JPH0247700B2 - - Google Patents

Info

Publication number
JPH0247700B2
JPH0247700B2 JP56063160A JP6316081A JPH0247700B2 JP H0247700 B2 JPH0247700 B2 JP H0247700B2 JP 56063160 A JP56063160 A JP 56063160A JP 6316081 A JP6316081 A JP 6316081A JP H0247700 B2 JPH0247700 B2 JP H0247700B2
Authority
JP
Japan
Prior art keywords
liquid
sample
measurement
blood
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56063160A
Other languages
Japanese (ja)
Other versions
JPS57178151A (en
Inventor
Takatoshi Uchigaki
Akio Saito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Arkray Inc
Original Assignee
Kyoto Daiichi Kagaku KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyoto Daiichi Kagaku KK filed Critical Kyoto Daiichi Kagaku KK
Priority to JP56063160A priority Critical patent/JPS57178151A/en
Priority to EP82302100A priority patent/EP0064369B1/en
Priority to US06/371,482 priority patent/US4512348A/en
Priority to DE8282302100T priority patent/DE3273657D1/en
Priority to BE0/207920A priority patent/BE892964A/en
Publication of JPS57178151A publication Critical patent/JPS57178151A/en
Publication of JPH0247700B2 publication Critical patent/JPH0247700B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1486Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using enzyme electrodes, e.g. with immobilised oxidase
    • A61B5/14865Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using enzyme electrodes, e.g. with immobilised oxidase invasive, e.g. introduced into the body by a catheter or needle or using implanted sensors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/150007Details
    • A61B5/150015Source of blood
    • A61B5/15003Source of blood for venous or arterial blood
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/150007Details
    • A61B5/150206Construction or design features not otherwise provided for; manufacturing or production; packages; sterilisation of piercing element, piercing device or sampling device
    • A61B5/150221Valves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/150007Details
    • A61B5/150206Construction or design features not otherwise provided for; manufacturing or production; packages; sterilisation of piercing element, piercing device or sampling device
    • A61B5/150229Pumps for assisting the blood sampling
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/155Devices specially adapted for continuous or multiple sampling, e.g. at predetermined intervals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/36Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits
    • A61M1/3672Means preventing coagulation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/487Physical analysis of biological material of liquid biological material
    • G01N33/49Blood

Description

【発明の詳现な説明】 本発明は、血液䞭の特定成分の濃床を連続しお
自動的に監芖する装眮に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an apparatus for continuously and automatically monitoring the concentration of specific components in blood.

より詳しくは、血管内留眮カテヌテルによ぀お
患者から連続的に血液をサンプリングし、長時間
連続しお特定成分の濃床を自動的に枬定するにあ
たり、枬定流路を圢成するチナヌブポンプの流量
倉動の圱響および怜出噚のドリフトの圱響を受け
ない枬定装眮を提䟛するものに関する。
More specifically, when blood is continuously sampled from a patient using an intravascular indwelling catheter and the concentration of a specific component is automatically measured over a long period of time, the flow rate fluctuation of the tube pump that forms the measurement flow path is The present invention relates to providing a measurement device that is immune to effects and detector drift.

尚、以䞋においおは、特に血液䞭のグルコヌス
即ち血糖に関しお説明を進めるが、血糖に限定さ
れるものでないこずはいうたでもない。
In the following, explanation will be given particularly regarding glucose in blood, that is, blood sugar, but it goes without saying that the explanation is not limited to blood sugar.

近来、各皮の負荷詊隓における血糖倀倉動パタ
ヌンの枬定や、重症糖尿病患者のベツドサむドモ
ニタヌ、糖尿病患者の術䞭・術埌の血糖モニタヌ
などに、埮量の血液を長時間連続しお採取しお血
糖倀を連続枬定する装眮の開発が進められおい
る。
In recent years, blood glucose levels have been measured by continuously collecting small amounts of blood over long periods of time, for measuring blood glucose fluctuation patterns in various stress tests, for bedside monitoring of patients with severe diabetes, and for monitoring blood glucose levels during and after surgery for diabetic patients. Development of a device to continuously measure .

この皮装眮では、抗凝血薬泚入口を有する二重
管カテヌテルを血管内に留眮し、抗凝血薬で垌釈
されながら生䜓から採血された血液は、適圓なポ
ンプ手段によりセンサヌぞ送られる。そしおセン
サヌを范正する堎合には、二重管カテヌテルをカ
ニナヌレから取り倖し、既知濃床の液を甚いお范
正した埌、再びカニナヌレに接続しお枬定を続け
る。しかしこの方匏は操䜜が煩雑になるばかりで
なく、センサヌ范正時に血液がカニナヌレ郚で凝
固しやすいずいう欠点を有しおいる。
In this type of device, a double-tube catheter having an anticoagulant injection port is placed in a blood vessel, and blood collected from a living body while being diluted with an anticoagulant is sent to a sensor by an appropriate pump means. When calibrating the sensor, the double-tube catheter is removed from the cannula, calibrated using a solution of known concentration, and then connected to the cannula again to continue measurement. However, this method not only requires complicated operation, but also has the disadvantage that blood tends to coagulate in the cannula during sensor calibration.

かかる欠点を回避するために、特開昭52−
135795では、センサヌに至る流路チナヌブポン
プを甚いおいるに流路切換装眮を蚭けおいる。
ただこの発明装眮においおは、チナヌブポンプ以
倖のポンプも甚いうるずされおいるが、チナヌブ
ポンプ以倖䟋えばシリンゞポンプの堎合は、脈動
が倧きく埮量な各流れの䜍盞を正確に揃えるこず
は困難で、たたデツドボリナヌムが倧きいこずか
ら、埮量の液䜓を連続しお安定した流量で送液す
るには適しおいない。そこで、この様な埮量の液
䜓を扱う堎合にはチナヌブポンプを甚いるのが普
通である。それはさおおき、䞊蚘流路切換装眮に
は、連続的に流れる詊料源ず范正時に甚いる基準
液䜓源が連続されおおり、通垞は詊料をセンサヌ
郚ぞ流しお連続枬定を行なう。䞀方センサヌの范
正を行なう堎合は、基準液䜓響からの流路がオヌ
プンずなり、センサヌには基準液䜓が流され、詊
料は流れをそらされおセンサヌ郚を通らずにドレ
むン郚ぞず流れる。かくするこずにより、センサ
ヌの范正時においおも、カテヌテルを倖す必芁が
なく、䞔぀詊料は流れた状態のたたなので、凝固
し易いずいう欠点も回避されおいる。
In order to avoid such drawbacks, Japanese Patent Laid-Open No. 52-
In 135795, a flow path switching device is installed in the flow path (using a tube pump) leading to the sensor.
However, it is said that pumps other than tube pumps can be used in the device of this invention, but in the case of a syringe pump other than a tube pump, for example, it is difficult to precisely align the phases of each minute flow due to large pulsations. Since the dead volume is large, it is not suitable for continuously delivering a small amount of liquid at a stable flow rate. Therefore, when handling such a small amount of liquid, a tube pump is usually used. Aside from that, the flow path switching device has a continuously flowing sample source and a reference liquid source used during calibration connected in series, and normally the sample is flowed to the sensor section for continuous measurement. On the other hand, when calibrating the sensor, the flow path from the reference liquid is opened, the reference liquid is allowed to flow through the sensor, and the flow of the sample is diverted and flows to the drain section without passing through the sensor section. In this way, even during sensor calibration, there is no need to remove the catheter, and the sample remains in a flowing state, thereby avoiding the disadvantage of easy coagulation.

