JPH0247478A - Method for vibration control and its device - Google Patents

Method for vibration control and its device

Info

Publication number
JPH0247478A
JPH0247478A JP19610088A JP19610088A JPH0247478A JP H0247478 A JPH0247478 A JP H0247478A JP 19610088 A JP19610088 A JP 19610088A JP 19610088 A JP19610088 A JP 19610088A JP H0247478 A JPH0247478 A JP H0247478A
Authority
JP
Japan
Prior art keywords
control
power means
response
power
vibration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19610088A
Other languages
Japanese (ja)
Other versions
JPH0819781B2 (en
Inventor
Mitsuru Kageyama
満 蔭山
Akira Teramura
彰 寺村
Arihide Nobata
野畑 有秀
Juichi Takeda
武田 寿一
Tetsuo Suzuki
哲夫 鈴木
Tarou Sekimatsu
関松 太郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Original Assignee
Obayashi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp filed Critical Obayashi Corp
Priority to JP19610088A priority Critical patent/JPH0819781B2/en
Publication of JPH0247478A publication Critical patent/JPH0247478A/en
Publication of JPH0819781B2 publication Critical patent/JPH0819781B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To achieve adequate vibration control with the function of an elasticity generating device fully exhibited by detecting earthquake movement and response of a structure against an input from a power device for vibration control, and by controlling with fed-back detected values. CONSTITUTION:To a structure 4 supported on a ground 2 through a cycle- lengthening means, an elasticity generating device 6, working in the direction of its power transmission, is installed. A power device 5, that is driven being expanded and contracted in the direction of earth moving between the structure 4 and the ground 2 and transmitting vibration control force to the structure 4, is also provided. A detecting device 7 that detects earthquake movement and response of the structure 4 against an input from the power device 5 is installed, and the detected value is fed back to a control device 9, which controls displacement of expansion and contraction of the power device 5. Therefore, the power device 5 can be controlled with the existence of the elasticity generating device 6 being added.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、アクチュエータ等の動力手段から加えられる
制振力で長周期性構造物を制振するに際して、地震動並
びに動力手段からの入力による構造物の応答を検出し、
この構造物の応答に基づいて動力手段の伸縮変位量をフ
ィードバック制御するようにした1、す振方法及びその
装置に関するものである。
Detailed Description of the Invention (Industrial Application Field) The present invention is applicable to vibration damping of a long-period structure using a damping force applied from a power means such as an actuator. detect the response of an object,
The present invention relates to a shaking method and an apparatus thereof, in which the amount of expansion and contraction of the power means is feedback-controlled based on the response of the structure.

(従来の技術) 地震動などに対して構造物の揺れを規制するための制振
手法としては、様々なものが案出されている。例えば、
地盤上に積層ゴム等でなるアイソレータやローラ等で構
成した滑り支承材などの長周期化手段を介して支持した
構造物と地盤との間に他動方向に伸縮駆動されるアクチ
ュエータ等の動力手段を設け、この動力手段に地震動と
逆方向の制振力を発生させるようにして、移動する地盤
に対して構造物を絶縁し且つ構造物をできる限り一定位
置に維持するように考えられた制振機構などが知られて
いる(日本建築学会大会学術講演梗概集(近畿)(昭和
62年lO月) 9.905−906等がある)。
(Prior Art) Various vibration damping methods have been devised for regulating the shaking of structures due to earthquake motions and the like. for example,
Power means such as actuators that are driven to expand and contract in the passive direction between a structure supported on the ground via a long-period means such as an isolator made of laminated rubber, a sliding support material made of rollers, etc., and the ground. The control system is designed to insulate the structure from the moving ground and maintain the structure in a constant position as much as possible by using this power means to generate a damping force in the direction opposite to the seismic motion. Shaking mechanisms are known (see Architectural Institute of Japan Conference Academic Lecture Abstracts (Kinki) (October 1986) 9.905-906, etc.).

ここに本出願人は、このような制振機構における動力手
段と構造物または地盤との結合構造に関し、伝達される
制御信号に対する動力手段の作動遅れやフィードバック
制御を採用した場合の制御系の発振などを考慮して、動
力手段に、その力伝達方向に弾発する弾発手段を取付け
て制振装置を構成することを考えている。
Regarding the coupling structure between the power means and the structure or the ground in such a vibration damping mechanism, the present applicant hereby proposes that the oscillation of the control system may be prevented when the power means is delayed in response to the transmitted control signal or when feedback control is adopted. In consideration of the above, we are considering configuring a vibration damping device by attaching an elastic means to the power means to generate elastic force in the direction of force transmission.

すなわち、動力手段は伝達される制御信号、特に信号中
の高周波成分に対して極端な作動遅れを生ずるが、動力
手段と構造物とを直接結合して構成した場合、作動が遅
れる動力手段の挙動が制振ではなく、反対に構造物の揺
れを増幅させてしまうおそれがある。これに対し弾発手
段を取付けた場合には、高周波成分に対応する動力手段
の挙動は弾発手段によってカットでき、動力手段が制振
とは反対に作用してもその挙動を弾発手段で抑制して動
力手段の作動遅れによる悪影響を取り除くことができる
In other words, the power means causes an extreme delay in operation with respect to the transmitted control signal, especially the high frequency component in the signal, but when the power means and the structure are directly connected, the behavior of the power means is such that the operation is delayed. However, rather than suppressing vibrations, this may actually amplify the shaking of the structure. On the other hand, when a resilient means is installed, the behavior of the power means corresponding to high frequency components can be cut by the resilient means, and even if the power means acts in the opposite direction to damping, the behavior can be controlled by the resilient means. It is possible to suppress the adverse effects caused by the delay in the operation of the power means.

