JP2009074652A - Seismic isolator and semiconductor manufacturing facility - Google Patents

Seismic isolator and semiconductor manufacturing facility Download PDF

Info

Publication number
JP2009074652A
JP2009074652A JP2007246064A JP2007246064A JP2009074652A JP 2009074652 A JP2009074652 A JP 2009074652A JP 2007246064 A JP2007246064 A JP 2007246064A JP 2007246064 A JP2007246064 A JP 2007246064A JP 2009074652 A JP2009074652 A JP 2009074652A
Authority
JP
Japan
Prior art keywords
seismic isolation
actuator
relative displacement
floor surface
floor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007246064A
Other languages
Japanese (ja)
Other versions
JP4922114B2 (en
Inventor
Tetsuya Kubota
哲也 久保田
Yukinobu Kono
行伸 河野
Toshihiro Tamaki
利裕 玉木
Tomoo Saito
知生 斎藤
Teru Fukukita
輝 福喜多
Yuichiro Ogawa
雄一郎 小川
Kazuhiko Kobayashi
和彦 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Construction Co Ltd
Kawasaki Heavy Industries Ltd
Shimizu Corp
Original Assignee
Shimizu Construction Co Ltd
Kawasaki Heavy Industries Ltd
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Construction Co Ltd, Kawasaki Heavy Industries Ltd, Shimizu Corp filed Critical Shimizu Construction Co Ltd
Priority to JP2007246064A priority Critical patent/JP4922114B2/en
Publication of JP2009074652A publication Critical patent/JP2009074652A/en
Application granted granted Critical
Publication of JP4922114B2 publication Critical patent/JP4922114B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Vibration Prevention Devices (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve a seismic isolating function by reducing a natural frequency of a structure. <P>SOLUTION: In this seismic isolator 10, a floor 1 is connected with a structure 8 by a pipe 5 with high rigidity, and vibrations of the structure 8 are restrained. This seismic isolator comprises a linear movement actuator 11 interposed between the floor 1 and the structure 8 and capable of driving the structure 8 to be relatively displaced from the floor 1, a relative displacement sensor 17 (rotary encoder) capable of detecting relative displacement of the structure 8 relative to the floor 1, and a controller 12 controlling the linear movement actuator 11 based on outputs of the relative displacement sensor 17. The controller 12 positively feedbacks the outputs of the relative displacement sensor 17 to control signals inputted to the linear movement actuator 11. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、半導体製造装置や建物等のような構造物に地震による振動が伝達されるのを抑制する免震装置及び半導体製造設備に関するものである。   The present invention relates to a seismic isolation device and semiconductor manufacturing equipment that suppress the transmission of vibration due to an earthquake to a structure such as a semiconductor manufacturing device or a building.

地震による振動が構造物に伝達されるのを抑制する免震装置には、パッシブ免震方式とアクティブ免震方式とがある。パッシブ免震装置は、床面(地面)と構造物との間に介設される積層ゴム等の振動吸収手段を有している(例えば、特許文献1参照)。この振動吸収手段により、構造物の固有振動数が地震波の主周波数成分よりも低くなるように設定され、床面から構造物への振動伝達が抑制される(図7(a)参照)。   There are a passive seismic isolation method and an active seismic isolation method as a seismic isolation device that suppresses transmission of vibration caused by an earthquake to a structure. The passive seismic isolation device has vibration absorbing means such as laminated rubber interposed between a floor surface (ground) and a structure (see, for example, Patent Document 1). By this vibration absorbing means, the natural frequency of the structure is set to be lower than the main frequency component of the seismic wave, and vibration transmission from the floor surface to the structure is suppressed (see FIG. 7A).

一方、アクティブ免震装置は、床面と構造物との間に介設されるアクチュエータを有し、床面や構造物に設置された加速度センサ等の出力に基づいて構造物の振動を打ち消すようにアクチュエータが制御される(例えば、特許文献2参照)。地震時には、床面と構造物との間で水平方向の相対変位が生じるため、構造物が床面側の壁に衝突しないように構造物と床面側の壁との間にクリアランスが設けられているが、デッドスペースを減少させるためには該クリアランスを極力減らすことが望まれる。よって、アクティブ免震装置では、一般的に、構造物の揺れを抑制すべく構造物の絶対加速度を低減することと、床面と構造物との間の相対変位を適度に抑制することが設計目標とされている。
特公平7−54132号公報 特開平10−299237号公報
On the other hand, the active seismic isolation device has an actuator interposed between the floor surface and the structure, and cancels the vibration of the structure based on the output of an acceleration sensor or the like installed on the floor surface or the structure. The actuator is controlled (see, for example, Patent Document 2). In the event of an earthquake, horizontal relative displacement occurs between the floor and the structure, so a clearance is provided between the structure and the floor wall so that the structure does not collide with the floor wall. However, in order to reduce the dead space, it is desired to reduce the clearance as much as possible. Therefore, the active seismic isolation device is generally designed to reduce the absolute acceleration of the structure and suppress the relative displacement between the floor and the structure to suppress the shaking of the structure. It has been targeted.
Japanese Patent Publication No. 7-54132 Japanese Patent Laid-Open No. 10-299237

