JPH0247671B2 - TAABOREITOKI - Google Patents

TAABOREITOKI

Info

Publication number
JPH0247671B2
JPH0247671B2 JP7761783A JP7761783A JPH0247671B2 JP H0247671 B2 JPH0247671 B2 JP H0247671B2 JP 7761783 A JP7761783 A JP 7761783A JP 7761783 A JP7761783 A JP 7761783A JP H0247671 B2 JPH0247671 B2 JP H0247671B2
Authority
JP
Japan
Prior art keywords
refrigerant
condenser
temperature side
side condenser
low temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP7761783A
Other languages
Japanese (ja)
Other versions
JPS59210268A (en
Inventor
Shinji Yosomya
Yasuo Ogawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP7761783A priority Critical patent/JPH0247671B2/en
Publication of JPS59210268A publication Critical patent/JPS59210268A/en
Publication of JPH0247671B2 publication Critical patent/JPH0247671B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Control Of Positive-Displacement Air Blowers (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ターボ圧縮機を用いたターボ冷凍機
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a turbo chiller using a turbo compressor.

〔従来の技術〕[Conventional technology]

従来では、ターボ冷凍機の容量制御は通常、圧
縮機の吸込部に取りつけられたサクシヨンガイド
ベーン装置により制御されている。しかしながら
ガイドベーン装置を全閉にすると、冷却水温度が
高いとき等にはサージング現象が起こることがあ
るので、ホツトガスバイパス装置を取りつけたも
のが多い。
Conventionally, the capacity control of a centrifugal chiller is usually controlled by a suction guide vane device attached to the suction of the compressor. However, if the guide vane device is fully closed, a surging phenomenon may occur when the cooling water temperature is high, so a hot gas bypass device is often installed.

またこの装置と同じ効果を持つものとして第1
図のような液バイパス装置が考えられる。すなわ
ち、サクシヨンベーン全閉近くで電磁弁1を開け
ることにより、液冷媒は膨張弁2で減圧され、過
冷却器3で、凝縮器5より高温高圧液冷媒により
加熱されて蒸発し、風量が増加する。このよう
に、電磁弁1を開けることにより風量が増大し、
サージングを防止するわけである。なお、このバ
イパス装置が作動する前の通常運転時は冷媒はタ
ーボ圧縮機4→凝縮器5→過冷却器3→減圧装置
6→蒸発器7→ターボ圧縮機4の順序で循環す
る。
It is also the first device that has the same effect as this device.
A liquid bypass device as shown in the figure can be considered. That is, by opening the solenoid valve 1 when the suction vane is nearly fully closed, the liquid refrigerant is depressurized by the expansion valve 2, heated by the high-temperature, high-pressure liquid refrigerant from the condenser 5 in the subcooler 3, and evaporated, reducing the air volume. To increase. In this way, by opening the solenoid valve 1, the air volume increases,
This prevents surging. Note that during normal operation before this bypass device operates, the refrigerant circulates in the order of turbo compressor 4 → condenser 5 → supercooler 3 → pressure reducing device 6 → evaporator 7 → turbo compressor 4.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

この従来のターボ冷凍機においては、容量制御
によつて次のような現象が生ずる。即ち、第2図
は圧縮機の風量−ヘツド曲線であるが、容量制御
を行うことにより作動点はA点よりB点の方に移
動する。曲線8はサージング曲線で、風量を絞る
と、B点に至り、サージング現象となる。
In this conventional centrifugal chiller, the following phenomenon occurs due to capacity control. That is, although FIG. 2 shows the air volume-head curve of the compressor, the operating point moves from point A to point B by performing capacity control. Curve 8 is a surging curve, and when the air volume is reduced, it reaches point B and a surging phenomenon occurs.