またフィードバック制御においては、構造物から検出さ
れ制御に利用されるフィードバック信号に高周波成分が
含まれていると制御系の発振の原因となるが、弾発手段
の介在により、構造物で検出される信号から高周波成分
をカットでき、制御の安定性を向上して動力手段に充分
な制振作用を発揮させることができる。
In addition, in feedback control, if the feedback signal detected from the structure and used for control contains a high frequency component, it will cause oscillation of the control system, but due to the intervention of the elastic means, the feedback signal detected by the structure and used for control will cause oscillation of the control system. It is possible to cut high frequency components from the signal, improve control stability, and enable the power means to exert sufficient vibration damping action.

このように弾発手段を備えることにより、制御信号に含
まれる高周波成分に動力手段が応動して制振力を付与す
べき動力手段によってIR構造物揺れが増幅されたり、
制御系の発振によって動力手段が充分な制振作用を発揮
できなくなるのを防止することができる制振機構を考え
ている。
By providing the resilient means in this way, the IR structure shaking can be amplified by the power means that should apply damping force in response to the high frequency component included in the control signal.
We are considering a vibration damping mechanism that can prevent the power means from being unable to exert sufficient damping action due to oscillations in the control system.

(発明が解決しようとする課題) しかしながら、このように地震力及び制振力が相互に作
用する動力手段の力伝達系に弾発手段を介設した振動系
では、弾発手段を備えていない振動系と異なり、弾発手
段の存在を加味した上での動力手段の適切な制御を行な
わないと好ましい制振効果を得ることができない。この
ため、このような弾発手段を備えた振動系における適当
な制振制御方法並びにその装置の案出が望まれている。
(Problem to be solved by the invention) However, in a vibration system in which an elastic means is interposed in the force transmission system of the power means in which seismic force and damping force interact with each other, the elastic means is not provided. Unlike a vibration system, a desirable vibration damping effect cannot be obtained unless the power means is appropriately controlled in consideration of the presence of the resilient means. Therefore, it is desired to devise an appropriate vibration damping control method and device for a vibration system equipped with such an elastic means.

本発明の目的は、地震力及び制振力が相互に作用する動
力手段の力伝達系に弾発手段を備えて、動力手段から加
えられる制振力で長周期性構造物を制振するに際して、
弾発手段を含む振動系に対して好適な1q振制御方法並
びにその装置を提供することにある。
An object of the present invention is to equip a force transmission system of a power means in which seismic force and damping force interact with each other, and to damp a long-period structure with the damping force applied from the power means. ,
It is an object of the present invention to provide a suitable 1q vibration control method and device for a vibration system including an elastic means.

(課題を解決するための手段と作用) 本発明は、地盤上に長周期化手段を介して支持された構
造物を、その力伝達方向に弾発する弾発手段を有し構造
物と地盤との間で他動方向に伸縮駆動されて構造物に割
振力を伝達する動力手段によって制振するに際し、地震
動並びに動力手段からの入力による構造物の応答を検出
し、この構造物の応答に従って動力手段の伸縮変位量を
フィードバック制御するようになっている。
(Means and effects for solving the problem) The present invention has a resilient means for resiliently repelling a structure supported on the ground via a long period lengthening means in the direction of force transmission, and the structure and the ground are connected to each other. When damping vibrations using a power means that is driven to expand and contract in a passive direction between The amount of expansion/contraction displacement of the means is feedback-controlled.

そして、弾発手段の存在を加味した上で動力手段の伸縮
変位量をフィードバック制御で制御することにより、弾
発手段の機能を活かした制振制御を行なうようになって
いる。
By controlling the expansion/contraction displacement amount of the power means by feedback control in consideration of the presence of the resilient means, vibration damping control that takes advantage of the function of the resilient means is performed.

また本発明は、地盤と地盤上に長周期化手段を介して支
持された構造物との間に設けられ、他動方向に伸縮駆動
されて構造物に制振力を伝達する動力手段と、動力手段
に取付けられその力伝達方向に弾発する弾発手段と、地
震動並びに動力手段からの入力による構造物の応答を検
出する検出手段と、検出手段からの検出信号に応じて動
力手段の伸縮変位量をフィードバック制御する制御手段
とを備えて構成され、弾発手段の機能を活かしつつ構造
物の応答に基づき動力手段の伸縮変位を制御対象として
割振制御を行なうようになっている。
The present invention also provides a power means that is provided between the ground and a structure supported on the ground via a long period lengthening means, and is driven to expand and contract in a passive direction to transmit a damping force to the structure; an explosive means that is attached to the power means and bounces in the direction of force transmission; a detection means that detects the response of the structure due to earthquake motion and input from the power means; and an expansion/contraction displacement of the power means in response to a detection signal from the detection means. The structure includes a control means for feedback controlling the amount, and performs allocation control based on the response of the structure while taking advantage of the function of the elastic means, with the expansion/contraction displacement of the power means as a control target.

(実施例) 以下に、本発明の好適実施例を添付図面に従って詳述す
る。
(Example) Preferred embodiments of the present invention will be described in detail below with reference to the accompanying drawings.