ところで、パッシブ免震装置では、構造物の固有振動数を地震波の主周波数成分よりも低くするために、振動吸収手段が十分な柔軟性を有することが要求される。しかしながら、半導体製造装置のような構造物に適用した場合に、配管等の付属物である剛性体が床面と構造物との間に連結されると、その剛性体が振動吸収手段の柔軟性を阻害してしまい、構造物側の固有振動数が高くなって免震機能が低下することが考えられる(図7(b)及び図8参照)。   By the way, in the passive seismic isolation device, the vibration absorbing means is required to have sufficient flexibility in order to make the natural frequency of the structure lower than the main frequency component of the seismic wave. However, when applied to a structure such as a semiconductor manufacturing apparatus, if a rigid body, which is an accessory such as a pipe, is connected between the floor and the structure, the rigid body is flexible to the vibration absorbing means. It is conceivable that the natural frequency on the structure side increases and the seismic isolation function decreases (see FIGS. 7B and 8).

なお、前述したアクティブ免震装置は、構造物の絶対加速度を低減することと、床面と構造物との間の相対変位を適度に抑制することを目的としたものであり、パッシブ免震装置の免震機能を維持するために、構造物側の固有振動数を低下させることを目的とするものは存在しない。   The active seismic isolation device described above is intended to reduce the absolute acceleration of the structure and moderately suppress the relative displacement between the floor and the structure. In order to maintain the seismic isolation function, there is nothing that aims to reduce the natural frequency on the structure side.

そこで本発明は、構造物側の固有振動数を低下させて免震機能を向上させることを目的としている。   Therefore, an object of the present invention is to improve the seismic isolation function by reducing the natural frequency on the structure side.

本発明は上述のような事情に鑑みてなされたものであり、本発明に係る免震装置は、床面と構造物が剛性体で連結され、前記構造物の振動を抑制する免震装置であって、前記床面と前記構造物との間に介設され、前記構造物を前記床面に対して相対変位させるように駆動可能なアクチュエータと、前記構造物の前記床面に対する相対変位量を検出可能な相対変位センサと、前記相対変位センサの出力に基づいて前記アクチュエータを制御するコントローラとを備え、前記コントローラは、前記床面が前記構造物に対して相対変位した際、その相対変位を増幅させるように、前記相対変位センサの出力を前記アクチュエータへ入力する制御信号に帰還させることを特徴とする。   The present invention has been made in view of the circumstances as described above, and the seismic isolation device according to the present invention is a seismic isolation device in which a floor surface and a structure are connected by a rigid body and the vibration of the structure is suppressed. An actuator that is interposed between the floor surface and the structure and is capable of being driven to displace the structure relative to the floor surface; and a relative displacement amount of the structure relative to the floor surface. And a controller that controls the actuator based on the output of the relative displacement sensor, and the controller detects the relative displacement when the floor surface is relatively displaced with respect to the structure. The output of the relative displacement sensor is fed back to a control signal input to the actuator.

前記構成によれば、床面が構造物に対して相対変位した際、その相対変位を増幅させるようにアクチュエータが制御されることとなる。そうすると、剛性体により床面と構造物との間の相対変位を低減させるような力が働いても、その力をアクチュエータにより打ち消すことが可能となる。したがって、免震機能を向上させることができる。   According to the above configuration, when the floor surface is displaced relative to the structure, the actuator is controlled to amplify the relative displacement. Then, even if a force that reduces the relative displacement between the floor surface and the structure is exerted by the rigid body, the force can be canceled by the actuator. Therefore, the seismic isolation function can be improved.

前記コントローラは、前記構造物の固有振動数を下げるように前記アクチュエータを制御してもよい。   The controller may control the actuator so as to reduce the natural frequency of the structure.

前記構成によれば、構造物側の固有振動数が低下させられるので、免震機能を向上させることができる。   According to the said structure, since the natural frequency by the side of a structure is reduced, a seismic isolation function can be improved.

前記コントローラは、前記アクチュエータによる動作の見かけ上のバネ定数が前記剛性体のバネ定数を打ち消すように、前記アクチュエータを制御してもよい。   The controller may control the actuator such that an apparent spring constant of the operation by the actuator cancels a spring constant of the rigid body.