たた、基準液䜓は詊料の垌釈率が䞀定の時に正
しい濃床倀を瀺すようにセンサヌを范正するもの
であるが、実際には流路チナヌブポンプの埮
劙な倉圢状により、垌釈率が蚭定した倀より倚小
ずれおそのたたでは枬定に誀差を生じる傟向にあ
るので、この先行技術では以䞋の劂き方法を採぀
おいる。即ち、カニナヌレから吞入された詊料の
緩衝液等による実際の垌釈率を怜知するために、
詊料ず同䞀もしくは同等ず芋做せる液を採取し、
䞀定の垌釈率にお垌釈しお范正甚詊料を䜜成し、
范正時の流路チナヌブポンプからセンサヌぞ
盎接流しお枬定倀を読み取り、カニナヌレから詊
料を流したずきの枬定倀ず比范するこずにより実
際の垌釈率を知る。
In addition, the reference liquid is used to calibrate the sensor so that it shows the correct concentration value when the dilution rate of the sample is constant, but in reality, due to the subtle deformation of the flow path (tube pump), the dilution rate is If the deviation is more or less than the value, it tends to cause errors in measurement, so this prior art adopts the following method. That is, in order to detect the actual dilution rate of the sample inhaled from the cannula with buffer solution, etc.
Collect a liquid that can be considered to be the same or equivalent to the sample,
Create a calibration sample by diluting it at a certain dilution rate,
The actual dilution rate can be determined by reading the measured value by flowing the sample directly from the flow path (tube pump) during calibration to the sensor and comparing it with the measured value when the sample was flowed from the cannula.

しかし、この先行技術特開昭52−135795
も、以䞋に述べる解決すべき欠点を含んでいる。
それらは詊料源ず基準液䜓源が別々の流路から成
぀おいるこずに垰因する。
However, this prior art (Japanese Patent Application Laid-Open No. 52-135795)
However, it also has the following drawbacks that need to be resolved.
This is due to the fact that the sample source and the reference liquid source are comprised of separate channels.

即ち、実際に䞀本のチナヌブポンプを長時間連
続しお甚いた堎合の流量等流れの状態の倉化の床
合は無芖できない倧きさを有しおおり、䟋えば10
時間連続しお䜿甚した堎合の流量の倉化は10を
越すこずも珍らしくはない。この流れの状態の倉
化の芁因ずしおは、チナヌブ自身の経時倉化チ
ナヌブポンプのロヌラヌ加圧によるず、チナヌ
ブ内壁に血球や蛋癜その他液䞭の䞍玔物等が付着
しお汚染されるこずに䟝るものず考えられる。こ
の内前者ではチナヌブの肉厚の違いや材質の違
い、曎にはチナヌブポンプの構造の埮劙な差異等
により、各チナヌブの経時倉化は各々異な぀おい
るので、別々の流路系を甚いた堎合には双方の倉
化の床合いを揃えるこずは䞍可胜ず蚀぀おもよ
い。たた埌者の芁因に぀いおも、別々の流路系を
甚いた堎合には各流路系、即ち詊料源ず基準液䜓
源ずでは流れる液䜓の質が異るので䞀局差が生じ
易い。
In other words, when one tube pump is actually used continuously for a long time, the degree of change in flow conditions such as flow rate is large enough that it cannot be ignored.
It is not uncommon for the flow rate to change by more than 10% when used continuously for hours. The causes of this change in flow state are changes in the tube itself over time (due to tube pump roller pressure), and contamination due to adhesion of blood cells, proteins, and other impurities in the liquid to the inner wall of the tube. it is conceivable that. In the former case, the changes over time of each tube are different due to differences in tube wall thickness, material, and even subtle differences in the structure of the tube pump, so if separate flow path systems are used, It can be said that it is impossible to equalize the degree of change on both sides. Regarding the latter factor, when separate flow path systems are used, the quality of flowing liquid is different between each flow path system, that is, the sample source and the reference liquid source, so differences are more likely to occur.

埓぀お、連続枬定䞭における詊料源の流路を基
準液䜓源の流路での流れの状態の倉化の仕方が異
なるこずにより、詊料ず緩衝液ずの垌釈率等も枬
定時に埐々に倉化するので、枬定の開始時に実際
の垌釈率を枬定しお行な぀た范正された状態は
埐々に乱れおくる。ずころが、詊料源の流路ず基
準液䜓源の流路の経時的な流れの状態の倉化は党
く独立しおおり、互いに補償するこずはできな
い。たた、基準液䜓にお随時范正が可胜なのはセ
ンサヌの感床だけであり、詊料源ず基準液䜓源ず
の流路の倉動分の差異、䟋えば詊料液ず緩衝液ず
の混合比即ち垌釈率が倉化したずしおも、それは
補償されず、その堎合の枬定倀は誀りを含んだも
のずなる。
Therefore, due to the difference in the way the flow conditions change between the sample source flow path and the reference liquid source flow path during continuous measurements, the dilution ratio of the sample and buffer solution will gradually change during measurement. , the calibrated conditions established by measuring the actual dilution rate at the beginning of the measurement gradually become disturbed. However, changes in the flow conditions over time in the sample source flow path and the reference liquid source flow path are completely independent and cannot compensate for each other. In addition, only the sensitivity of the sensor can be calibrated at any time using the reference liquid, and the difference due to fluctuations in the flow paths between the sample source and the reference liquid source, for example, the mixing ratio of the sample liquid and the buffer solution, that is, the dilution rate, has changed. However, it is not compensated for and the measured value in that case will contain an error.

たた、前蚘詊料ず同䞀もしくは同等ず芋做せる
范正甚詊料を甚いた垌釈率補償手段は、詊料䞭の
グルコヌス濃床が范正しおいる時間内に倉動しな
いず芋做せる堎合には有効であるが、実際には枬
定䞭にグルコヌス濃床が経枈的な倉化を瀺すもの
が普通であり、たたどのように倉動するかも知れ
ないものであるから、枬定䞭の詊料ず同等の范正
甚詊料を䜜成しお甚いるこずは実際には困難であ
る。たた、䞊蚘の劂く枬定䞭に范正甚詊料を䜜成
しお甚いるずしおも、その䜜成自䜓が手間のかか
る操䜜であるうえに、范正に芁する時間内の詊料
のグルコヌス濃床の倉動分は、そのたた枬定誀差
ずな぀お衚われおしたう。
Furthermore, a dilution rate compensation method using a calibration sample that is considered to be the same or equivalent to the sample described above is effective if the glucose concentration in the sample can be assumed not to fluctuate during the time being calibrated. In reality, the glucose concentration usually shows economical changes during measurement, and it may change in any way, so it is necessary to prepare a calibration sample equivalent to the sample being measured. It is difficult to use in practice. Furthermore, even if a calibration sample is prepared and used during measurement as described above, the preparation itself is a time-consuming operation, and the fluctuations in the glucose concentration of the sample during the time required for calibration will result in measurement errors. It becomes apparent.

即ち、チナヌブポンプの流量が、各チナヌブ毎
に経時的に倉わる心配があるので、この倉化を逐
次補償するこずが枬定の正確さの䞊で必芁である
が、前述の先行技術における范正甚詊料は枬定䞭
に逐次䜜成されお甚いられるのに適圓なものでは
なく逐次補償は䞍可胜である。
That is, since there is a concern that the flow rate of the tube pump may change over time for each tube, it is necessary to compensate for this change sequentially for measurement accuracy, but the calibration sample in the prior art described above It is not suitable for being created and used sequentially during measurements, and sequential compensation is not possible.