この直前でホツトガスバイパスを行うとC点に
移動してサージングは防止できる。第3図は第2
図の各点を容量−圧縮機所要動力曲線上に表わし
たものである。即ちホツトガスバイパスを行うと
B点より矢印Cの方向に容量を減らすことができ
る。しかしながら容量Qに対する動力Lの割合
L/Qは増大する、という欠点を有する。
If the hot gas bypass is performed just before this point, it will move to point C and surging can be prevented. Figure 3 is the second
Each point in the figure is expressed on a capacity-compressor required power curve. That is, by performing a hot gas bypass, the capacity can be reduced from point B in the direction of arrow C. However, it has the disadvantage that the ratio L/Q of power L to capacity Q increases.

本発明は、これら従来の欠点を除き、サージン
グ対策として液バイパスを行う場合においても容
量に対する動力の割合L/Qを従来方式より小さ
くすることができるターボ冷凍機を提供すること
を目的とするものである。
SUMMARY OF THE INVENTION An object of the present invention is to eliminate these conventional drawbacks and provide a turbo chiller that can make the ratio of power to capacity L/Q smaller than that of conventional systems even when liquid bypass is performed as a countermeasure against surging. It is.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、ターボ圧縮機、凝縮器、減圧装置、
被冷却流体を冷却する蒸発器を備えたターボ冷凍
機において、冷媒としては非共沸混合冷媒を用
い、前記凝縮器は、冷媒の流れに対して直列に、
少なくとも、上流側の高温側凝縮器と下流側の低
温側凝縮器の二つの凝縮器部に分かれ、凝縮用の
冷却水は前記低温側凝縮器を経た後に前記高温側
凝縮器に導かれ、該低温側凝縮器と前記減圧装置
との間の冷媒経路には過冷却器が備えられ、前記
高温側凝縮器にて凝縮した冷媒は開閉弁及び減圧
機構を経て前記過冷却器に導かれ、前記低温側凝
縮器より導かれた冷媒を冷却するように構成され
たことを特徴とするターボ冷凍機である。
The present invention includes a turbo compressor, a condenser, a pressure reducing device,
In a turbo chiller equipped with an evaporator that cools a fluid to be cooled, a non-azeotropic mixed refrigerant is used as the refrigerant, and the condenser is arranged in series with the flow of the refrigerant,
It is divided into at least two condenser parts: a high temperature side condenser on the upstream side and a low temperature side condenser on the downstream side, and cooling water for condensation is led to the high temperature side condenser after passing through the low temperature side condenser. A supercooler is provided in the refrigerant path between the low temperature side condenser and the pressure reduction device, and the refrigerant condensed in the high temperature side condenser is guided to the supercooler via an on-off valve and a pressure reduction mechanism, and This is a turbo refrigerator characterized by being configured to cool refrigerant introduced from a low temperature side condenser.

〔実施例〕〔Example〕

本発明を実施例につき第4図を用いて説明する
と、ターボ圧縮機4、凝縮器5、減圧装置6、被
冷却流体を冷却する蒸発器7を備えたターボ冷凍
機であつて、冷媒としては非共沸混合冷媒を用
い、前記凝縮器は、冷媒の流れに対して直列に、
少なくとも、上流側の高温側凝縮器13と下流側
の低温側凝縮器14の二つの凝縮器部に分かれ、
凝縮用の冷却水は前記低温側凝縮器14を経た後
に前記高温側凝縮器13に導かれ、該低温側凝縮
器14と前記減圧装置6との間の冷媒経路には過
冷却器3が備えられ、前記高温側凝縮器13にて
凝縮した冷媒は開閉弁の電磁弁1及び減圧機構の
膨張弁2を経て前記過冷却器3に導かれ、前記低
温側凝縮器14より導かれた冷媒を冷却するよう
に構成されたターボ冷凍機としてある。
The present invention will be described with reference to FIG. 4 in accordance with an embodiment of the present invention. The present invention is a turbo refrigerator equipped with a turbo compressor 4, a condenser 5, a pressure reducing device 6, and an evaporator 7 for cooling a fluid to be cooled. With a non-azeotropic refrigerant mixture, the condenser is in series with the flow of refrigerant;
Divided into at least two condenser parts: a high temperature side condenser 13 on the upstream side and a low temperature side condenser 14 on the downstream side,
The cooling water for condensation is led to the high temperature side condenser 13 after passing through the low temperature side condenser 14, and a supercooler 3 is provided in the refrigerant path between the low temperature side condenser 14 and the pressure reduction device 6. The refrigerant condensed in the high temperature side condenser 13 is led to the supercooler 3 via the solenoid valve 1 of the on-off valve and the expansion valve 2 of the pressure reducing mechanism, and the refrigerant led from the low temperature side condenser 14 is As a centrifugal refrigerator configured to provide cooling.