前記構成によれば、例えば、剛性体のバネ定数がkp、アクチュエータにより補償されるバネ定数がkcである場合に、kc≒−kpとなるようにコントローラが設定されることで、剛性体が存在せずに構造物が振動吸収手段のみで支持される通常のパッシブ免震装置と同じ機能を保つことができ、免震機能をより効果的に発揮させることが可能となる。   According to the above configuration, for example, when the spring constant of the rigid body is kp and the spring constant compensated by the actuator is kc, the controller is set so that kc≈−kp, so that the rigid body exists. Therefore, the same function as that of a normal passive seismic isolation device in which the structure is supported only by the vibration absorbing means can be maintained, and the seismic isolation function can be more effectively exhibited.

前記アクチュエータは、回転位置検出手段を有するモータと、前記モータによる回転運動を直線運動に変換する直動機構とを備えた直動アクチュエータとし、前記回転位置検出手段が前記相対変位センサを兼用していてもよい。   The actuator is a linear motion actuator including a motor having a rotational position detection means and a linear motion mechanism that converts rotational motion by the motor into linear motion, and the rotational position detection means also serves as the relative displacement sensor. May be.

前記構成によれば、モータ付属の回転位置検出手段を相対変位センサとしても兼用しているので、相対変位センサとなるストロークセンサ等を別部品で設ける必要がなくなり、部品点数を低減することができる。   According to the above configuration, since the rotational position detecting means attached to the motor is also used as a relative displacement sensor, it is not necessary to provide a stroke sensor or the like as a relative displacement sensor as a separate component, and the number of components can be reduced. .

前記床面と前記構造物との間に介設されるダンパーをさらに備えていてもよい。   You may further provide the damper interposed between the said floor surface and the said structure.

前記構成によれば、ダンパーが地震波による床面の振動を減衰させるので、アクチュエータが小出力のもので足りることとなり、コストダウンを図ることが可能となる。   According to the above configuration, since the damper attenuates the vibration of the floor surface due to the seismic wave, the actuator needs only a small output, and the cost can be reduced.

また、本発明の半導体製造設備は、前述した免震装置と、前記構造物を構成する半導体製造装置とを備えたことを特徴とする。   A semiconductor manufacturing facility according to the present invention includes the above-described seismic isolation device and a semiconductor manufacturing device constituting the structure.

前記構成によれば、免震装置により床面から半導体製造装置への振動伝達が十分に抑制されるので、耐震性の高い半導体製造設備を実現することが可能となる。   According to the above configuration, since the vibration transmission from the floor surface to the semiconductor manufacturing apparatus is sufficiently suppressed by the seismic isolation device, it is possible to realize a semiconductor manufacturing facility with high earthquake resistance.

以上の説明から明らかなように、本発明によれば、振動吸収手段の柔軟性が十分に発揮されて構造物側の見かけ上の固有振動数が低下し、免震機能を向上させることができる。   As is clear from the above description, according to the present invention, the flexibility of the vibration absorbing means is sufficiently exhibited, the apparent natural frequency on the structure side is reduced, and the seismic isolation function can be improved. .

以下、本発明に係る実施形態を図面を参照して説明する。   Embodiments according to the present invention will be described below with reference to the drawings.

図1は本発明の実施形態に係る免震装置10を示す概略図である。図1に示すように、半導体製造工場では、地盤と一体的な床面1の上に作業者が歩く固定床2が設けられている。半導体製造設備100は、床面1上の固定床2が存在しない箇所では、床面1上に積層ゴムからなる振動吸収手段9が設置され、その振動吸収手段9により構造物8が支持されている。つまり、振動吸収手段9が地震波による床面1の水平方向の振動を吸収し、構造物8に加速度が生じるのを抑制している。   FIG. 1 is a schematic view showing a seismic isolation device 10 according to an embodiment of the present invention. As shown in FIG. 1, in a semiconductor manufacturing factory, a fixed floor 2 on which an operator walks is provided on a floor surface 1 integrated with the ground. In the semiconductor manufacturing facility 100, in a place where the fixed floor 2 does not exist on the floor surface 1, vibration absorbing means 9 made of laminated rubber is installed on the floor surface 1, and the structure 8 is supported by the vibration absorbing means 9. Yes. That is, the vibration absorbing means 9 absorbs horizontal vibrations of the floor surface 1 caused by seismic waves and suppresses the acceleration of the structure 8.