図に示すように、四部1が区画形成された地盤2上には
、その凹部1内に長周期化手段3を介して支持されて構
造物4が建設され、この構造物4は長周期化手段3によ
って長周期化されて構成される。本実施例にあっては長
周期化手段3として、適当な高さを有し且つ凹部1内に
間隔を隔てて配設された複数の積層ゴムが例示されてい
る。なお、長周期化手段3としては、積層ゴムに限らず
、滑り支承材、ベアリング、ソフトストリ、磁気浮上手
段などを採用してもよい。
As shown in the figure, a structure 4 is built on the ground 2 in which four sections 1 are formed, supported in the recess 1 via a long period lengthening means 3, and this structure 4 is The period is made longer by the means 3. In this embodiment, as the period lengthening means 3, a plurality of laminated rubbers having an appropriate height and arranged at intervals within the recess 1 are illustrated. Note that the period lengthening means 3 is not limited to laminated rubber, but may also be a sliding support material, a bearing, a soft strip, a magnetic levitation means, or the like.

このように構成された構造物4と地盤2との間には、地
震時における他動方向に伸縮駆動されて構造物4に制振
力を伝達作用させる油圧シリンダなどの動力手段5が設
けられる。具体的には動力手段5は、凹部1の垂直壁1
aとこれに相対向する構造物4の下層部分との間に、地
震の横揺れ方向に沿ってほぼ水平に設けられる。またこ
の動力手段5は、構造物4の周囲に間隔を隔てて複数配
設され、様々な方向性の地震に対応できるようになって
いる。
A power means 5, such as a hydraulic cylinder, is provided between the structure 4 configured in this way and the ground 2, which is driven to expand and contract in the direction of passive movement during an earthquake, and transmits a damping force to the structure 4. . Specifically, the power means 5 operates on the vertical wall 1 of the recess 1.
A and the lower part of the structure 4 facing it, it is provided substantially horizontally along the direction of the earthquake's lateral shaking. Further, a plurality of power means 5 are arranged at intervals around the structure 4 so as to be able to cope with earthquakes of various directions.

そしてこの動力手段5には、その力伝達方向に弾発する
スプリングなどの弾発手段6が取付けられる。図示例に
あっては弾発手段6は、動力手段5と構造物4との間に
取付けられているが、力の伝達方向であれば、動力手段
5と地盤2側の凹部垂直壁1aとの間であっても良い。
A resilient means 6, such as a spring, is attached to the power means 5, and is resilient in the direction of force transmission. In the illustrated example, the resilient means 6 is installed between the power means 5 and the structure 4, but in the direction of force transmission, the resilient means 6 is attached between the power means 5 and the recessed vertical wall 1a on the ground 2 side. It may be between.

そしてこの弾発手段6は、制御信号に含まれる高周波成
分に動力手段5が応動して制振力を付与すべき動力手段
5によって構造物4の揺れが増幅されたり、制御系の発
振によって動力手段5が充分な制振作用を発揮できなく
なるのを防止するように機能する。
The repulsion means 6 is configured such that the vibration of the structure 4 is amplified by the power means 5 which should apply a damping force in response to the high frequency component included in the control signal, or the vibration of the structure 4 is amplified by the oscillation of the control system. It functions to prevent the means 5 from being unable to exert a sufficient damping effect.

他方構造物4内には、地震動並びに動力手段5からの入
力による構造物4の応答を検出する検出手段7が設置さ
れる。そしてこの検出手段7には、検出信号を増幅する
ための増幅器8を介してコンピュータなどの制御手段9
が接続される。またこの制御手段9は動力手段5に接続
され、検出手段7からの検出信号に応じて動力手段5の
伸縮変位量をフィードバック制御する機能を有する。す
なわち、地震動の作用及び動力手段5の作用による構造
物4の応答が検出手段7によって常に検出され、この検
出量が制御手段9で処理されてその制御信号が動力手段
5に常に帰還されるようになっている。なお、増幅器8
並びに制御手段9の設置位置は、図示のように構造物4
内であっても、地盤2側であっても良い。
On the other hand, inside the structure 4, a detection means 7 is installed which detects the response of the structure 4 due to the earthquake motion and the input from the power means 5. The detection means 7 is connected to a control means 9 such as a computer via an amplifier 8 for amplifying the detection signal.
is connected. Further, this control means 9 is connected to the power means 5 and has a function of feedback controlling the amount of expansion/contraction displacement of the power means 5 in accordance with the detection signal from the detection means 7. That is, the response of the structure 4 due to the action of seismic motion and the action of the power means 5 is always detected by the detection means 7, this detected amount is processed by the control means 9, and the control signal is always fed back to the power means 5. It has become. Note that the amplifier 8
In addition, the installation position of the control means 9 is as shown in the figure.
It may be inside or on the ground 2 side.

ここで、■本発明の制振手法の概念、■制御手段9の制
御量として動力手段5の伸縮変位量を採用した点、並び
に■フィードバック制御を採用した点について説明する
Here, 1) the concept of the damping method of the present invention, 2) the use of the expansion/contraction displacement amount of the power means 5 as the control amount of the control means 9, and 2) the use of feedback control will be explained.

■について 本発明は、弾発手段6を備えた制振系に対応する特有の
制御関数を制御手段9内に設定し、この制御関数に基づ
いて動力手段5の伸縮変位量を制御して制振を達成する
ようになっている。
Regarding (2), the present invention sets a specific control function corresponding to the vibration damping system equipped with the elastic means 6 in the control means 9, and controls the amount of expansion/contraction displacement of the power means 5 based on this control function. It is supposed to achieve the swing.