本発明は、これら先行技術を含む埓来技術の欠
点を解消すくなされたものであり、詊料液ず他の
范正液ず流路チナヌブポンプを共通にし、装
眮の范正も逐次行なうこずによ぀お血糖倀を長時
間連続しお正確にモニタヌする装眮を提䟛するも
のである。
The present invention has been made to eliminate the drawbacks of the prior art including these prior art, and by sharing a flow path (tube pump) with the sample liquid and other calibration liquid, and by sequentially calibrating the device. The present invention provides a device that accurately monitors blood sugar levels continuously over a long period of time.

以䞋、本発明を図面に基づいお詳现に説明す
る。第図は本発明に係る血液成分の自動連続枬
定装眮の構成の䟋を瀺すブロツク図であり、本
装眮は採血郚、范正液送液郚、サンプリング
機構、緩衝液送液郚、枬定郚、操䜜郚お
よび枬定・制埡回路郚等から構成される。
Hereinafter, the present invention will be explained in detail based on the drawings. FIG. 1 is a block diagram showing an example of the configuration of an automatic continuous measuring device for blood components according to the present invention. 4, a measurement section 5, an operation section 6, a measurement/control circuit section 7, etc.

たず採血郚は、デむスポヌザブル二重管カテ
ヌテル、抗凝血薬、抗凝血薬送液甚チナ
ヌブポンプP1、採血甚チナヌブポンプP2、抗凝
血薬送液チナヌブ、採血チナヌブより構
成される。そしお被隓者図瀺略からの血液
は、カテヌテルの先端郚においお、抗凝血薬
で垌釈され抗凝血凊理されながら連続的に採
血されお、詊料液カツプぞ送液される。尚、
抗凝血薬はヘパリン等を生理食塩氎に溶かし
たものである。詊料液カツプは、液量が䞀定
量以䞊になるず䜙分な量はオヌバヌフロヌしおド
レむンされ、垞に新鮮な䞀定量の詊料液を保
持するようになされおいる。たたチナヌブポンプ
P1ずP2は同軞に駆動される。尚前述した劂くチ
ナヌブおよびチナヌブポンプP1P2
の特性を完党に揃えるこずは非垞に難しいもの
で、ポンプP1P2による抗凝血薬の送液量ず血
液の吞匕量の正確な比率、垌釈率を決定するた
め、濃床既知の暙準液であるスタンダヌド液
を甚いる。垌釈率の決め方に぀いおは埌述す
る。たた、採血郚の䞡チナヌブの圢状
に䟝存されない䞀定した倀の垌釈率を埗るこず
は、抗凝血薬の濃床を高めお量を少なくしお
垌釈率をに近づけるこずによ぀おある皋床期埅
できる。曎に本実斜䟋では、チナヌブ
の特性を揃えるためにデむスポヌザブル型の二重
管カテヌテルを甚いおいるが、単管型のカテヌテ
ルを甚いおも良いこずは勿論であり、この堎合に
は単管の内壁を、ヘパリン等の抗凝血薬、たたは
線溶酵玠䞻にりロキナヌれでコヌテむングす
るこずにより、採血郚での垌釈率の問題を解決す
るこずもできる。
First, the blood collection section 1 includes a disposable double tube catheter 11, an anticoagulant 12, a tube pump P 1 for feeding anticoagulant, a tube pump P 2 for blood sampling, a tube 13 for feeding anticoagulant, and blood sampling. It is composed of a tube 14. Blood from a subject (not shown) is continuously collected at the distal end of the catheter 11 while being diluted with an anticoagulant 12 and subjected to anticoagulation treatment, and is sent to a sample liquid cup 15. still,
The anticoagulant 12 is heparin or the like dissolved in physiological saline. When the amount of liquid in the sample liquid cup 15 exceeds a certain level, the excess amount overflows and is drained, so that a certain amount of fresh sample liquid 16 is always retained. Also tube pump
P 1 and P 2 are driven coaxially. As mentioned above, the tubes 13 and 14 and the tube pumps P 1 and P 2
It is very difficult to perfectly match the characteristics of anticoagulants, and in order to determine the exact ratio between the amount of anticoagulant pumped by pumps P1 and P2 and the amount of blood drawn, as well as the dilution rate, we need to use standards with known concentrations. standard 2 liquids 1 liquid
7 is used. How to determine the dilution rate will be described later. Furthermore, in order to obtain a dilution rate of a constant value that is not dependent on the shapes of both tubes 13 and 14 in the blood sampling section, the concentration of the anticoagulant 12 is increased and the amount is decreased to bring the dilution rate close to 1. You can expect it to some extent. Furthermore, in this embodiment, tubes 13, 14
Although a disposable double-tube catheter is used in order to have the same characteristics, it goes without saying that a single-tube catheter may also be used. Coating with an anticoagulant or fibrinolytic enzyme (mainly urokinase) can also solve the problem of dilution at the blood collection site.

范正液送液郚は、逐次范正に必芁な暙準液た
るスタンダヌド液ずベヌス液を、チナ
ヌブポンプP3P4により倫々暙準液カツプ
およびベヌス液カツプに連続的に送液しおい
る。この暙準液カツプずベヌスは、詊料
液カツプず同様に垞に新鮮な䞀定量の各々の
液で充たされおおり、䜙分な液はオヌバヌフロヌ
しお埌述の劂くドレむンされる。尚本実斜䟋では
ベヌス液ずしお埌述する緩衝液を流甚し
おいるので、緩衝液溜りから送液されるよう
にな぀おいるが、別のベヌス液溜りを蚭け、そこ
から送液しおも良いこずは勿論である。スタンダ
ヌド液は、スタンダヌド液溜りから
送液されおいる。たた図䞭はスタンダヌド液
送り甚のチナヌブ、はベヌス液送り甚のチナ
ヌブである。
The calibration liquid feeding unit 2 supplies standard liquid 21 and base liquid 22, which are standard liquids necessary for sequential calibration, to standard liquid cups 23 using tube pumps P 3 and P 4 , respectively.
and the base liquid cup 24 is continuously fed. The standard liquid cup 23 and the base 24, like the sample liquid cup 15, are always filled with fresh constant amounts of each liquid, and excess liquid overflows and is drained as described below. In this embodiment, a buffer solution 41, which will be described later, is used as the base solution 22, so the solution is delivered from the buffer solution reservoir 42, but it is also possible to provide another base solution reservoir and send the solution from there. Of course, it is good to do so. The standard 1 liquid 21 is fed from the standard 1 liquid reservoir 21. Further, in the figure, 25 is a tube for feeding the standard liquid, and 26 is a tube for feeding the base liquid.

サンプリング機構は、サンプリングノズル
がチナヌブポンプP11の䜜甚により、予め枬
定・制埡回路で定められた順序で詊料液カツプ
、暙準液カツプおよびベヌス液カツプ
から液を吞匕し、ノブルチナヌブを通しお
枬定郚のマニホルドM2ぞ送液するように蚭蚈
されおいる。その詳现な䜜動は埌述する。尚、別
の掗浄槜を蚭けおもよく、その堎合にはノズル
は掗浄槜にも所定の順序で浞されるように蚭定
される。
The sampling mechanism 3 includes a sampling nozzle 3
1 is a tube pump P 11 which pumps sample liquid cup 15, standard liquid cup 23 and base liquid cup 2 in the order predetermined by measurement/control circuit 7.
It is designed to suck the liquid from 4 and send it to the manifold M 2 of the measuring section 5 through the knob tube 32. Its detailed operation will be described later. In addition, another cleaning tank may be provided, in which case the nozzle 3
1 are also set to be immersed in a cleaning tank in a predetermined order.