構造物8は、振動吸収手段9で支持される免震床3と、その免震床3の上に設置される半導体製造装置4とを有している。免震床3は、固定床2に対して所定のクリアランスを有する状態で、固定床2と略同一高さに配置されている。また、半導体製造装置4には、振動吸収手段9よりも剛性の高い剛性体である金属製の配管5の端部が連結されており、その配管5の所要部位が床面1に固定されている。従って、床面1と構造物8との間は振動吸収手段9だけでなく、剛性を有する配管5でも連結されていることとなる。   The structure 8 includes a base isolation floor 3 supported by the vibration absorbing means 9 and a semiconductor manufacturing apparatus 4 installed on the base isolation floor 3. The seismic isolation floor 3 is disposed at substantially the same height as the fixed floor 2 with a predetermined clearance with respect to the fixed floor 2. In addition, the semiconductor manufacturing apparatus 4 is connected to an end of a metal pipe 5 that is a rigid body having higher rigidity than the vibration absorbing means 9, and a required portion of the pipe 5 is fixed to the floor surface 1. Yes. Therefore, not only the vibration absorbing means 9 but also the rigid pipe 5 is connected between the floor surface 1 and the structure 8.

免震装置10は、床面1と免震床3との間に介設される直動アクチュエータ11と、床面1と免震床3との相対変位量に基づいて直動アクチュエータ11を制御するコントローラ12とを備えている。床面1上には固定側ブラケット6が固定されると共に、免震床3の下面に可動側ブラケット7が固定されており、各ブラケット6,7の間には水平方向の直進運動を発生させる直動アクチュエータ11が介設されている。以上のように、免震装置10、免震床3及び半導体製造装置4により半導体製造設備100が構成されている。   The seismic isolation device 10 controls the linear motion actuator 11 interposed between the floor surface 1 and the base isolation floor 3 and the linear motion actuator 11 based on the relative displacement between the floor surface 1 and the base isolation floor 3. And a controller 12 for performing the above operation. A fixed bracket 6 is fixed on the floor surface 1, and a movable bracket 7 is fixed to the lower surface of the seismic isolation floor 3, and a horizontal straight movement is generated between the brackets 6, 7. A linear actuator 11 is interposed. As described above, the semiconductor manufacturing facility 100 is configured by the base isolation device 10, the base isolation floor 3, and the semiconductor manufacturing apparatus 4.

図2は図1に示す免震装置10の主に直動アクチュエータ11を表した平面図である。図2に示すように、直動アクチュエータ11は、ACサーボモータ14と、そのACサーボモータ14の回転運動を直線運動に変換する直動機構15とを備えている。ACサーボモータ14は、駆動軸(図示せず)を有するモータ本体部16と、モータ本体部16の駆動軸(図示せず)の回転位相を検出可能なロータリーエンコーダ17(回転位置検出手段)を有している。なお、ACサーボモータの動作にはロータリーエンコーダが必要で、市販のACサーボモータにはロータリーエンコーダが通常付属している。   FIG. 2 is a plan view mainly showing the linear actuator 11 of the seismic isolation device 10 shown in FIG. As shown in FIG. 2, the linear motion actuator 11 includes an AC servo motor 14 and a linear motion mechanism 15 that converts the rotational motion of the AC servo motor 14 into linear motion. The AC servo motor 14 includes a motor main body 16 having a drive shaft (not shown), and a rotary encoder 17 (rotational position detecting means) capable of detecting the rotation phase of the drive shaft (not shown) of the motor main body 16. Have. The operation of the AC servo motor requires a rotary encoder, and a commercially available AC servo motor is usually provided with a rotary encoder.

モータ本体部16の駆動軸(図示せず)にはボールネジ18が接続されており、このボールネジ18に可動側ブラケット7が螺合されている。また、可動側ブラケット7は、ボールネジ18の軸線方向に平行配置されたリニアガイド19により一方向に案内されている。即ち、モータ本体部16が駆動することでボールネジ18が回転すると、可動側ブラケット7がリニアガイド19に沿って移動し、床面1と免震床3との間の水平方向の距離が変化することとなる。   A ball screw 18 is connected to a drive shaft (not shown) of the motor body 16, and the movable bracket 7 is screwed to the ball screw 18. The movable bracket 7 is guided in one direction by a linear guide 19 arranged in parallel with the axial direction of the ball screw 18. That is, when the ball screw 18 is rotated by driving the motor body 16, the movable side bracket 7 moves along the linear guide 19, and the horizontal distance between the floor surface 1 and the seismic isolation floor 3 changes. It will be.

また、ACサーボモータ14にはコントローラ12が接続されている。コントローラ12は、ロータリーエンコーダ17の出力を受信し、その出力に基づいて床面1の免震床3に対する相対変位量を算出し、その算出結果に基づいて制御信号をモータ本体部16に送信してACサーボモータ14の制御を行う。即ち、ロータリーエンコーダ17が、床面1の免震床3に対する相対変位量を検出可能な相対変位センサを兼ねている。   A controller 12 is connected to the AC servo motor 14. The controller 12 receives the output of the rotary encoder 17, calculates a relative displacement amount of the floor surface 1 with respect to the seismic isolation floor 3 based on the output, and transmits a control signal to the motor body 16 based on the calculation result. The AC servo motor 14 is controlled. That is, the rotary encoder 17 also serves as a relative displacement sensor that can detect the relative displacement amount of the floor surface 1 with respect to the seismic isolation floor 3.