長周期化手段3によって支持された構造物4に動力手段
5の制御力を作用させることによって、地震時の他動に
よる構造物4の揺れを抑制する場合の基本的な振動方程
式は、次のように表現される。
The basic vibration equation for suppressing the shaking of the structure 4 due to passive movement during an earthquake by applying the control force of the power means 5 to the structure 4 supported by the period lengthening means 3 is as follows. It is expressed as

mx+c M+kx −−m9+F      −−−
(1)m:構造物4固有の質量 c二構造物4固有の減衰係数 に:長周期化手段3の弾発係数 に:構造物4の地盤2に対する相対速度X:構造物4の
地盤2に対する相対速度X:構造物4の地盤2に対する
相対変位ψ:他動加速度 F:動力手段5の制御力 ここに地震動の作用並びに動力手段5からの入力による
構造物4の応答量としてはその変位X。
mx+c M+kx --m9+F ---
(1) m: Mass unique to the structure 4 c2 Damping coefficient unique to the structure 4: Resilience coefficient of the lengthening means 3: Relative speed of the structure 4 to the ground 2 X: Structure 4 to the ground 2 Relative velocity to X.

速度に、加速度kがある。また上記振動系を考慮した場
合、構造物4の振動特性を変更できる諸量としては構造
物4固有の質量m、構造物4固有の減衰係数C及び長周
期化手段3の弾発係数kがある。そして本発明にあって
は、構造物4の応答を検出してこれら検出量を制御系で
処理するにあたり、適当な制御関数を設定してこれら振
動特性を変更できる諸量を制御系において適当に変更す
ることにより、構造物4の振動特性を変化させて制振さ
せるようになっている。ここでは、(I)構遺物4の応
答速度交を用いて振動系の減衰力を変更する場合、(I
I)構造物4の応答変位Xを用いて振動系の弾発力を変
更させる場合、及び(III)構造物4の応答加速度父
を用いて振動系の質量を変更する場合について説明する
The velocity has an acceleration k. In addition, when considering the above vibration system, the various quantities that can change the vibration characteristics of the structure 4 include the mass m specific to the structure 4, the damping coefficient C specific to the structure 4, and the elastic coefficient k of the period lengthening means 3. be. In the present invention, when detecting the response of the structure 4 and processing these detected quantities in the control system, an appropriate control function is set to appropriately control various quantities that can change these vibration characteristics in the control system. By changing the structure, the vibration characteristics of the structure 4 are changed and vibrations are suppressed. Here, (I) When changing the damping force of the vibration system using the response velocity intersection of the structural object 4, (I
I) A case where the elastic force of the vibration system is changed using the response displacement X of the structure 4, and (III) A case where the mass of the vibration system is changed using the response acceleration of the structure 4 will be explained.

まず上述の構造を検討すると、動力手段5の力伝達系に
は弾発手段6が介設されているので、(1)式の動力手
段5の制御力Fの内容は次のように書き直すことができ
る。
First, considering the above structure, since the force transmission system of the power means 5 includes the elastic means 6, the content of the control force F of the power means 5 in equation (1) can be rewritten as follows. Can be done.

F聴ka(z−x) ・・・ (2) m (父+i)+CにC+?) +  (k+ka)  (x+y)  =C3/+  
(k+k a)  y+k a z−−−このように表
現された(3)式において、外力の項である右辺のka
zは弾発手段6を設置したことによる効果である。ここ
に、(I)に対応させてkazで与えられた力の項に関
し、この力の項を振動系の減衰力を変更させるための制
御量として与える場合を考えると、構造物4の絶対応答
速度を用いて次のように表現することができる。
F listening ka (z-x) ... (2) m (father + i) + C + C? ) + (k+ka) (x+y) =C3/+
(k+k a) y+k a z---In equation (3) expressed in this way, ka on the right side, which is the external force term,
z is the effect of installing the explosive means 6. Regarding the force term given by kaz in correspondence with (I), if we consider the case where this force term is given as a control variable to change the damping force of the vibration system, the absolute response of the structure 4 is It can be expressed using velocity as follows.

ka:弾発手段の弾発係数 2:動力手段の伸縮変位量 ここで(2)式を(1)式に代入する。この際、他動変
位yと構造物4の地盤2に対する相対変位Xとを重ね合
せた静止系(絶対系)に対する構造物4の絶対応答変位
(x+y)、絶対応答速度(x十?)等で整理すると、
次のようになる。
ka: elasticity coefficient of the elastic means 2: amount of expansion/contraction displacement of the power means Here, equation (2) is substituted into equation (1). At this time, the absolute response displacement (x+y), absolute response speed (x0?), etc. of the structure 4 with respect to the static system (absolute system) which is a superposition of the passive displacement y and the relative displacement X of the structure 4 with respect to the ground 2, etc. If you organize it by
It will look like this:

kaz −−ca  (x+y) Ca:制御手段って与えられる減衰係数 a (x+y) ・・・ (4) ka この(4)式を上記(3)式に代入して整理すると次の
ように表現され、(3)式と比較すると構造物4の振動
特性が変更された効果が与えられる。
kaz −-ca (x+y) Ca: Attenuation coefficient given by the control means a (x+y) ... (4) ka Substituting this equation (4) into the above equation (3) and rearranging it, it is expressed as follows. When compared with equation (3), the effect of changing the vibration characteristics of the structure 4 is given.

m  (x:+9)+  (c+ca)  (x+y)
+ (k+ka)(x+y)− cy+  (k+ka)  Y ・・・ (5)kb (x + y) ・・ (6) ka この(6)式を上記(3)式に代入して整理すると次の
ように表現され、(3)式と比較すると構造物4の振動
特性が変更された効果が与えられる。
m (x:+9)+ (c+ca) (x+y)
+ (k + ka) (x + y) - cy + (k + ka) Y ... (5) kb (x + y) ... (6) ka Substituting this equation (6) into the above equation (3) and rearranging it, we get the following When compared with equation (3), the effect of changing the vibration characteristics of the structure 4 is given.