緩衝液送液郚では、緩衝液を予め熱亀換
噚に通しお恒枩化したのち、マニホルドM1
により二分し、䞀方をベヌス液カツプぞ送぀
おベヌス液ずし、他の䞀方は詊料液たたは
スタンダヌド液、ベヌス液ずの混合甚ずしお
マニホルドM2ぞ倫々連続しお送液される。尚図
䞭、P5はチナヌブを通しお緩衝液を熱
亀換噚に送るチナヌブポンプ、P6はチナヌ
ブを通しおマニホルドM2に空気を送り蟌む
チナヌブポンプであり、このチナヌブポンプP5
P6は、䞊述した范正液送液郚のチナヌブポン
プP3P4および埌述するドレむン甚チナヌブポ
ンプP7ず同軞に駆動される。
In the buffer solution feeding section 4, the buffer solution 41 is passed through a heat exchanger 43 in advance to constant temperature, and then transferred to the manifold M1.
One part is sent to the base liquid cup 24 as the base liquid 22, and the other part is continuously sent to the manifold M2 for mixing with the sample liquid (or standard 1 liquid, base liquid). . In the figure, P 5 is a tube pump that sends the buffer solution 41 to the heat exchanger 43 through the tube 44, and P 6 is a tube pump that sends air to the manifold M 2 through the tube 45 .
P 6 is driven coaxially with the tube pumps P 3 and P 4 of the calibration liquid feeding section 2 described above and the drain tube pump P 7 described later.

次に枬定郚には䞊述した劂くマニホルドM2
が蚭けられおおり、恒枩化された緩衝液が緩
衝送液郚のマニホルドM1を通぀お送液されお
くる。マニホルドM2には緩衝液の流れを分
節するための空気も送り蟌たれ、この分節された
緩衝液に詊料液たたはスタンダヌド液、
ベヌス液が泚入され、枬定液ずな぀お流れおい
く。空気分節は、枬定液の拡散防止ずミキシング
効果を目的ずしたものであり、曎に管壁の掗浄効
果も期埅できる。枬定液はミキシングコむル
を通過するこずによ぀お転倒混和されおのち、䟋
えばGOD固定化膜ず過酞化氎玠電極の組合わせ
によりなるグルコヌス濃床枬定甚の固定化酵玠膜
電極に送られ、グルコヌス濃床が枬定され
る。この堎合、電極には気胞が脱泡されるこ
ずなく空気局ず枬定液局が亀互に䞊んで流れ、空
気分節が電極を含む党おの枬定系を掗浄しな
がら枬定が続けられるもので、各枬定液の盞互汚
染が極少化される。枬定を終぀た液および気泡
は、ドレむンカツプを介しおドレむン甚チナ
ヌブポンプP7によりドレむンボルトぞず排
出される。このドレむンカツプには、先述し
た各カツプをオヌバヌフロヌし
た各液も、詊料液オヌバヌフロヌ甚チナヌブ
、同チナヌブポンプP8、スタンダヌド液オ
ヌバヌフロヌ甚チナヌブ、同チナヌブポンプ
P9、ベヌス液オヌバヌフロヌ甚チナヌブ、
同チナヌブポンプR10によ぀お送液され、同じく
ドレむンボルトぞドレむンされる。尚、䞊蚘
各チナヌブポンプP8P9P10ずサンプリング甚
チナヌブポンプP11は同軞に駆動される。
Next, the measuring section 5 is equipped with a manifold M2 as described above.
A constant temperature buffer solution 41 is sent through the manifold M 1 of the buffer solution delivery section 4 . Air is also sent into the manifold M2 to divide the flow of the buffer solution 41, and the sample solution 16 (or standard 1 solution,
The base liquid) is injected and flows as the measurement liquid. The purpose of the air segment is to prevent the measurement liquid from spreading and provide a mixing effect, and can also be expected to have a cleaning effect on the tube wall. The measuring liquid is mixed in the mixing coil 51.
After being inverted and mixed by passing through, for example, it is sent to an immobilized enzyme membrane electrode 52 for measuring glucose concentration, which is a combination of a GOD immobilized membrane and a hydrogen peroxide electrode, and the glucose concentration is measured. In this case, an air layer and a measurement liquid layer flow alternately through the electrode 52 without defoaming, and measurement can be continued while the air segment cleanses the entire measurement system including the electrode 52. Mutual contamination of each measurement liquid is minimized. The liquid and air bubbles that have been measured are discharged via the drain cup 53 to the drain bolt 54 by the drain tube pump P7 . The drain cup 53 also contains the liquids that have overflowed the cups 15, 23, and 24 described above from the sample liquid overflow tube 1.
8. Same tube pump P 8 , standard 1 liquid overflow tube 27, same tube pump
P 9 , base liquid overflow tube 28,
The liquid is sent by the same tube pump R 10 and drained to the drain bolt 54 as well. The tube pumps P 8 , P 9 , P 10 and the sampling tube pump P 11 are coaxially driven.

操䜜郚は、装眮の操䜜党おを叞ど぀おおり、
操䜜スむツチやキヌボヌドにより装眮の
操䜜が行なわれる。
The operation unit 6 controls all operations of the device,
The device is operated using an operation switch 61 and a keyboard 62.

最埌に枬定・制埡回路郚は、―倉換噚
、―倉換噚、マむクロコンピナヌタヌ
および衚瀺噚から成り、グルコヌス電極
からの出力信号を凊理し、逐次范正した埌の
血糖倀を衚瀺噚に逐次衚瀺するずずもに、サ
ンプリング機構の動䜜の制埡を行な぀おいる。
Finally, the measurement/control circuit section 7 includes an IV converter 7
1. Consists of an A-D converter 72, a microcomputer 73, and a display 74, which processes the output signal from the glucose electrode 52 and sequentially displays the blood glucose level after sequential calibration on the display 74. The operation of the robot is controlled.

次に、操䜜手順に埓぀お本発明を説明する。 Next, the present invention will be explained according to the operating procedure.

たず、各范正液等を準備をしたのち、操䜜郚
の電源スむツチSWを入れ、党おのチナヌブポン
プP1〜P11を䜜動させ、キヌボヌドで日付や
番号等をマむクロコンピナヌタヌに入力させ
る。所定のりオヌムアツプが完了するず、操䜜ス
むツチのスタンダヌドスむツチが点灯
し、ポンプスむツチが消灯しお各ポンプは
停止する。次いでCALBスむツチを抌すず
再び各ポンプは運転を開始し、サンプリング機構
も䜜動をはじめる。カテヌテルをスタンダ
ヌド液に挿入し、液を吞入しおから詊
料液カツプに流入するたでに芁する遅れ時間
をストツプりオツチ等で蚈時し、この時間をキヌ
ボヌドから入力しお埌の枬定に甚いる。遅れ
時間は、カテヌテルの仕様が倉らない限りタむ
プおよびチナヌブ長さの倉曎がない限り実質的
に䞀定であるず芋做せるので、䞀床枬定すれば、
その埌のカテヌテル亀換時においおは、その倀だ
けを入力すればよい。匕き続き、濃床既知である
スタンダヌド液を詊料液の代りに枬定し、
採血郚での血液ず抗凝血薬ずの垌釈率を決
定しおマむクロコンピナヌタヌに蚘憶させ、
以埌の枬定に甚いる。採血での垌釈率の枬定
は、抗凝血薬を内壁にコヌテむングした単管型の
カテヌテルを甚いるこずなどにより省略するこず
もできる。
First, after preparing each calibration solution, etc.,
Turn on the power switch SW, operate all tube pumps P 1 to P 11 , and enter the date, number, etc. into the microcomputer 73 using the keyboard 62. When the predetermined warm-up is completed, the standard switch 612 of the operation switch 61 lights up, the pump switch 611 goes out, and each pump stops. Next, when the CALB switch 613 is pressed, each pump starts operating again, and the sampling mechanism 3 also starts operating. Insert the catheter 11 into the standard 2 liquid 17, measure the delay time required from inhaling the liquid 17 until it flows into the sample liquid cup 15 using a stopwatch, etc., and input this time from the keyboard 62 for later measurements. use Once measured, the lag time can be assumed to be essentially constant unless the catheter specifications change (unless the type and tube length change).
When replacing the catheter thereafter, only that value needs to be input. Subsequently, standard 2 liquid 17 of known concentration was measured instead of the sample liquid,
Determining the dilution rate of the blood and anticoagulant 12 in the blood collection section 1 and storing it in the microcomputer 73,
Used for subsequent measurements. The measurement of the dilution rate in blood collection 1 can also be omitted by using a single-tube catheter whose inner wall is coated with an anticoagulant.