冷媒としては、例えば、R113とR11、R
11とR114、R12とR22の如き非共沸混
合冷媒が用いられる。
Examples of refrigerants include R113, R11, and R113.
Non-azeotropic refrigerant mixtures such as No. 11 and R114 and R12 and R22 are used.

凝縮器は冷媒の流れに対して直列に上流側の高
温側凝縮器13と下流側の低温側凝縮器14の二
つの凝縮器部に分かれているが、この凝縮器部は
三つ以上備えられていてもよい。凝縮用の冷却水
は冷却水配管9により、先ず低温側凝縮器14を
経たのち、高温側凝縮器13に導かれる。
The condenser is divided into two condenser parts, a high temperature side condenser 13 on the upstream side and a low temperature side condenser 14 on the downstream side, in series with the flow of the refrigerant, but three or more of these condenser parts are provided. You can leave it there. The cooling water for condensation first passes through the low-temperature side condenser 14 and then is guided to the high-temperature side condenser 13 by the cooling water pipe 9.

小容量時にはバイパス用の電磁弁1は開となる
が、以下この状態について説明する。
When the capacity is small, the bypass solenoid valve 1 is open, and this state will be explained below.

前記ターボ圧縮機4にて圧縮された冷媒ガスは
高温側凝縮器13及び低温側凝縮器14に送ら
れ、冷媒ガスは冷却配管9により送られる冷却水
により冷却され凝縮液化する。この凝縮冷媒の出
口は冷却水の入口側に近い主凝縮液出口ノズル1
0と冷却水出口に近いバイパス用凝縮液出口ノズ
ル11の二つの出口がある。
The refrigerant gas compressed by the turbo compressor 4 is sent to a high temperature side condenser 13 and a low temperature side condenser 14, and the refrigerant gas is cooled by cooling water sent through a cooling pipe 9 and is condensed and liquefied. The outlet of this condensed refrigerant is the main condensate outlet nozzle 1 near the cooling water inlet side.
There are two outlets: 0 and a bypass condensate outlet nozzle 11 close to the cooling water outlet.

冷却水出口部に近いところは冷却水の温度が高
いので、ガスのうち、主として高沸点冷媒が凝縮
液化するので、ノズル11より出る液冷媒は主と
して高沸点冷媒である。冷却水入口部は冷却水入
口温度が低いので、ノズル10の部分では主とし
て低沸点冷媒が凝縮し、このノズル10より主と
して低沸点冷媒が流出する。
Since the temperature of the cooling water is high near the cooling water outlet, mainly the high boiling point refrigerant among the gases is condensed and liquefied, so the liquid refrigerant coming out from the nozzle 11 is mainly the high boiling point refrigerant. Since the cooling water inlet temperature at the cooling water inlet portion is low, mainly the low boiling point refrigerant is condensed at the nozzle 10, and mainly the low boiling point refrigerant flows out from the nozzle 10.

そして、ノズル11より流出した高沸点液冷媒
は膨張弁2により減圧されて過冷却器3内のチユ
ーブ12内で、チユーブ外側の高圧液冷媒により
加熱されて蒸発する。一方ノズル10よりの主と
して低沸点冷媒の高圧液冷媒は冷却される。そし
て減圧装置6により減圧され、蒸発器7に流入
し、被冷却流体により加熱され蒸発し、再びター
ボ圧縮機4に吸い込まれる。
The high-boiling liquid refrigerant flowing out from the nozzle 11 is depressurized by the expansion valve 2, heated in the tube 12 in the supercooler 3 by the high-pressure liquid refrigerant outside the tube, and evaporated. On the other hand, the high pressure liquid refrigerant, which is mainly a low boiling point refrigerant, from the nozzle 10 is cooled. It is then depressurized by the pressure reducing device 6, flows into the evaporator 7, is heated by the fluid to be cooled, evaporates, and is sucked into the turbo compressor 4 again.