同様に、(II)に対応させてkazで与えられた力の
項に関し、この力の項を振動系の弾発力を変更させるた
めの制御量として与える場合を考えると、構造物4の絶
対応答変位を用いて次のように表現することができる。
Similarly, regarding the force term given by kaz in correspondence with (II), if we consider the case where this force term is given as a control amount to change the elastic force of the vibration system, the absolute value of the structure 4 It can be expressed as follows using response displacement.

kaz −−kb  (x+y) kb;制御手段って与えられる弾発係数m (x+y)
+c (x+y) +  (k+ka+kb)  (x+y)  =CY+
  (k+ka)  y ・・・ (7)また同様に、
(III)に対応させてkazの力の項を振動系の質量
を変更するための制御量として与える場合を考えると、
構造物4の絶対応答加速度を用いて次のように表現する
ことができる。
kaz −-kb (x+y) kb; Resilience coefficient m (x+y) given by the control means
+c (x+y) + (k+ka+kb) (x+y) =CY+
(k+ka) y... (7) Similarly,
Considering the case where the kaz force term is given as a control variable for changing the mass of the vibration system in correspondence with (III),
It can be expressed as follows using the absolute response acceleration of the structure 4.

kaz−−ma (x十y) 制御手段9で与えられる質量 m a (菱+ジ) ・・・ (8) a この(8)式を上記(3)式に代入して整理すると次の
ように表現され、(3)式と比較すると構造物4の振動
特性が変更された効果が与えられる。
kaz--ma (x + y) Mass given by control means 9 m a (diamond + ji) ... (8) a Substituting this equation (8) into the above equation (3) and rearranging it, we get the following. When compared with equation (3), the effect of changing the vibration characteristics of the structure 4 is given.

(m+ma)  (x+y)+c  (x+y)+  
(k+ka)  (x+y)  =c y +  (k
 + k a )  Y −(9)このように力の項で
あるkazに対応させて(4)、(6)、(8)式に示
したような制御関数を制御系に導入することにより、(
5)、(7)(9)式に示したような振動系の変更を確
保してこの振動系の変更という面から制振効果を発揮さ
せることができる。特に、(5)式は構造物4に新たに
ダンパを付加して共振増幅を抑える効果を発揮するもの
であり、また(7)、(9)式は振動系の固有周期を変
化させて構造物4の周期を特定の周期帯からシフトさせ
る効果を発揮する。
(m+ma) (x+y)+c (x+y)+
(k+ka) (x+y) =cy + (k
+ k a ) Y - (9) In this way, by introducing the control functions shown in equations (4), (6), and (8) into the control system in correspondence with kaz, which is the force term, (
5), (7), and (9), the vibration damping effect can be exerted by ensuring changes in the vibration system as shown in equations 5), (7), and (9). In particular, equation (5) shows the effect of adding a new damper to the structure 4 to suppress resonance amplification, and equations (7) and (9) add a new damper to the structure 4, and equations (7) and (9) add a new damper to the structure 4 to suppress the resonance amplification. It has the effect of shifting the period of object 4 from a specific periodic band.

また必要な場合には、これら(4)、  (6)。Also, if necessary, these (4) and (6).

(8)式を適当に組合せて制御系を構成しても良いこと
はもちろんである。
Of course, the control system may be constructed by appropriately combining equations (8).

また更に構造物4の応答を検出すると共に、制御系に特
有の制御関数を与えて制振させる手法として、次のよう
にしても良い。すなわち上述の式(3)においては、左
辺が上述の構造の絶対系での振動特性を、右辺が外力の
内容となっている。
Furthermore, as a method of detecting the response of the structure 4 and damping the vibration by giving a specific control function to the control system, the following may be used. That is, in the above equation (3), the left side represents the vibration characteristics of the above structure in an absolute system, and the right side represents the contents of the external force.

そして上記の構造物4の絶対応答が零となるためには、
右辺の内容、すなわち外力の項が零となれば良い。そこ
で(3)式を右辺−〇として、動力手段5の伸縮変位f
f1zで整理すると、次のように表わされる。
In order for the absolute response of the above structure 4 to become zero,
It is sufficient if the content on the right side, that is, the external force term, becomes zero. Therefore, by setting the right side of equation (3) to -0, the expansion/contraction displacement f of the power means 5
When organized by f1z, it is expressed as follows.

cy+(k+ka)y十kaz−0 z −−(cy+  (k+ka)yl  −(10)
a これは構造物4を、絶対系に対して静止させることがで
きる制御量である。そしてこの値2と構造物4の絶対応
答とが等しい値となれば、そのときの動力手段5の伸縮
変位Hzは構造物4を他動に拘らず一定位置に維持てき
ている(絶対制振状態)ことになる。実際の制御におい
ては、フィードバック制御が行なわれるので、この2と
いう値は現在における実際の動力手段5の伸縮変位量と
して制御に導入され、これら値2と構造物4の応答量と
に基づいて制御が行なわれることになる。
cy+(k+ka)y ten kaz-0 z--(cy+(k+ka)yl-(10)
a This is a control amount that allows the structure 4 to stand still with respect to the absolute system. If this value 2 and the absolute response of the structure 4 are equal, the expansion/contraction displacement Hz of the power means 5 at that time has maintained the structure 4 at a constant position regardless of passive motion (absolute damping). condition). In actual control, feedback control is performed, so this value 2 is introduced into the control as the current amount of expansion/contraction displacement of the power means 5, and control is performed based on these values 2 and the response amount of the structure 4. will be carried out.