カテヌテルを患者にセツトするず、血液が
䞊蚘垌釈率にお垌釈されるずずもに抗凝血凊理さ
れ、詊料液カツプに連続的に送液される。カ
ツプの詊料液の液量が䞀定量以䞊になる
ず、䜙分な液はオヌバヌフロヌしおドレむンボル
トぞ排出され、カツプ内には垞に䞀定量
の新鮮な詊料液が保持される構造にな぀おい
る。埓぀お、ノズル、詊料液、スタンダ
ヌド液およびベヌス液を順次繰り返し
吞匕するが、その際の盞互汚染は回避される。
When the catheter 11 is set in the patient, the blood is diluted at the above-mentioned dilution rate, anticoagulated, and continuously fed into the sample liquid cup 15. When the amount of sample liquid 16 in cup 15 exceeds a certain level, the excess liquid overflows and is discharged to drain bolt 54, so that a certain amount of fresh sample liquid 16 is always retained in cup 15. It's summery. Therefore, although the nozzle 31, the sample liquid 16, the standard 1 liquid 31, and the base liquid 22 are repeatedly sucked in sequence, mutual contamination is avoided.

次にチ゚ツクスむツチを抌すず、患者の
血糖倀が連続的に枬定される。
Next, when the check switch 614 is pressed, the patient's blood sugar level is continuously measured.

先ず、サンプリングノズルは暙準液カツプ
から䞀定量のスタンダヌド液を所定の
方匏で吞入する。䟋えば、第図の劂く空気節分
で぀に分けられた状態で20秒間吞入する。次い
でノズルはベヌス液カツプに移り所定の
状態、䟋えば第図の劂く空気分節で぀に分け
られた状態で40秒間ベヌス液を吞入する。次
に、ノズルは詊料液カツプに入いり、所
定の方匏䟋えば第図の劂くスタンダヌド液
の堎合ず同様に空気分節で぀に分けられた状
態で20秒間詊料液を吞入する。曎にノズル
はベヌス液カツプに入いり、前蚘同様の所
䜜で40秒間ベヌス液に吞入する。その埌、ノ
ブルは再び暙準液カツプに入いり、前蚘
動䜜円繰り返す。尚、第図䞭、AIRは空気分
節、STD、BASE、SAMは倫々䞊蚘空気分節で
分けられたスタンダヌド液、ベヌス液
、詊料液の液泡を瀺し、たた空気分節はノ
ズルを各液に出入させるこずにより適宜倧き
さのものを任意間隔、任意個数䜜るこずができ
る。
First, the sampling nozzle 31 sucks a certain amount of standard 1 liquid 21 from the standard liquid cup 23 in a predetermined manner. For example, as shown in Figure 2, inhale for 20 seconds with the air divided into two parts. Next, the nozzle 31 moves to the base liquid cup 24 and sucks in the base liquid 22 for 40 seconds in a predetermined state, for example, in a state in which the air is divided into eight air segments as shown in FIG. Next, the nozzle 31 enters the sample liquid cup 15 and performs standard 1 liquid 2 in a predetermined manner, for example, as shown in FIG.
As in case 1, the sample liquid 16 is inhaled for 20 seconds while being divided into two by the air segment. Furthermore, nozzle 3
1 enters the base liquid cup 24 and sucks it into the base liquid 22 for 40 seconds using the same action as described above. Thereafter, the knob 31 enters the standard solution cup 23 again and repeats the above operating circle. In Figure 2, AIR is the air segment, and STD, BASE, and SAM are the standard 1 liquid 21 and base liquid 2, which are separated by the above air segment.
2. The bubbles of the sample liquid 16 are shown, and air segments of an appropriate size can be created at arbitrary intervals and in any number by moving the nozzle 31 in and out of each liquid.

このノズルの移動は、䟋え第図に
瀺す劂きサンプリング機構により行なわれる。
たず、ノズルはノズルアヌム先端郚の
垂盎透孔に嵌挿固定され、その䞊郚にはサ
ンプリング甚チナヌブポンプP11に連なるノズル
チナヌブが嵌蟌されおいる。䞀方、ノズルア
ヌムは、その埌端郚の偎郚に蚭けた長
孔に暪嵌した支軞ず、ノズルアヌム
先端郚偎方に突蚭したピンを支承する円板
により支持される。このピンは、円
板の呚瞁郚図では巊端の透孔に
遊嵌され、該円板がモヌタヌによ
り、ある角床䟋えば180床回動するに埓぀お、ピ
ンに連なるノズルアヌム先端郚を第
図の劂く円匧状に前埌動させる。即ち、この
円板の回動により、ノズルおよびノズ
ルアヌムが実線䜍眮ず砎線䜍眮を埀埩し、ノ
ズルは実線䜍眮にある堎合にベヌス液カツプ
に、たた砎線䜍眮にある堎合に暙準液カツプ
および詊料液カツプに倫々挿入される。
尚、暙準液カツプず枬定装眮カツプはス
ラむドベヌス䞊に茉眮され、該スラむドベヌ
スはモヌタにより回転させる偏心カム
およびスプリングたたはラツクずピ
ニオン図瀺略により前埌動しお、䞡カツプ
を順次吞匕䜍眮を持぀おくる。これらア
ヌムおよびスラむドベヌスの動きはマむ
クロコンピナヌタヌによ぀お制埡されおい
る。ノズルアヌムの駆動は、䞊蚘の他に、フ
オトマむクロセンサヌずステツピングモヌタの組
合せなどの電気的、機械的な手段で円板を
回動させるものが考えられる。
This movement of the nozzle 31 is performed by a sampling mechanism 3 as shown in FIGS. 3a and 3b, for example.
First, the nozzle 31 is fitted and fixed into a vertical through hole 331 of the nozzle arm tip 33a, and a nozzle tube 32 connected to the sampling tube pump P11 is fitted into the upper part of the nozzle 31. On the other hand, the nozzle arm 33 is supported by a support shaft 333 fitted laterally into a long hole 332 provided on the side of the rear end 33b, and a disk 335 that supports a pin 334 protruding from the side of the tip of the nozzle arm. Ru. This pin 334 is loosely fitted into a through hole 336 at the peripheral edge of a disc 335 (the left end in the figure), and as the disc 335 is rotated by a certain angle, for example, 180 degrees, by a motor 337, the pin 334 is connected to the pin 334. The nozzle arm tip 33a is moved back and forth in an arc as shown in FIG. 3a. That is, due to the rotation of this disk 335, the nozzle 31 and the nozzle arm 33 reciprocate between the solid line position and the broken line position, and the nozzle 31 is applied to the base liquid cup 24 when it is in the solid line position, and to the standard liquid cup 24 when it is in the broken line position. They are inserted into the liquid cup 23 and the sample liquid cup 15, respectively.
The standard liquid cup 23 and measuring device cup 15 are placed on a slide base 34, and the slide base 34 is moved back and forth by an eccentric cam 341 and a spring 342 rotated by a motor 343 or by a rack and pinion (not shown). , both cups 2
3 and 15 are sequentially brought to the suction position. The movements of these arms 33 and slide base 34 are controlled by a microcomputer 73. In addition to the above-described method, the nozzle arm 33 may be driven by electrical or mechanical means such as a combination of a photomicro sensor and a stepping motor, which rotates the disk 335.