図3は図1に示す免震装置10のコントローラ12の正帰還制御を説明する図面である。図3に示すように、コントローラ12は、直動アクチュエータ11のロータリーエンコーダ17(相対変位センサ)の出力値、即ち、床面1と免震床3との間の相対変位量を直動アクチュエータ11へ入力する制御信号に正帰還させる制御を行う構成となっている。なお、図3中のkcは補償要素である。こうすると、地震波による横揺れを振動吸収手段9が吸収することで床面1が免震床3に対して相対変位すると、その相対変位を増幅させるように直動アクチュエータ11が制御されることとなる。つまり、配管5により床面1と免震床3との間の相対変位を低減させるような抵抗が生じても、その抵抗を打ち消すように直動アクチュエータ11による力が作用することとなる。   FIG. 3 is a diagram for explaining the positive feedback control of the controller 12 of the seismic isolation device 10 shown in FIG. As shown in FIG. 3, the controller 12 determines the output value of the rotary encoder 17 (relative displacement sensor) of the linear actuator 11, that is, the relative displacement amount between the floor surface 1 and the seismic isolation floor 3. In this configuration, the control signal to be fed back to the control signal is positively fed back. Note that kc in FIG. 3 is a compensation element. In this way, when the floor 1 is displaced relative to the base-isolated floor 3 by the vibration absorbing means 9 absorbing the roll caused by the seismic wave, the linear actuator 11 is controlled to amplify the relative displacement. Become. That is, even if a resistance that reduces the relative displacement between the floor surface 1 and the seismic isolation floor 3 is generated by the pipe 5, the force by the linear actuator 11 acts so as to cancel the resistance.

具体的には、振動吸収手段9のバネ定数をkb、配管5のバネ定数をkp、直動アクチュエータ11により補償されるバネ定数をkc、構造物8の質量をmとすれば、構造物8の固有振動数fnは運動方程式より以下のように表すことができる。 Specifically, if the spring constant of the vibration absorbing means 9 is kb, the spring constant of the pipe 5 is kp, the spring constant compensated by the linear motion actuator 11 is kc, and the mass of the structure 8 is m, the structure 8 The natural frequency f n can be expressed as follows from the equation of motion.

n=√{(kb+kp+kc)/m} /2π ・・・・・(1)
この際、正帰還によりバネ定数kcがバネ定数kpに対してマイナス値となるよう制御されるので、構造物8の見かけ上の固有振動数fnがkcの分だけ低下して、振動吸収手段9の柔軟性が十分に発揮され、免震機能を向上させることが可能となる。特に、kc≒−kpとすれば、配管5が存在せずに構造物8が振動吸収手段9でのみ支持される通常のパッシブ免震装置と同じ機能を保つことができ、免震機能を効果的に発揮させることが可能となる。つまり、図4のグラフを見れば分かるように、本発明の免震装置10における周波数応答は、図7(a)に示した配管5の存在しないパッシブ免震装置の周波数応答と同じ状態となりうる。したがって、図5に示すように、地震波による床面1の横揺れが免震床3に伝達されるのを抑制することができる。
f n = √ {(kb + kp + kc) / m} / 2π (1)
At this time, since the spring constant kc is controlled to be a negative value with respect to the spring constant kp by positive feedback, the apparent natural frequency f n of the structure 8 is reduced by kc, and vibration absorbing means 9 flexibility is fully exhibited, and the seismic isolation function can be improved. In particular, if kc≈−kp, the same function as a normal passive seismic isolation device in which the structure 8 is supported only by the vibration absorbing means 9 without the pipe 5 can be maintained, and the seismic isolation function is effective. It is possible to demonstrate it. That is, as can be seen from the graph of FIG. 4, the frequency response in the seismic isolation device 10 of the present invention can be in the same state as the frequency response of the passive seismic isolation device without the pipe 5 shown in FIG. . Therefore, as shown in FIG. 5, it is possible to suppress the roll of the floor surface 1 due to the seismic wave from being transmitted to the seismic isolation floor 3.

