振周波数をモニタしながら或か統計的に蒸
着条件を確定した上でバツチ処理で蒸着すること
によつてその共振周波数を調整する周波数微細調
整方法を提供せんとするものである。 The present invention has been made in order to eliminate the drawbacks of the frequency adjustment method for SAW devices etc. as described above.
Frequency fine adjustment in which the resonance frequency is adjusted by depositing metal on the entire surface of the electrode or on the required part by batch processing while monitoring the resonance frequency of the device or after statistically determining the deposition conditions. The purpose is to provide a method.
以下本発明を実施例に基づいて詳細に説明す
る。 The present invention will be described in detail below based on examples.
第1図及び第2図は夫々SAWを利用した共振
器及びフイルタの構造を示す図である。 FIG. 1 and FIG. 2 are diagrams showing the structures of a resonator and a filter using SAW, respectively.
SAW共振器或はフイルタは周知の如く水晶、
リチウムナトリウムアベイト或はリチウムタンタ
レイトの如き圧電基板1上に所要のインタデイジ
タル・トランスジユーサ電極2,2,……を、更
に必要ならば前記電極によつて励起したSAWを
反射して共振器のQを高める反射器3,3,…等
を付着したもので、その製造法は先ず前記圧電基
板の表面に均一の厚さにアルミニウム等を全面蒸
着し然る後にフオトエツチングによつて所望の電
極パターンを形成するものである。 As is well known, the SAW resonator or filter is a crystal,
On a piezoelectric substrate 1 such as lithium sodium abate or lithium tantalate, the required interdigital transducer electrodes 2, 2, . Reflectors 3, 3, etc. are attached to increase the Q of the device, and the manufacturing method is to first deposit aluminum or the like to a uniform thickness on the surface of the piezoelectric substrate, and then photo-etch the desired material. This is to form an electrode pattern.
このような構造を有するSAWデバイス等の共
振周波数を微細に調整する為例えばウエツト・エ
ツチングによつて電極を溶解せしめその質量を減
少させるといつた従来の手法では周波数のモニタ
リング下にこれを行うことが不可能である等の欠
点があつたこと前述のとうりである。 In order to finely adjust the resonant frequency of a SAW device having such a structure, conventional methods, such as melting the electrode and reducing its mass by wet etching, do not do this while monitoring the frequency. As mentioned above, there are drawbacks such as the inability to
そこで本発明に於いては共振器又はフイルタに
対し直接その全面或は所定部分に金属を蒸着して
周波数の微細な調整を行なうものである。 Therefore, in the present invention, fine frequency adjustment is performed by depositing metal directly on the entire surface or a predetermined portion of the resonator or filter.
第3図及び第4図は夫々SAW共振器及びフイ
ルタに本発明に係る周波数微細調整方法を適用す
る場合の説明図である。 FIG. 3 and FIG. 4 are explanatory diagrams when the frequency fine adjustment method according to the present invention is applied to a SAW resonator and a filter, respectively.
即ち、第3図及び第4図は夫々前記反射器3,
3を備えたSAW共振器及び入出力電極を備えた
SAWフイルタに金属を付加蒸着し周波数の微細
な調整を行なうべくこれらの表面波が閉じ込めら
れる部分、あるいは表面波が伝搬する部分に相当
する面のみを開放したマスク4を用いて、上記部
分にのみ質量を付加すれば良い。このとき必ずし
も、マスクを用いる必要はないが、封止後の後工
程を考慮するとマスクを使用した方が良い。 That is, FIGS. 3 and 4 show the reflectors 3 and 4, respectively.
SAW resonator with 3 and input/output electrodes
In order to finely adjust the frequency by depositing metal on the SAW filter, we use a mask 4 that opens only the area where these surface waves are confined or where the surface waves propagate, and then apply a mask 4 to only the above-mentioned areas. Just add mass. Although it is not always necessary to use a mask at this time, it is better to use a mask in consideration of the post-sealing process.
斯くして周波数の微細調整を行うデバイスが共
振器であればこれを発振器に、フイルタであれば
その伝送特性計測装置に接続した上で真空蒸着槽
に収容し、共振周波数或は伝送特性をモニタしつ
つ金属を付加蒸着し、共振周波数或は伝送特性が
所望の値となつたところで蒸着を停止すればよ
い。 If the device that performs fine frequency adjustment is a resonator, it is connected to an oscillator, and if it is a filter, it is connected to a transmission characteristic measuring device and placed in a vacuum deposition tank, and the resonant frequency or transmission characteristics are monitored. The metal may be additionally vapor-deposited while the metal is being evaporated, and the evaporation may be stopped when the resonance frequency or transmission characteristic reaches a desired value.
蒸着すべき金属材料としてはAg、Au、Cr、
Ni……等加熱蒸着可能なものであれば種類は問
わない。 Metal materials to be deposited include Ag, Au, Cr,
Any type of material can be used as long as it can be heated and evaporated, such as Ni...
尚、導電性の高い金属をインタデイジタル・ト
ランスジユーサ電極上に付加蒸着すれば電極指間
で短絡が生じ、このデバイスが機能を失うことが
懸念されるが、そもそもこの付加蒸着量は僅かで
あつて、蒸着金属は弧立した微細な点状に付着す
るから上述の如き短絡の生ずる虞はない。 There is a concern that if a highly conductive metal is additionally deposited on the interdigital transducer electrodes, a short circuit will occur between the electrode fingers and the device will lose its functionality, but the amount of additionally deposited metal is small in the first place. Since the vapor-deposited metal is deposited in the form of fine, vertical dots, there is no risk of short circuits as described above.
もつとも蒸着金属材料としてアルミニウムを用
いるのは危険が多ので避けた方がよい。溶融アル
ミニウムは表面張力が極めて小さくインタデイジ
タル・トランスジユーサ電極間に広がる如く付着
するからである。 However, the use of aluminum as a vapor-deposited metal material is dangerous and should be avoided. This is because molten aluminum has extremely low surface tension and spreads between the interdigital transducer electrodes.
従つて、蒸着物質としてアルミニウム或はこれ
と同様基板との『濡れ』が良い物質を用いる必要
がある場合には前記インタデイジタル・トランス
ジユーサ電極部2,2への蒸着を避け例えば反射
器3,3又は波動の伝搬部のみに蒸着するように
すればよい。 Therefore, if it is necessary to use aluminum or a similar substance that has good "wettability" with the substrate as the vapor deposition material, avoid vapor deposition on the interdigital transducer electrode parts 2, 2, for example, on the reflector 3. , 3 or only on the wave propagation part.
尚、以上述べた如き物質の微量付加蒸着によつ
てもデバイスの主要な係数、例えばQ、等価イン
ダクタンスは殆んど影響を受けないことが確認さ
れた。 It has been confirmed that the main coefficients of the device, such as Q and equivalent inductance, are hardly affected by the additional deposition of a small amount of the substance as described above.
本発明に係る周波数微細調整方法は上述の如く
行なうので通常の蒸着設備以外の格別な装置を必
要とせずしかも周波数又は伝送特性をモニタしな
がら調整作業をなしうるので安価かつ高能率にし
かもデバイスの特性を実質的に変えることなく
SAWデバイス等の周波数微細調整を行う上で著
しい効果を発揮する。 Since the frequency fine adjustment method according to the present invention is carried out as described above, it does not require any special equipment other than ordinary vapor deposition equipment, and the adjustment work can be done while monitoring the frequency or transmission characteristics. without substantially changing properties
It is extremely effective in finely adjusting the frequency of SAW devices, etc.
更に、本発明に係る周波数微細調整方法は必ず
しも周波数をモニタしながら行うべきことを絶対
的要件とするものではない。 Furthermore, the frequency fine adjustment method according to the present invention does not necessarily have to be performed while monitoring the frequency.
今日、SAWデバイス等は一般に大面積圧電基
板上に多数のフオト・エツチング用マスクを整列
せしめてバツチ処理で一挙に大量のデバイスを製
造する。従つて周波数微細調整もバツチ処理で行
うことが可能であつて、この為には付加蒸着条件
と周波数調整量との関係を統計的に把握しておけ
ばよいことはいうまでもあるまい。 Today, SAW devices and the like are generally manufactured in large quantities at once by arranging a large number of photo-etching masks on a large-area piezoelectric substrate and performing batch processing. Therefore, it is possible to perform fine frequency adjustment by batch processing, and it goes without saying that for this purpose, it is sufficient to statistically understand the relationship between the additional deposition conditions and the amount of frequency adjustment.
尚、本発明はSAWデバイスに限らずインタデ
イジタル・トランスジユーサ電極にて励起しうる
全ての波動、例えば前述のSSBW(Surface
Skimming Bulk Wave)の他ラブ波、SH波、
ブルースタイン−グーリエ−清水波等を利用する
デバイスにも同様に適用可能である。 The present invention is applicable not only to SAW devices but also to all waves that can be excited at interdigital transducer electrodes, such as the aforementioned SSBW (Surface
Skimming Bulk Wave) as well as love waves, SH waves,
It is similarly applicable to devices that utilize Brustein-Gourier-Shimizu waves, etc.