そこで実際の制御のためにこの値2をZaとし、これを
上記(3)式に代入して制御関数を整理すると次のよう
になる。
Therefore, for actual control, this value 2 is set as Za, and when it is substituted into the above equation (3) and the control function is rearranged, the following is obtained.

m(i +ジ)+c  にc+y) +  (k+ka)  (x+y)  −−kaza+
kaz z−z  a+G  f  (x+y)       
    −(11)f  (x+y)  :m  (x
+9)+c  (x+y)+  (k+ka)  (x
+y) G:フィードバックゲイン(G−1/ka)この制御は
、構造物4の応答量に基づきながらも、地震動の入力に
対して直接応答して構造物4を制振しようとするもので
ある。
m (i + di) + c to c + y) + (k + ka) (x + y) --kaza +
kaz zz a+G f (x+y)
−(11)f (x+y) :m (x
+9)+c (x+y)+ (k+ka) (x
+y) G: Feedback gain (G-1/ka) This control is based on the amount of response of the structure 4 and attempts to dampen the vibration of the structure 4 in direct response to the input of seismic motion. .

また更に、ここで得られた制御関数(11)は、必要に
応じて上記(5)、(7)、(9)式の制御関数と組合
せても良い。これは(11)式で与えられた絶対制振の
制御では、制御手段9から出力される制御信号に対して
動力手段5が迅速に作動する必要がある。しかしながら
動力手段5には相当の作動遅れがあり、信号に対応でき
ない場合がある。ここに、(11)式の制御に重ねて(
5)。
Furthermore, the control function (11) obtained here may be combined with the control functions of equations (5), (7), and (9) above, if necessary. This is because in the absolute vibration damping control given by equation (11), the power means 5 needs to operate quickly in response to the control signal output from the control means 9. However, the power means 5 has a considerable delay in operation and may not be able to respond to the signal. Here, superimposed on the control of equation (11), (
5).

(7)、(9)式の制御関数と組合せ、振動系の変更と
いう観点からの補正を行なうことにより、絶対制振の制
御における動力手段5の作動遅れなどの悪影響を廃除し
て優れた割振制御を行なうことができる。
By combining the control functions of equations (7) and (9) and making corrections from the perspective of changing the vibration system, it is possible to eliminate negative effects such as delay in the operation of the power means 5 in absolute vibration damping control and achieve excellent vibration allocation. can be controlled.

このようにして、地震力及び制振力が相互に作用する動
力手段5の力伝達系に弾発手段6を新設した振動系にお
いて、新たに導出された上記各式を制御手段9の制御関
数とし、検出手段7の検出量として構造物4の応答を採
用して動力手段5の伸縮変位iizの制御を行なうこと
により、弾発手段6の存在を加味した上で、弾発手段6
にその機能を発揮させつつ動力手段5に適切な制振制御
信号を出力することができ、優れた制振効果を得ること
ができる。
In this way, in the vibration system in which the elastic means 6 is newly installed in the force transmission system of the power means 5 in which seismic force and damping force interact, each of the above newly derived equations is used as the control function of the control means 9. By using the response of the structure 4 as the detection amount of the detection means 7 and controlling the expansion/contraction displacement iiz of the power means 5, taking into account the presence of the resilient means 6,
An appropriate vibration damping control signal can be output to the power means 5 while allowing the power means 5 to perform its functions, and an excellent vibration damping effect can be obtained.

また構造物4め絶対応答量を検出するに際しては、図示
のように構造物4に設置した検出手段7で構造物4独自
で静止系に対するその絶対加速度。
Further, when detecting the absolute response amount of the structure 4, as shown in the figure, the detection means 7 installed in the structure 4 detects the absolute acceleration of the structure 4 with respect to the stationary system.

絶対速度、絶対変位を検出しても良いし、他方他動の加
速度、速度、変位並びに地盤2に対する構造物4の相対
的な加速度、速度、変位をそれぞれ別個のセンサで検出
して上記算式のようにこれらを重ね合せて用いるように
しても良い。更に、加速度、速度、変位の相互間につい
ては、例えば検出された速度を微分、積分する等して得
るようにしても良い。
The absolute velocity and absolute displacement may be detected, or on the other hand, the acceleration, velocity, and displacement of passive motion and the relative acceleration, velocity, and displacement of the structure 4 with respect to the ground 2 may be detected using separate sensors, and the above formula can be calculated. These may be used in a superimposed manner. Further, the relationship between acceleration, velocity, and displacement may be obtained by, for example, differentiating or integrating the detected velocity.

■について 次に、制御手段9の制御量として動力手段5の伸縮変位
量2を採用した点について説明すると、油圧シリンダ等
の動力手段5を制御する場合の制Dllffiとしては
、その変位量、変位速度、変位加速度がある。また他方
、ロードセル等を動力手段5と構造物4との間に設置し
て動力手段5の発生する作用力を制御する方法もある。
Regarding (2), next, we will explain the point that the expansion/contraction displacement amount 2 of the power means 5 is adopted as the control amount of the control means 9. When controlling the power means 5 such as a hydraulic cylinder, the control Dllffi is the displacement amount, the displacement There is velocity, displacement acceleration. On the other hand, there is also a method of installing a load cell or the like between the power means 5 and the structure 4 to control the acting force generated by the power means 5.

ここに動力手段5として例えば油圧シリンダを採用した
場合には、その作動はバルブを制御することで行なわれ
る。
If, for example, a hydraulic cylinder is employed as the power means 5, its operation is performed by controlling a valve.