〔発明の効果〕〔Effect of the invention〕

本発明は、容量当たりの動力値L/Qが良好な
絞り運転を行うことができる。即ち、高温側圧縮
器より流出する冷媒は混合冷媒のうち露点の高い
冷媒すなわち沸点の高い冷媒が濃くなつているの
で、過冷却器内の蒸発温度はあまり低くならない
ので、その損失が少ないと共に、圧縮機を流れる
冷媒としては比較的高沸点冷媒の割合が多くな
り、〔風量/冷凍容量〕の値が比較的大きい。
The present invention can perform throttling operation with a good power value L/Q per capacity. That is, in the refrigerant flowing out from the high-temperature side compressor, the refrigerant with a high dew point, that is, the refrigerant with a high boiling point, is concentrated in the mixed refrigerant, so the evaporation temperature in the supercooler does not become very low, so the loss is small, and The refrigerant flowing through the compressor has a relatively high proportion of high boiling point refrigerant, and the value of [air volume/refrigeration capacity] is relatively large.

従つて、少風量領域では一般に風量が大きいほ
どターボ圧縮機の効率が良くなるので、従来のタ
ーボ冷凍機の場合より、バイパス条件では所要動
力が少なくなり、結果として、ヘツド−風量曲線
は第2図と同じとしても、容量−圧縮機所要動力
曲線は第5図の如く矢印Cは下降し、小風量範囲
で改善されるので、低風量領域において容量当た
りの動力値L/Qが良好である絞り運転を行うこ
とが可能であるなど、実用上極めて大なる効果を
奏する。
Therefore, in the low air volume region, the larger the air volume, the better the efficiency of the turbo compressor, so the required power is lower under bypass conditions than in the case of a conventional centrifugal chiller, and as a result, the head-air volume curve becomes Even if it is the same as the figure, the capacity-compressor required power curve shows a downward arrow C as shown in Figure 5, and is improved in the small air volume range, so the power value per capacity L/Q is good in the low air volume range. It has extremely great practical effects, such as being able to perform throttling operation.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来例のフロー図、第2図は従来例の
Q−H特性曲線、第3図はそのQ−L特性曲線、
第4図は本発明の実施例のフロー図、第5図はそ
のQ−L特性曲線である。 1……電磁弁、2……膨張弁、3……過冷却
器、4……ターボ圧縮機、5……凝縮器、6……
減圧装置、7……蒸発器、8……曲線、9……冷
却水配管、10,11……ノズル、12……チユ
ーブ、13…高温側凝縮器、14……低温側凝縮
器。
Fig. 1 is a flow diagram of the conventional example, Fig. 2 is the Q-H characteristic curve of the conventional example, Fig. 3 is its Q-L characteristic curve,
FIG. 4 is a flow diagram of an embodiment of the present invention, and FIG. 5 is its Q-L characteristic curve. 1... Solenoid valve, 2... Expansion valve, 3... Supercooler, 4... Turbo compressor, 5... Condenser, 6...
Pressure reducing device, 7... Evaporator, 8... Curve, 9... Cooling water piping, 10, 11... Nozzle, 12... Tube, 13... High temperature side condenser, 14... Low temperature side condenser.

Claims (1)

【特許請求の範囲】[Claims] 1 ターボ圧縮機、凝縮器、減圧装置、被冷却流
体を冷却する蒸発器を備えたターボ冷凍機におい
て、冷媒としては非共沸混合冷媒を用い、前記凝
縮器は、冷媒の流れに対して直列に、少なくと
も、上流側の高温側凝縮器と下流側の低温側凝縮
器の二つの凝縮器部に分かれ、凝縮用の冷却水は
前記低温側凝縮器を経た後に前記高温側凝縮器に
導かれ、該低温側凝縮器と前記減圧装置との間の
冷媒経路には過冷却器が備えられ、前記高温側凝
縮器にて凝縮した冷媒は開閉弁及び減圧機構を経
て前記過冷却器に導かれ、前記低温側凝縮器より
導かれた冷媒を冷却するように構成されたことを
特徴とするターボ冷凍機。
1 In a turbo chiller equipped with a turbo compressor, a condenser, a pressure reducing device, and an evaporator for cooling the fluid to be cooled, a non-azeotropic mixed refrigerant is used as the refrigerant, and the condenser is connected in series with the flow of the refrigerant. The cooling water for condensation is divided into at least two condenser parts, an upstream high temperature side condenser and a downstream low temperature side condenser, and the cooling water for condensation is led to the high temperature side condenser after passing through the low temperature side condenser. A supercooler is provided in the refrigerant path between the low temperature side condenser and the pressure reducing device, and the refrigerant condensed in the high temperature side condenser is guided to the supercooler through an on-off valve and a pressure reducing mechanism. A turbo refrigerator, characterized in that it is configured to cool refrigerant guided from the low temperature side condenser.
JP7761783A 1983-05-04 1983-05-04 TAABOREITOKI Expired - Lifetime JPH0247671B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7761783A JPH0247671B2 (en) 1983-05-04 1983-05-04 TAABOREITOKI

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7761783A JPH0247671B2 (en) 1983-05-04 1983-05-04 TAABOREITOKI

Publications (2)

Publication Number Publication Date
JPS59210268A JPS59210268A (en) 1984-11-28
JPH0247671B2 true JPH0247671B2 (en) 1990-10-22

Family

ID=13638869

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7761783A Expired - Lifetime JPH0247671B2 (en) 1983-05-04 1983-05-04 TAABOREITOKI

Country Status (1)

Country Link
JP (1) JPH0247671B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998006983A1 (en) * 1996-08-14 1998-02-19 Daikin Industries, Ltd. Air conditioner

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61262550A (en) * 1985-05-17 1986-11-20 株式会社荏原総合研究所 Heat pump

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998006983A1 (en) * 1996-08-14 1998-02-19 Daikin Industries, Ltd. Air conditioner
US6164086A (en) * 1996-08-14 2000-12-26 Daikin Industries, Ltd. Air conditioner

Also Published As

Publication number Publication date
JPS59210268A (en) 1984-11-28

Similar Documents

Publication Publication Date Title
US7360372B2 (en) Refrigeration system
WO2018054052A1 (en) Air conditioner and defrosting system thereof
WO2018121425A1 (en) Refrigeration system utilizing parallel and serial-connected dual evaporators, and control method thereof
EP3364128B1 (en) Heat pump unit control system
JP2008039383A (en) Unit provided on cooling device for transcritical operation
JP2006097978A (en) Refrigerating cycle
CN114484944A (en) Self-supercooling structure and air conditioner
JPH04320762A (en) Freezing cycle
JP6735896B2 (en) Refrigeration cycle equipment
JPH06272998A (en) Refrigerator
JPH0247671B2 (en) TAABOREITOKI
WO2023010768A1 (en) Air conditioning system
JP2002243284A (en) Air conditioner
KR20090069694A (en) Centrifugal chiller having multi way throttle apparatus
JPH03164661A (en) Air conditioner
JP7474911B1 (en) Refrigeration Cycle Equipment
JPH04268165A (en) Double-stage compression and freezing cycle device
JPH02223778A (en) Defrosting device for air-conditioning machine
JPH04263742A (en) Refrigerator
JPH07198215A (en) Freezer
JP2024066056A (en) Refrigeration equipment
JPH0212539Y2 (en)
JPH08136067A (en) Air conditioner
JPH0593548A (en) Refrigerator
JPH08159588A (en) Multi-room type air conditioner