第1図及び第2図は夫々本発明に係る周波数微
細調整方法を適用するSAW共振器及びSAWフイ
ルタの構造を示す図、第3図及び第4図は夫々
SAW共振器及びSAWフイルタに金属を付加蒸着
する際の手法を説明する図である。
1 and 2 are diagrams showing the structures of a SAW resonator and a SAW filter, respectively, to which the frequency fine adjustment method according to the present invention is applied, and FIGS. 3 and 4 are diagrams, respectively.
FIG. 3 is a diagram illustrating a method for additionally depositing metal on a SAW resonator and a SAW filter.
Claims (1)
ユーサ電極を付着して前記基板表面上或はバルク
内に所望の周波数の音響的波動を生ぜしめるデバ
イスに於いて、該デバイス基板表面の全面又は所
定の一部分に金属を付加蒸着して前記デバイスの
共振周波数を所望の値に調整することを特徴とす
る周波数微細調整方法。1. In a device in which interdigital transducer electrodes are attached on a piezoelectric substrate to generate acoustic waves of a desired frequency on the surface of the substrate or in the bulk, the entire surface of the device substrate or a predetermined portion 1. A method for finely adjusting frequency, the method comprising: adjusting the resonant frequency of the device to a desired value by additionally depositing metal on the device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20428382A JPS5994910A (en) | 1982-11-19 | 1982-11-19 | Frequency fine adjusting method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20428382A JPS5994910A (en) | 1982-11-19 | 1982-11-19 | Frequency fine adjusting method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5994910A JPS5994910A (en) | 1984-05-31 |
JPH0247886B2 true JPH0247886B2 (en) | 1990-10-23 |
Family
ID=16487912
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP20428382A Granted JPS5994910A (en) | 1982-11-19 | 1982-11-19 | Frequency fine adjusting method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5994910A (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS611922U (en) * | 1984-06-08 | 1986-01-08 | 関西日本電気株式会社 | surface acoustic wave device |
GB2199985B (en) * | 1986-12-22 | 1991-09-11 | Raytheon Co | Surface acoustic wave device |
JPH02268505A (en) * | 1989-04-11 | 1990-11-02 | Matsushita Electric Ind Co Ltd | Frequency adjusting method for surface acoustic wave device |
US5716042A (en) * | 1996-04-15 | 1998-02-10 | Derviller; Peter Reginald John | Springing means for suspension systems |
JP2009130806A (en) * | 2007-11-27 | 2009-06-11 | Seiko Epson Corp | Surface acoustic wave element and manufacturing method thereof |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55110418A (en) * | 1979-02-20 | 1980-08-25 | Victor Co Of Japan Ltd | Surface acoustic wave device |
-
1982
- 1982-11-19 JP JP20428382A patent/JPS5994910A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55110418A (en) * | 1979-02-20 | 1980-08-25 | Victor Co Of Japan Ltd | Surface acoustic wave device |
Also Published As
Publication number | Publication date |
---|---|
JPS5994910A (en) | 1984-05-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE68921811T2 (en) | Surface acoustic wave arrangements. | |
KR100401421B1 (en) | Surface Acoustic Wave Resonator, Surface Acoustic Wave Device and Communication Device | |
JP5154285B2 (en) | Boundary acoustic wave functional element | |
US5144185A (en) | SAW device | |
US4218631A (en) | Electrode structure for thickness mode piezoelectric vibrating elements | |
EP0057191A4 (en) | Two-pole monolithic crystal filter. | |
JPH0247886B2 (en) | ||
JPH09326668A (en) | Piezoelectric element and production of the same | |
JP3255502B2 (en) | Highly stable surface acoustic wave device | |
JPH02301210A (en) | Frequency adjustment method for surface acoustic wave device | |
JPH04294625A (en) | Surface acoustic wave element | |
JP2002368573A (en) | Superthin sheet piezoelectric vibrator and production method therefor | |
JPH0124366B2 (en) | ||
RU1812242C (en) | Method of producing thin piezoelectric film of zinc oxide | |
JP3127018B2 (en) | Leaky SAW resonator | |
JPS63173412A (en) | Leaky saw resonator | |
JPH0388407A (en) | Piezoelectric resonator | |
JPS58215110A (en) | Manufacture of surface acoustic wave filter element | |
JPH0226404A (en) | Manufacture of piezoelectric vibrator | |
JPH06103822B2 (en) | Piezoelectric resonator | |
JPS6141449B2 (en) | ||
RU2007023C1 (en) | Strip piezoelement of thickness-shear modes and process of its manufacture | |
JPH054337Y2 (en) | ||
JPH09148879A (en) | Surface acoustic wave device | |
JP2640937B2 (en) | Overtone oscillation piezoelectric resonator with composite structure |