このバルブ制御はオイルの流入量を調整するもので、そ
の流入量は油圧シリンダの変位速度に対応するから、こ
のバルブ制御は油圧シリンダの変位速度制御を行なって
いることになる。従ってこのような場合には、制御手段
9による制御量を動力手段5の変位速度とすることが最
も直接的且つ簡単であり、−殻内にはこの速度制御が行
なわれている。しかしながら制御系の一般的な考え方と
して、変位制御が制御系の発振を起こしにくく最も安定
性の高いものである。すなわち、速度制御を基準に考え
ると、加速度制御は速度制御に対して微分制御の関係に
あり、動力手段5が素早く反応することができれば優れ
た追従性を発揮するが、安定性に劣り発振を起こしやす
い制御系である。
This valve control adjusts the amount of oil inflow, and since the inflow amount corresponds to the displacement speed of the hydraulic cylinder, this valve control controls the displacement speed of the hydraulic cylinder. Therefore, in such a case, it is most direct and simple to set the control amount by the control means 9 to the displacement speed of the power means 5, and this speed control is carried out within the shell. However, as a general concept of control systems, displacement control is less likely to cause oscillation in the control system and has the highest stability. In other words, when considering speed control as a standard, acceleration control has a differential control relationship with respect to speed control, and if the power means 5 can react quickly, it will exhibit excellent followability, but it will be less stable and may cause oscillation. It is a control system that is easy to cause.

また力制御の制御系は、加速度制御と同様に発振を起こ
し易く、不安定なものである。これらに対して変位制御
は速度制御に対して積分制御の関係にあり、安定性に優
れ発振も起こし難いものである。
Furthermore, the control system for force control is unstable and prone to oscillations, similar to acceleration control. On the other hand, displacement control has an integral control relationship with respect to speed control, has excellent stability, and is less likely to cause oscillation.

そして本制振制御にあっては、上述した新しい制御関数
の導出にあたり動力手段5の伸縮変位量2を制御式に導
入したことにより、この変位制御で動力手段5の制御を
達成することができ、この安定性の高い変位制御を上述
の制振方法に採用することで更に優れた制振を達成する
ことができる。
In this damping control, by introducing the expansion/contraction displacement amount 2 of the power means 5 into the control equation when deriving the new control function described above, the control of the power means 5 can be achieved by this displacement control. By employing this highly stable displacement control in the above-mentioned vibration damping method, even more excellent vibration damping can be achieved.

■について また更に本制振方法及び装置にあっては、構造物4が地
震動によって揺れ始める前の他動を予め検出して行なわ
れるフィードフォワード制御ではなく、フィードバック
制御を採用している。これはフィードフォワード制御で
は予測制御となるため、構造物4の振動特性やその非線
形性を事前に把握しこれらを反映した制御回路が必要と
なるのに対し、フィードバック制御ではこのような必要
がなく、また構造物4の非線形性に対しても追従するこ
とが可能だからである。
Regarding (2), the present vibration damping method and device employs feedback control rather than feedforward control, which is performed by detecting in advance passive motion before the structure 4 begins to shake due to earthquake motion. Since this is predictive control in feedforward control, it is necessary to understand the vibration characteristics of the structure 4 and its nonlinearity in advance and to create a control circuit that reflects these, whereas in feedback control, this is not necessary. This is because it is also possible to follow the nonlinearity of the structure 4.

そして上述したような、地盤2上に長周期化手段3を介
して支持された構造物4を、その力伝達方向に弾発する
弾発手段6を有し構造物4と地盤2との間で他動方向に
伸縮駆動されて構造物4に制振力を伝達する動力手段5
によって制振するに際し、本発明の制振方法にあっては
、地震動並びに動力手段5からの入力による構造物4の
応答を検出し、この構造物4の応答に応じ上述した種々
の制御関数に基づいて動力手段5の伸縮変位ffizを
フィードバック制御するようになっている。
As described above, the structure 4 supported on the ground 2 via the long period lengthening means 3 is provided with a springing means 6 for springing the structure 4 in the direction of force transmission, between the structure 4 and the ground 2. Power means 5 that is driven to expand and contract in the passive direction to transmit damping force to the structure 4
In the vibration damping method of the present invention, the response of the structure 4 due to the earthquake motion and the input from the power means 5 is detected, and the various control functions described above are applied according to the response of the structure 4. Based on this, the expansion/contraction displacement ffiz of the power means 5 is feedback-controlled.

(発明の効果) 以上要するに本発明に係る制振方法及びその装置によれ
ば、地震力及び制振力が相互に作用する動力手段の力伝
達系に弾発手段を新設した振動系において、弾発手段の
弾発係数を含んだ形で新たに導出された振動方程式を制
御手段の制御関数とし、検出手段の検出量として構造物
の応答を採用して動力手段の伸縮変位量の制御を行なう
ことにより、弾発手段の存在を加味した上で、弾発手段
にその機能を発揮させつつ動力手段に適切な制振制御信
号を出力することができ、優れた制振効果を得ることが
できる。
(Effects of the Invention) In summary, according to the vibration damping method and its device according to the present invention, in a vibration system in which an elastic means is newly installed in a force transmission system of a power means in which seismic force and vibration damping force interact, an elastic A newly derived vibration equation that includes the elastic coefficient of the generating means is used as a control function of the control means, and the response of the structure is used as the detection amount of the detection means to control the amount of expansion and contraction of the power means. By this, an appropriate vibration damping control signal can be outputted to the power means while allowing the firing means to perform its function, taking into account the existence of the firing means, and an excellent vibration damping effect can be obtained. .

また上述した新しい制御関数の導出にあたり動力手段の
変位量を制御式に導入したことにより、この変位制御で
動力手段の制御を達成することができ、この安定性の高
い変位制御を制振制御に採用することで更に優れた制振
を達成することができる。
In addition, by introducing the displacement amount of the power means into the control equation when deriving the new control function described above, it is possible to achieve control of the power means using this displacement control, and this highly stable displacement control can be used as vibration damping control. By adopting this method, even better vibration damping can be achieved.