さらに、本実施形態では、ACサーボモータ14に付属されたロータリーエンコーダ17を相対変位センサとしても兼用しているので、相対変位センサとなるストロークセンサ等を別部品で設ける必要がなくなり、部品点数を低減することが可能となる。また、直動アクチュエータ11による動作の見かけ上のバネ定数はコントローラ12により連続的に調整することができるため、バネ部材を用いたバネ定数の調整作業に比べて、設計工数を削減することも可能となる。   Furthermore, in this embodiment, since the rotary encoder 17 attached to the AC servomotor 14 is also used as a relative displacement sensor, it is not necessary to provide a stroke sensor or the like as a relative displacement sensor as a separate part, and the number of parts can be reduced. It becomes possible to reduce. Further, since the apparent spring constant of the operation by the linear actuator 11 can be continuously adjusted by the controller 12, it is possible to reduce the design man-hour compared with the adjustment work of the spring constant using the spring member. It becomes.

次に、図6は本発明の変形例に係る免震装置20を示す概略図である。なお、図1に示した実施形態と共通する部分については同一符号を付して説明を省略している。図6に示すように、変形例の免震装置20は、床面1と免震床3との間にダンパー21が介設されている。床面1上には固定側ブラケット22が固定されていると共に、免震床3の下面に可動側ブラケット23が固定されており、各ブラケット22,23の間に水平方向の振動を減衰させるダンパー21が接続されている。この構成によれば、ダンパー21が地震波による床面1の水平方向の振動を減衰させるので、直動アクチュエータ11に用いるモータが小出力のもので足りることとなり、コストダウンを図ることが可能となる。なお、他の構成は図1に示した実施形態と同様であるため説明を省略する。   Next, FIG. 6 is a schematic diagram showing a seismic isolation device 20 according to a modification of the present invention. In addition, about the part which is common in embodiment shown in FIG. 1, the same code | symbol is attached | subjected and description is abbreviate | omitted. As shown in FIG. 6, in the seismic isolation device 20 of the modified example, a damper 21 is interposed between the floor surface 1 and the seismic isolation floor 3. A fixed bracket 22 is fixed on the floor surface 1, and a movable bracket 23 is fixed to the lower surface of the seismic isolation floor 3, and a damper that attenuates horizontal vibration between the brackets 22, 23. 21 is connected. According to this configuration, the damper 21 attenuates the horizontal vibration of the floor surface 1 due to the seismic wave, so that the motor used for the linear motion actuator 11 is sufficient with a small output, and the cost can be reduced. . Other configurations are the same as those of the embodiment shown in FIG.

なお、前述した実施形態では、振動吸収手段として積層ゴムを例示しているが、これに限定されず、たとえば床面に取り付けた皿部材の上に免震床に取り付けたボールを回転自在に載置したボール支承機構等のようなものを用いてもよい。また、前述した実施形態では、相対変位センサとしてモータ付属のロータリーエンコーダを例示しているが、これに限定されず、たとえばモータとは別部品でストロークセンサを用いてもよい。また、前述した実施形態では、構造物は免震床と半導体製造装置の2つからなるが、これに限定されず、たとえばマンションやビル等のように1つの建物であってもよい。さらに、前述した実施形態では、回転位置検出手段としてロータリーエンコーダを用いているが、レゾルバ等の回転角度センサーを用いてもよい。   In the embodiment described above, laminated rubber is exemplified as the vibration absorbing means. However, the present invention is not limited to this. For example, a ball attached to the seismic isolation floor is rotatably mounted on a dish member attached to the floor surface. A placed ball support mechanism or the like may be used. In the above-described embodiment, the rotary encoder attached to the motor is exemplified as the relative displacement sensor. However, the present invention is not limited to this. For example, a stroke sensor may be used as a separate component from the motor. In the above-described embodiment, the structure includes two seismic isolation floors and a semiconductor manufacturing apparatus. However, the structure is not limited thereto, and may be a single building such as an apartment or a building. Furthermore, in the above-described embodiment, a rotary encoder is used as the rotational position detection means, but a rotational angle sensor such as a resolver may be used.

以上のように、本発明に係る免震装置及び半導体製造設備は、免震機能を向上させることができる優れた効果を有し、この効果の意義を発揮できる半導体製造装置や建物等のような構造物に対する免震装置に適用すると有益である。   As described above, the seismic isolation device and the semiconductor manufacturing facility according to the present invention have an excellent effect of improving the seismic isolation function, such as a semiconductor manufacturing device or a building that can demonstrate the significance of this effect. It is useful when applied to seismic isolation devices for structures.

本発明の実施形態に係る免震装置を示す概略図である。It is the schematic which shows the seismic isolation apparatus which concerns on embodiment of this invention. 図1に示す免震装置の主に直動アクチュエータを表した平面図である。FIG. 2 is a plan view mainly showing a linear actuator of the seismic isolation device shown in FIG. 1. 図1に示す免震装置のコントローラの正帰還制御を説明する図面である。It is drawing explaining the positive feedback control of the controller of the seismic isolation apparatus shown in FIG. 図1に示す免震装置における周波数応答を示すグラフである。It is a graph which shows the frequency response in the seismic isolation apparatus shown in FIG. 図1に示す免震装置における床面と構造物との絶対加速度を比較したグラフである。It is the graph which compared the absolute acceleration of the floor surface and structure in the seismic isolation apparatus shown in FIG. 本発明の変形例に係る免震装置を示す概略図である。It is the schematic which shows the seismic isolation apparatus which concerns on the modification of this invention. (a)は従来のパッシブ免震(剛性体なし)における周波数応答を示すグラフ、(b)は従来のパッシブ免震(剛性体あり)における周波数応答を示すグラフである。(A) is a graph which shows the frequency response in the conventional passive seismic isolation (without a rigid body), (b) is a graph which shows the frequency response in the conventional passive seismic isolation (with a rigid body). 従来のパッシブ免震(剛性体あり)における床面と構造物との絶対加速度を比較したグラフである。It is the graph which compared the absolute acceleration of the floor surface and a structure in the conventional passive seismic isolation (with a rigid body).

符号の説明Explanation of symbols

1 床面
3 免震床
4 半導体製造装置
5 配管(剛性体)
8 構造物
9 振動吸収手段
10,20 免震装置
11 直動アクチュエータ
12 コントローラ
14 ACサーボモータ
15 直動機構
16 モータ本体部
17 ロータリーエンコーダ(回転位置検出手段及び相対変位センサ)
21 ダンパー
100 半導体製造設備
1 Floor 3 Seismic Isolation Floor 4 Semiconductor Manufacturing Equipment 5 Piping (Rigid Body)
8 Structure 9 Vibration Absorbing Means 10, 20 Seismic Isolation Device 11 Linear Actuator 12 Controller 14 AC Servo Motor 15 Linear Motion Mechanism 16 Motor Body 17 Rotary Encoder (Rotation Position Detection Means and Relative Displacement Sensor)
21 Damper 100 Semiconductor manufacturing equipment

Claims (6)

床面と構造物が剛性体で連結され、前記構造物の振動を抑制する免震装置であって、
前記床面と前記構造物との間に介設され、前記構造物を前記床面に対して相対変位させるように駆動可能なアクチュエータと、
前記構造物の前記床面に対する相対変位量を検出可能な相対変位センサと、
前記相対変位センサの出力に基づいて前記アクチュエータを制御するコントローラとを備え、
前記コントローラは、前記床面が前記構造物に対して相対変位した際、その相対変位を増幅させるように、前記相対変位センサの出力を前記アクチュエータへ入力する制御信号に帰還させることを特徴とする免震装置。
A seismic isolation device in which a floor surface and a structure are connected by a rigid body to suppress vibration of the structure,
An actuator that is interposed between the floor surface and the structure and that can be driven to displace the structure relative to the floor surface;
A relative displacement sensor capable of detecting a relative displacement amount of the structure relative to the floor surface;
A controller for controlling the actuator based on the output of the relative displacement sensor,
The controller feeds back an output of the relative displacement sensor to a control signal input to the actuator so as to amplify the relative displacement when the floor surface is displaced relative to the structure. Seismic isolation device.
前記コントローラは、前記構造物の固有振動数を下げるように前記アクチュエータを制御する請求項1に記載の免震装置。   The seismic isolation device according to claim 1, wherein the controller controls the actuator so as to reduce a natural frequency of the structure. 前記コントローラは、前記アクチュエータによる動作の見かけ上のバネ定数が前記剛性体のバネ定数を打ち消すように、前記アクチュエータを制御する請求項1又は2に記載の免震装置。   The seismic isolation device according to claim 1, wherein the controller controls the actuator so that an apparent spring constant of the operation by the actuator cancels a spring constant of the rigid body. 前記アクチュエータは、回転位置検出手段を有するモータと、前記モータによる回転運動を直線運動に変換する直動機構とを備えた直動アクチュエータとし、
前記回転位置検出手段が前記相対変位センサを兼用している請求項1乃至3のいずれかに記載の免震装置。
The actuator is a linear motion actuator comprising a motor having a rotational position detection means and a linear motion mechanism that converts rotational motion by the motor into linear motion,
The seismic isolation device according to any one of claims 1 to 3, wherein the rotational position detecting means also serves as the relative displacement sensor.
前記床面と前記構造物との間に介設されるダンパーをさらに備えている請求項1乃至4のいずれかに記載の免震装置。   The seismic isolation device according to any one of claims 1 to 4, further comprising a damper interposed between the floor surface and the structure. 請求項1乃至5のいずれかに記載の免震装置と、前記構造物を構成する半導体製造装置とを備えたことを特徴とする半導体製造設備。   6. A semiconductor manufacturing facility comprising the seismic isolation device according to claim 1 and a semiconductor manufacturing apparatus constituting the structure.
JP2007246064A 2007-09-21 2007-09-21 Seismic isolation equipment and semiconductor manufacturing equipment Active JP4922114B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007246064A JP4922114B2 (en) 2007-09-21 2007-09-21 Seismic isolation equipment and semiconductor manufacturing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007246064A JP4922114B2 (en) 2007-09-21 2007-09-21 Seismic isolation equipment and semiconductor manufacturing equipment

Publications (2)

Publication Number Publication Date
JP2009074652A true JP2009074652A (en) 2009-04-09
JP4922114B2 JP4922114B2 (en) 2012-04-25

Family

ID=40609819

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007246064A Active JP4922114B2 (en) 2007-09-21 2007-09-21 Seismic isolation equipment and semiconductor manufacturing equipment

Country Status (1)

Country Link
JP (1) JP4922114B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011247314A (en) * 2010-05-25 2011-12-08 Kurashiki Kako Co Ltd Active vibration removing device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0247478A (en) * 1988-08-08 1990-02-16 Ohbayashi Corp Method for vibration control and its device
JPH10160039A (en) * 1996-11-28 1998-06-16 Niigata Eng Co Ltd Earthquake-resistant piping device for vibration isolated building
JP2000054682A (en) * 1998-08-06 2000-02-22 Rakuhei Chin Base isolation structure using sand as base isolation material
JP2003003540A (en) * 2001-06-27 2003-01-08 S X L Corp Drainpipe system for base isolation dwelling house
JP2004251317A (en) * 2003-02-18 2004-09-09 Takeshi Mizuno Vibration resisting device
JP2005106272A (en) * 2003-09-11 2005-04-21 Japan Science & Technology Agency Vibration resisting method and its device
JP2006123618A (en) * 2004-10-27 2006-05-18 Kayaba Ind Co Ltd Control device for suspension device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0247478A (en) * 1988-08-08 1990-02-16 Ohbayashi Corp Method for vibration control and its device
JPH10160039A (en) * 1996-11-28 1998-06-16 Niigata Eng Co Ltd Earthquake-resistant piping device for vibration isolated building
JP2000054682A (en) * 1998-08-06 2000-02-22 Rakuhei Chin Base isolation structure using sand as base isolation material
JP2003003540A (en) * 2001-06-27 2003-01-08 S X L Corp Drainpipe system for base isolation dwelling house
JP2004251317A (en) * 2003-02-18 2004-09-09 Takeshi Mizuno Vibration resisting device
JP2005106272A (en) * 2003-09-11 2005-04-21 Japan Science & Technology Agency Vibration resisting method and its device
JP2006123618A (en) * 2004-10-27 2006-05-18 Kayaba Ind Co Ltd Control device for suspension device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011247314A (en) * 2010-05-25 2011-12-08 Kurashiki Kako Co Ltd Active vibration removing device

Also Published As

Publication number Publication date
JP4922114B2 (en) 2012-04-25

Similar Documents

Publication Publication Date Title
KR101719380B1 (en) An active vibration isolation and damping system
JP4802839B2 (en) Active vibration damping device and control method of active vibration damping device
JP2014024134A (en) Force control motor-driven hand
JPH11230246A (en) Active damper
JP2007315590A (en) Active vibration isolation system
JP2013181366A (en) Vibration control device
KR20180123507A (en) Device, in particular an operating unit for a vehicle component
JP2010120003A (en) Reaction force canceling device, mass body setting method therefor, reaction force canceling method using therewith, and dispenser provided therewith
KR950704177A (en) Emergency isolation device of elevator
JP2001271868A (en) Vibration damping device
JP4922114B2 (en) Seismic isolation equipment and semiconductor manufacturing equipment
JP5282416B2 (en) Isolation method and device for structure living area
JP2009018676A (en) Vibration controlling device and vibration controlling method
JP5374113B2 (en) Clean room with frame vibration control device and floor vibration control device on the floor
JP2008051330A (en) Vibration damping system
JPH0213667A (en) Damping device
JP5659621B2 (en) Vibration control device
JP4914744B2 (en) Active vibration control device for building structure and active vibration control method for building structure
JP2008202371A (en) Active damper of building
JP2010078096A (en) Vibration control device
JP6870055B2 (en) Vibration damping device
JP2000136844A (en) Displacement generation type actuator active vibration insulating device
JPH0431606Y2 (en)
WO2019138656A1 (en) Active anti-vibration device
JP4743663B2 (en) Vibration isolator and vibration isolation method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100319

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110607

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120131

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120203

R150 Certificate of patent or registration of utility model

Ref document number: 4922114

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150210

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150210

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150210

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250