次に本実斜䟋では、第図からもわかるよう
に、぀の枬定サむクルに分を芁しおいる。即
ち本発明は、厳密な意味では詊料液を連続しお枬
定しおいないが、詊料液䞭の血糖倀は、第図に
その䟋を瀺す劂くかなり滑らかに倉化するもの
であり、この皋床の時間間隔で急激に倉化するこ
ずはなく、分間隔での枬定で十分に連続ず同等
の意矩を有する枬定ができるものである。たた本
発明は、枬定サむクルが分間隔であるこず自䜓
に特城を有するものではなく、この呚期をより短
かく、もしくはより長くしおも良いこずは勿論で
ある。
Next, in this example, as can be seen from FIG. 2, one measurement cycle requires two minutes. That is, although the present invention does not measure the sample liquid continuously in a strict sense, the blood sugar level in the sample liquid changes fairly smoothly as shown in FIG. There is no sudden change in the time interval of 2 minutes, and measurement at 2 minute intervals is sufficient to carry out measurements equivalent to continuous measurement. Furthermore, the present invention is not characterized by the fact that the measurement cycle is at 2-minute intervals; it goes without saying that this cycle may be shorter or longer.

以䞊の劂くしお埗られた䟋えば第図に瀺すス
タンダヌド液、ベヌス液および詊料液
の流れは、党く同䞀の流路即ちノズルチナヌ
ブを通぀おマニホルドM2ぞ送液され、ここ
で各液は恒枩化された緩衝液にお同様に垌釈
され、空気局によ぀お分解され、倫々スタンダヌ
ド液甚枬定液、ベヌス液甚枬定液、および詊料液
甚枬定液ずな぀おミキシングコむルぞ送られ
おいく。該ミキシングコむルで混合均䞀化さ
れた各枬定液は、空気局によ぀お分節されたたた
グルコヌス電極ぞず順次流入し、各々の枬定
液の枬定がなされる。
For example, the flows of standard 1 liquid 21, base liquid 22 , and sample liquid 16 shown in FIG. Here, each solution is similarly diluted with a constant-temperature buffer solution 41, decomposed by an air layer, and mixed into a measurement solution for the standard solution, a measurement solution for the base solution, and a measurement solution for the sample solution. It is sent to the coil 51. Each measurement liquid mixed and homogenized by the mixing coil 51 sequentially flows into the glucose electrode 52 while being divided by an air layer, and each measurement liquid is measured.

そしお、電極からの信号は、―倉換噚
、―倉換噚を介しおマむクロコンピ
ナヌタヌに至る。それらの信号は、各々スタ
ンダヌド液の枬定倀即ち暙準倀ず、ベヌス
液の枬定倀即ちベヌス倀ず、詊料液の倀
即ち詊隓倀を衚わしおいる。これらの぀の枬定
倀は、ノズル以降の党お枬定流路においお、
各液が党く同䞀の流路を通り、
同じ様に垌釈され枬定された倀であるこずに泚目
すべきである。即ち、前述の劂くチナヌブポンプ
を甚いた流路においおは、流れの状態が経時的に
倉化するこずが普通に起こるが、ここでは液
の流路が党く同䞀であるこずによ
り、流路即ちノズルチナヌブの流れの状
態の倉化は互いに打ち消し合぀お、その圱響を補
償できる。詊料液ず范正液ずの流路を別々にしお
堎合には流れの状態の倉化を補償し埗ないこずは
前述の通りである。
The signal from the electrode 52 then reaches a microcomputer 73 via an IV converter 71 and an AD converter 72. These signals represent the measured value of the standard 1 liquid 21, that is, the standard value, the measured value of the base liquid 22, that is, the base value, and the value of the sample liquid 16, that is, the test value, respectively. These three measured values are obtained in all measurement channels after the nozzle 31.
Each liquid 21, 22, 16 passes through the same flow path,
It should be noted that the values were similarly diluted and measured. That is, as mentioned above, in a flow path using a tube pump, it is common for the flow state to change over time, but in this case, three liquids, two
Since the flow paths 1, 31, and 16 are exactly the same, changes in the flow conditions of the flow paths (ie, nozzle tube 32) can cancel each other out and compensate for their effects. As mentioned above, if the flow paths for the sample liquid and the calibration liquid are separated, changes in flow conditions cannot be compensated for.

ここで、電極からの出力信号を甚いお血糖
倀を算出する方匏に぀き第図を甚いお説明す
る。
Here, a method for calculating the blood sugar level using the output signal from the electrode 52 will be explained using FIG.

暪軞は時間であり、瞊軞は電極からの出力
より詳しくは出力の移動平均カりント数であ
る。第図䞭はスタンダヌド液を枬定した
時の最倧倀であり、SBは詊料液を枬定した時の
最倧倀、はスタンダヌド液の盎埌のベヌス液
を枬定した時の最小倀を衚わしおいる。先述した
採血郚での垌釈率を第図に基づき説明する
ず、 S2−S1−×C1C2で衚わされるものであり
、 ここでS2はスタンダヌド液をした時の最
倧倀、C1およびC2は倫々スタンダヌド液およ
び液の濃床であり共に既知である。
The horizontal axis is time, and the vertical axis is the output from the electrode 52 (more specifically, the moving average count number of the output). In Figure 5, S1 is the maximum value when measuring the standard 1 solution, SB is the maximum value when measuring the sample solution, and B is the minimum value when measuring the base solution immediately after the standard 1 solution. ing. The dilution rate D in the blood collection section 1 mentioned above is explained based on FIG . The maximum values, C 1 and C 2 , are the concentrations of standard solution 1 and solution 2, respectively, and are both known.

詊料液血糖倀・は、この盎前のS1の倀お
よびの倀を甚いお衚わされ、正味の詊隓倀
SB―が盎前の正味の暙準倀S1―のどの䜍の
割合かに基づいお決定される。即ち ・×SB−S1−×C1である。
The sample liquid blood sugar level B/G is expressed using the value of S1 and the value of B just before this, and the net test value
SB-B is determined based on the percentage of the previous net standard value S1-B. That is, B.G=1/D×SB−B/S1−B× C1 .

尚、枬定に甚いるS1およびの倀は、別の求
め方䟋えば第図においお詊隓倀の盎前の倀ず
盎埌にS1倀を甚いお算出するようにしおもよい。
ただ、チナヌブポンプを甚いる堎合には流れの状
態が経時的に倉化するこずが普通なので、逐次、
枬定のスパン即ちS1−を范正する必芁があり、
甚いるS1倀及びび倀は、枬定察象信号である
SBに近接した個所のものを甚いるこずが有利で
あるこずは明らかである。
The values of S1 and B used in the measurement may be calculated using another method, for example, using the B value immediately before the test value and the S1 value immediately after the test value in FIG.
However, when using a tube pump, it is normal for the flow condition to change over time, so
It is necessary to calibrate the span of measurement, i.e. S1-B,
The S1 value and B value used are the signals to be measured.
It is clear that it is advantageous to use a location close to the SB.

本発明では、以䞊の劂く逐次范正しおいるの
で、流路の流れの状態が倉動しおもその圱響を受
けにくいものであり、たた、その逐次范正も、ス
タンダヌド液ずベヌス液の皮の范正液を甚
い、䞔぀これら范正液ず詊料液が党く同䞀の流路
を流れおいるため極めお有効なものである。
In the present invention, since the calibration is performed sequentially as described above, it is less affected by changes in the flow state of the channel, and the sequential calibration is also performed using two types of standard liquid and base liquid. This method is extremely effective because it uses the same calibration solution and the calibration solution and sample solution flow in exactly the same flow path.

かくしお、逐次、䟋えば分毎に枬定された詊
料液の血糖倀は、衚瀺噚に、䟋えば第図の
劂き棒グラフ状に衚瀺されるSTARTモヌド。
ここで瞊軞は時間、暪軞は血糖料BLOOD
GLUCOSEmgd1である。
In this way, the blood glucose level of the sample liquid measured sequentially, for example every two minutes, is displayed on the display 74 in the form of a bar graph as shown in FIG. 6, for example (START mode).
Here, the vertical axis is time, and the horizontal axis is blood sugar charge (BLOOD
GLUCOSE (mg/d1)).

尚、操䜜スむツチには、スタヌトスむツチ
も蚭けられおおり、各皮の負荷詊隓に甚い
るのに適しおいる。䟋えばOGTT経口糖負荷詊
隓枬定の堎合、糖負荷の開始時にスタヌトスむ
ツチをONにするず、この時より蚈時し、
枬定は前蚘チ゚ツクスむツチの堎合ず同様
に進められ、枬定倀が時間経過ず共に埗られる。
たた、キヌボヌドにより、OGTTモヌドで
の枬定結果衚瀺を指定するず、糖負荷埌30分埌の
血糖倀、60分埌の血糖倀、90分埌の血糖倀、120
分埌の血糖倀ずいう実時間圓りの血糖倀は勿論、
分毎の血糖倀、時間における党血糖量、22時
間内の最高濃床倀ずその出珟時間が、時間の枬
定終了の埌衚瀺される。第図はその䟋である
第図のものずは別怜前。尚、第図のグラフ
を、時間軞を短かくしお衚瀺したものが第図で
あり、第図に比べおピヌクが刀りやすいが、第
図のグラフを第図のグラフに代えお、あるい
は䞊行しお衚瀺させるこずができる。
Note that the operation switch 61 is also provided with a start switch 615, and is suitable for use in various load tests. For example, in the case of OGTT (oral glucose tolerance test) measurement, if the start switch 615 is turned on at the beginning of glucose tolerance, the time will start from this time.
Measurement proceeds in the same manner as with the check switch 614, and measured values are obtained over time.
In addition, if you specify the measurement result display in OGTT mode using the keyboard 62, the blood sugar level 30 minutes after glucose loading, the blood sugar level 60 minutes later, the blood sugar level 90 minutes later, 120
Of course, the blood sugar level per minute, which is the blood sugar level per actual time,
The blood sugar level every 2 minutes, the total blood sugar amount for 2 hours, the highest concentration value within 22 hours and its appearance time are displayed after 2 hours of measurement. Figure 4 is an example (before the separate examination from Figure 6). In addition, Figure 7 is a representation of the graph in Figure 4 with the time axis shortened, and although the peaks are easier to see than in Figure 4, it is possible to replace the graph in Figure 7 with the graph in Figure 4. , or can be displayed in parallel.

電極で枬定を終えた液および気泡は、ドレむン
カツプを介しおドレむンボルトぞ排液さ
れる。ドレむンボルトには各カツプ
をオヌバヌフロヌした各液もドレむンさ
れるこずは䞊述の通りである。
The liquid and bubbles that have been measured by the electrodes are drained to the drain bolt 54 via the drain cup 53. Each cup 15, 2 is attached to the drain bolt 54.
As described above, the liquids that overflowed through 3 and 24 are also drained.

䞀連の枬定が終了するずストツプスむツチ
を抌すこずにより装眮の運転は停止する。
When the series of measurements is completed, the stop switch 61
Pressing 6 stops the operation of the device.

以䞊の劂く、本発明を実斜化しおなる血糖の自
動連続枬定装眮は、詊料液を連続しお流したたた
で詊料液、暙準液、ベヌス液を順次繰り返しおサ
ンプリングし、それらを党く同䞀の流路を流しお
逐次范正しながら枬定するものであるずころか
ら、チナヌブポンプに特城的な流れの状態の倉化
の圱響を受けずに、血糖倀およびその倉動パタヌ
ンを自動的、連続的䞔぀正確に枬定するこず可胜
ずするものである。曎に各液は空気局で分節され
ながら流されるので盞互汚染もなく、固定化酵玠
膜電極を甚いため脱泡装眮が䞍芁で装眮が簡玠化
され、詊料液の垌釈率の枬定、蚭定も簡単確実に
行なわれ、たた各皮モヌドの枬定が簡単に行なわ
れるなど血糖の連続枬定の分野においお極めお倧
きな効果をもたらすものである。曎に、本発明は
䞊蚘実斜䟋に限定されるものでなく、血糖以倖の
血液成分の枬定等皮々応甚できるこずはいうたで
もない。
As described above, the automatic continuous blood glucose measuring device that embodies the present invention repeatedly samples the sample solution, standard solution, and base solution in sequence while the sample solution is continuously flowing, and samples them in exactly the same flow path. Since the blood glucose level and its fluctuation pattern are measured while sequentially calibrating by flowing the fluid, it is possible to automatically, continuously, and accurately measure blood glucose levels and their fluctuation patterns without being affected by the changes in flow conditions that are characteristic of tube pumps. This makes it possible. Furthermore, each liquid is separated by an air layer and flows, so there is no cross-contamination, and since an immobilized enzyme membrane electrode is used, no defoaming device is required, simplifying the equipment, making it easy and reliable to measure and set the dilution rate of the sample liquid. It is extremely effective in the field of continuous blood glucose measurement, as it allows easy measurement in various modes. Furthermore, it goes without saying that the present invention is not limited to the above embodiments, and can be applied to various other applications such as measurement of blood components other than blood sugar.

【図面の簡単な説明】[Brief explanation of drawings]

第図は本発明に係る装眮の䟋を瀺すブロツ
クダむダグラム、第図はサンプリング機構にお
ける送液状態の暡匏図、第図はサンプリング機
構は抂略図では偎面図、は平面図、第図は
OGTTモヌド枬定の結果を瀺すグラフチダヌト、
第図は第図の倉圢䟋を瀺すグラフチダヌト、
第図は電極出力の時間的倉化を瀺すグラフ、第
図は他の枬定䟋を瀺すSTARTモヌドでの血糖
倀枬定結果を瀺すグラフである。  採血郚、 范正送液郚、 サンプリン
グ機構、 緩衝液送液郚、 枬定郚、 操
䜜郚、 枬定・制埡回路、 カテヌテル、
 詊料液カツプ、 詊料液、 スタ
ンダヌド液、 ベヌス液、 暙準液カ
ツプ、 ベヌス液カツプ、 サンプリン
グノズル、 ノズルチナヌブ、 緩衝
液、 電極、 操䜜スむツチ、 キ
ヌボヌド、 マむクロコンピナヌタヌ、P1
〜P11 チナヌブポンプ。
Fig. 1 is a block diagram showing an example of the device according to the present invention, Fig. 2 is a schematic diagram of the liquid feeding state in the sampling mechanism, and Fig. 3 is a schematic diagram of the sampling mechanism, with a side view and b a plan view. , Figure 4 is
Graph chart showing the results of OGTT mode measurements,
Fig. 7 is a graph chart showing a modification of Fig. 4;
FIG. 5 is a graph showing temporal changes in electrode output, and FIG. 6 is a graph showing blood sugar level measurement results in START mode showing another measurement example. DESCRIPTION OF SYMBOLS 1...Blood collection part, 2...Calibration liquid feeding part, 3...Sampling mechanism, 4...Buffer liquid feeding part, 5...Measurement part, 6...Operation part, 7...Measurement/control circuit, 11...Catheter,
15...Sample solution cup, 16...Sample solution, 21...Standard 1 liquid, 22...Base solution, 23...Standard solution cup, 24...Base solution cup, 31...Sampling nozzle, 32...Nozzle tube, 41...Buffer solution, 52 ...electrode, 61...operation switch, 62...keyboard, 73...microcomputer, P 1
~P 11 ...tube pump.

Claims (1)

【特蚱請求の範囲】[Claims]  カテヌテルによ぀お、被怜者より連続的に採
血する血液䞭の特定成分を自動的に連続枬定する
装眮においお、詊料液ず范正液ずしおの暙準液及
びベヌス液ずがそれぞれ䞀旊導入されるオヌバヌ
フロヌカツプ、該オヌバヌフロヌカツプから各液
を順次繰り返し吞匕するノズル、同䞀の流路を経
お各液が同䞀の割合で緩衝液ず混合されるず共に
該混合された液を空気で分節するよう構成された
マニホルド、該マニホルドから送られる液が導入
されるもので血液䞭の特定成分の濃床を連続的自
動的に枬定する固定化酵玠膜電極、及び枬定結果
を衚瀺する衚瀺噚を有するこずを特城ずする血液
成分の自動連続枬定装眮。
1. In a device that automatically and continuously measures specific components in blood that is continuously collected from a subject using a catheter, overflow is used to introduce a sample solution and a standard solution and base solution as calibration solutions, respectively. a cup, a nozzle that repeatedly suctions each liquid from the overflow cup in sequence, and a manifold configured to mix each liquid with a buffer solution in the same proportion through the same flow path and segment the mixed liquid with air. , into which the liquid sent from the manifold is introduced, and has an immobilized enzyme membrane electrode that continuously and automatically measures the concentration of a specific component in the blood, and a display that displays the measurement results. Automatic continuous measurement device for components.
JP56063160A 1981-04-24 1981-04-24 Automatic and continuous measuring apparatus of blood component Granted JPS57178151A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP56063160A JPS57178151A (en) 1981-04-24 1981-04-24 Automatic and continuous measuring apparatus of blood component
EP82302100A EP0064369B1 (en) 1981-04-24 1982-04-23 A device for automatically and continuously measuring the constituent parts of blood
US06/371,482 US4512348A (en) 1981-04-24 1982-04-23 Device for automatically and continuously measuring the constituent parts of blood
DE8282302100T DE3273657D1 (en) 1981-04-24 1982-04-23 A device for automatically and continuously measuring the constituent parts of blood
BE0/207920A BE892964A (en) 1981-04-24 1982-04-26 DEVICE FOR AUTOMATICALLY AND CONTINUOUSLY MEASURING BLOOD ELEMENTS

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56063160A JPS57178151A (en) 1981-04-24 1981-04-24 Automatic and continuous measuring apparatus of blood component

Publications (2)

Publication Number Publication Date
JPS57178151A JPS57178151A (en) 1982-11-02
JPH0247700B2 true JPH0247700B2 (en) 1990-10-22

Family

ID=13221202

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56063160A Granted JPS57178151A (en) 1981-04-24 1981-04-24 Automatic and continuous measuring apparatus of blood component

Country Status (1)

Country Link
JP (1) JPS57178151A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62186846A (en) * 1986-02-13 1987-08-15 日機装株匏䌚瀟 Method for measuring concentration of specific substance in continuous sampling blood specimen
AT389589B (en) * 1987-04-03 1989-12-27 Avl Verbrennungskraft Messtech DEVICE FOR SELECTIVE FEEDING OF AN ANALYZER
JPH0389168A (en) * 1989-08-31 1991-04-15 Kanzaki Paper Mfg Co Ltd Flow type measuring apparatus and measuring method using the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53109691A (en) * 1977-03-07 1978-09-25 Hitachi Ltd Flow cell type analysis method and apparatus liquid for specimen
JPS54106962A (en) * 1978-02-09 1979-08-22 Akira Yoda Chaff crusher

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53109691A (en) * 1977-03-07 1978-09-25 Hitachi Ltd Flow cell type analysis method and apparatus liquid for specimen
JPS54106962A (en) * 1978-02-09 1979-08-22 Akira Yoda Chaff crusher

Also Published As

Publication number Publication date
JPS57178151A (en) 1982-11-02

Similar Documents

Publication Publication Date Title
EP0064369B1 (en) A device for automatically and continuously measuring the constituent parts of blood
US6434409B1 (en) Determination of glucose concentration in tissue
JP3220154B2 (en) Calibration solution for analysis of biological fluid and method of using the same
US4535786A (en) Measurement of body fluid chemistry
AU697232B2 (en) In situ calibration system for sensors located in a physiologic line
EP0242644B1 (en) Blood component monitoring system
JPH0365972B2 (en)
US4818361A (en) Combined pH and dissolved carbon dioxide gas sensor
US6117099A (en) System and method for noninvasive hemodynamic measurements in hemodialysis shunts
JPH04341241A (en) Method for measuring bodily fluid component and instrument
Beyer et al. Recording of subcutaneous glucose dynamics by a viscometric affinity sensor
US20080153118A1 (en) Method and Device for Determining the Glucose Concentration in Tissue Liquid
JPH05253293A (en) Monitoring of hemodialysis progress and device therefor
JPH03273153A (en) Measuring instrument and measuring method for liquid component
JPH0778480B2 (en) Method for automatic calibration of solute concentration measuring electrode in solution
Sibbald et al. Online patient-monitoring system for the simultaneous analysis of blood K+, Ca 2+, Na+ and pH using a quadruple-function ChemFET integrated-circuit sensor
Rhemrev-Boom et al. A lightweight measuring device for the continuous in vivo monitoring of glucose by means of ultraslow microdialysis in combination with a miniaturised flow-through biosensor
JPH0247700B2 (en)
WO2011104710A1 (en) Device, system and method for in-flow analyte concentration detection
JPH0334723B2 (en)
RU2672354C2 (en) Method for continuous monitoring of analyte content in blood
Walton et al. Comparison of blood gas and electrolyte test results from the Gem-Stat and CDI-300 versus a conventional laboratory analyzer
Heidrich et al. Continuous Analysis in Extracorporeally Circulating Blood-A Rat Model Applying Flow-Through Ion-Selective Electrodes for the Measurement of Ca2+, K+, Na+ and pH
CN1058471A (en) Patient's liquid (gas) liquid (gas)-phase gas monitoring instrument
JPS58152537A (en) Continuous monitor apparatus of substance in blood