また更にフィードバック制御を採用しているので、構造
物の振動特性やその非線形性を事前に把握しこれらを反
映した制御回路とする必要がなく、的確な制振制御を達
成することができる。
Furthermore, since feedback control is adopted, there is no need to understand the vibration characteristics of the structure and their nonlinearity in advance and create a control circuit that reflects these, and it is possible to achieve accurate vibration damping control.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明に係る制振装置の好適実施例を示す概略図で
ある。 2・・・地盤      3・・・長周期化手段4・・
・構造物     5・・・動力手段6・・・弾発手段
    7・・・検出手段9・・・制御手段
The figure is a schematic diagram showing a preferred embodiment of a vibration damping device according to the present invention. 2...Ground 3...Long cycle means 4...
・Structure 5... Power means 6... Bombing means 7... Detection means 9... Control means

Claims (2)

【特許請求の範囲】[Claims] (1)地盤上に長周期化手段を介して支持された構造物
を、その力伝達方向に弾発する弾発手段を有し該構造物
と地盤との間で他動方向に伸縮駆動されて構造物に制振
力を伝達する動力手段によって制振するに際し、地震動
並びに上記動力手段からの入力による構造物の応答を検
出し、この構造物の応答に従って該動力手段の伸縮変位
量をフィードバック制御するようにしたことを特徴とす
る制振方法。
(1) A structure supported on the ground via a lengthening means is provided with a springing means for springing the structure in the direction of force transmission, and the structure is driven to expand and contract in the passive direction between the structure and the ground. When damping vibrations using a power means that transmits damping force to a structure, the response of the structure due to earthquake motion and input from the power means is detected, and the amount of expansion and contraction of the power means is feedback-controlled according to the response of the structure. A vibration damping method characterized by:
(2)地盤と該地盤上に長周期化手段を介して支持され
た構造物との間に設けられ、他動方向に伸縮駆動されて
上記構造物に制振力を伝達する動力手段と、該動力手段
に取付けられその力伝達方向に弾発する弾発手段と、地
震動並びに上記動力手段からの入力による構造物の応答
を検出する検出手段と、該検出手段からの検出信号に応
じて上記動力手段の伸縮変位量をフィードバック制御す
る制御手段とを備えたことを特徴とする制振装置。
(2) a power means that is provided between the ground and a structure supported on the ground via a long period lengthening means, and is driven to expand and contract in a passive direction to transmit a damping force to the structure; an explosive means that is attached to the power means and springs in the direction of force transmission; a detection means that detects earthquake motion and the response of the structure due to input from the power means; A vibration damping device comprising: a control means for feedback controlling the amount of expansion/contraction displacement of the means.
JP19610088A 1988-08-08 1988-08-08 Vibration control method and device Expired - Fee Related JPH0819781B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19610088A JPH0819781B2 (en) 1988-08-08 1988-08-08 Vibration control method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19610088A JPH0819781B2 (en) 1988-08-08 1988-08-08 Vibration control method and device

Publications (2)

Publication Number Publication Date
JPH0247478A true JPH0247478A (en) 1990-02-16
JPH0819781B2 JPH0819781B2 (en) 1996-02-28

Family

ID=16352223

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19610088A Expired - Fee Related JPH0819781B2 (en) 1988-08-08 1988-08-08 Vibration control method and device

Country Status (1)

Country Link
JP (1) JPH0819781B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5592791A (en) * 1995-05-24 1997-01-14 Radix Sytems, Inc. Active controller for the attenuation of mechanical vibrations
JP2009074652A (en) * 2007-09-21 2009-04-09 Kawasaki Heavy Ind Ltd Seismic isolator and semiconductor manufacturing facility

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5592791A (en) * 1995-05-24 1997-01-14 Radix Sytems, Inc. Active controller for the attenuation of mechanical vibrations
JP2009074652A (en) * 2007-09-21 2009-04-09 Kawasaki Heavy Ind Ltd Seismic isolator and semiconductor manufacturing facility

Also Published As

Publication number Publication date
JPH0819781B2 (en) 1996-02-28

Similar Documents

Publication Publication Date Title
JP6308999B2 (en) Active vibration isolation system
Benassi et al. Active vibration isolation using an inertial actuator with local force feedback control
Yang et al. Sliding mode control for seismically excited linear structures
Benassi et al. Active vibration isolation using an inertial actuator with local displacement feedback control
US5447001A (en) Vibration control device for structure
JPH04350274A (en) Vibration controller for structure
Beijen et al. Two-sensor control in active vibration isolation using hard mounts
JP2002327791A (en) Device and method for vibration insulation and support of load
JPH0247478A (en) Method for vibration control and its device
El-Sinawi Active vibration isolation of a flexible structure mounted on a vibrating elastic base
JPH0472094B2 (en)
JPH0243472A (en) Method and device for damping vibration
JPH0249875A (en) Damping method and device thereof
JPH0249874A (en) Damping method and device thereof
Guclu et al. Evaluation of sliding mode and proportional-integral-derivative controlled structures with an active mass damper
JPH0213667A (en) Damping device
Rajamani et al. On invariant points and their influence on active vibration isolation
JPH03250165A (en) Hybrid dynamic vibration reducer
JPH0463185B2 (en)
JPS62155347A (en) Active vibrationproof supporting device
US5615868A (en) Active pneumatic mount
JP2822797B2 (en) Damping device
JPH0464743A (en) Hybrid dynamic absorber
JPH0285476A (en) Vibration suppressing method
JPH0285478A (en) Suppression for vibration

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees