JPH0247364A - Treatment of fiber substrate - Google Patents

Treatment of fiber substrate

Info

Publication number
JPH0247364A
JPH0247364A JP19735788A JP19735788A JPH0247364A JP H0247364 A JPH0247364 A JP H0247364A JP 19735788 A JP19735788 A JP 19735788A JP 19735788 A JP19735788 A JP 19735788A JP H0247364 A JPH0247364 A JP H0247364A
Authority
JP
Japan
Prior art keywords
coupling agent
fiber
substrate
base material
fiber substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19735788A
Other languages
Japanese (ja)
Inventor
Junichi Aoki
淳一 青木
Hiromitsu Kimura
木村 裕光
Yasuki Matsuo
松尾 泰樹
Yasuyuki Hayashida
林田 靖之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanebo Ltd
Original Assignee
Kanebo Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanebo Ltd filed Critical Kanebo Ltd
Priority to JP19735788A priority Critical patent/JPH0247364A/en
Publication of JPH0247364A publication Critical patent/JPH0247364A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0366Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement reinforced, e.g. by fibres, fabrics

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)

Abstract

PURPOSE:To perform uniform application of a coupling agent to a fiber substrate without causing migration of the agent by immersing a fiber substrate in a coupling agent, squeezing the substrate and drying the impregnated agent with an infrared drier. CONSTITUTION:A fiber substrate composed of an inorganic fiber and/or organic fiber is immersed in a coupling agent (usually a silane coupling agent such as aminosilanes and vinylsilanes) and squeezed. The impregnated coupling agent is dried with an infrared drier (the wavelength range of the infrared radiation is preferably 0.76mum to 1mm) to achieve uniform application of the coupling agent. The obtained fiber substrate has a uniform coating layer of the coupling agent and exhibits excellent adhesivity to a matrix resin. Accordingly, a printed circuit board produced by the use of the substrate has excellent heat-resistance and can be used as a circuit of an electronic apparatus having improved performance and reduced size.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はプリント配線基板用等として好適な繊#a基材
の処理方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to a method for processing fiber #a substrate suitable for use in printed wiring boards and the like.

(従来の技術とその問題点) 一般にma充てん複合材料には繊維基材の含浸マット、
繊維基材と樹脂とからなるプリプレグ積層材、フィラメ
ントワインディング法によるもの、短m#!を分散せし
めた射出成型物等がある。これらはいずれも引張強さ、
衝撃強さ、ヤング率等の改傍、寸法安定性向上、耐熱性
向上等の効果を期待してなされたものであり、実際上の
効果も発現されている。しかしてその性質は樹脂の性質
、充てん材の構造、形状、組織によりIe響されるが、
なかでも充てんjAIU1基材とマトリックス樹脂の界
面の影響が大きく、Ml維基材表面にカップリング剤処
理をするのが通例である。鵡維充てん複合は料に用いら
れる繊維基材として重要なものに無機繊維であるガラス
$!c絶、炭素繊維等、また有機繊維である芳香族ボリ
ア電ドa維、芳香族ポリエステル繊維等があるが、上記
の処理を施し、両省の接着性を改苦し供されている。特
に上記の繊維基材は電気特性、耐熱性に優れ、更にi?
!%膨脹率が小という特性を生かし適切なマトリックス
樹脂との組合せで捺維充てん複合材料を形成し、さらに
積層、硬化せしめプリント配、椋基板として産業用m器
に多用されて宋た。
(Conventional technology and its problems) Generally, ma-filled composite materials include an impregnated mat of fiber base material,
Laminated prepreg material consisting of fiber base material and resin, made by filament winding method, short m#! There are injection molded products that have dispersed These are all tensile strength,
This was done with the expectation that it would improve impact strength, Young's modulus, etc., improve dimensional stability, and improve heat resistance, and it has also had practical effects. However, its properties are affected by the properties of the resin and the structure, shape, and organization of the filler;
Among these, the interface between the filled jAIU1 base material and the matrix resin has a large influence, and it is customary to treat the surface of the Ml fiber base material with a coupling agent. Glass, an inorganic fiber, is an important fiber base material used in fiber-filled composite materials! There are carbon fibers, carbon fibers, etc., and organic fibers such as aromatic boric acid fibers, aromatic polyester fibers, etc., and the above-mentioned treatments have been applied to improve the adhesion of both types. In particular, the above-mentioned fiber base material has excellent electrical properties and heat resistance, and also has i?
! Taking advantage of its low % expansion rate, it can be combined with an appropriate matrix resin to form a fiber-filled composite material, which is then laminated, hardened, printed, and used as a substrate in industrial equipment.

しかし、近年電子機器の高性能化、小型化に伴い、プリ
ント配置i 7板に要求される特性も一段と高度なもの
となってきており、旅絶75材とマトリックス樹脂との
接着に少しでも雪がある場合は、高温時の特性に不足を
来し、高精度の回路の製造が困難であるという問題が出
てきた。
However, in recent years, as electronic devices have become more sophisticated and more compact, the characteristics required of the printed layout i7 board have become even more advanced, and even the slightest amount of snow can interfere with the adhesion between the Ryouzetsu 75 material and the matrix resin. In some cases, the characteristics at high temperatures are insufficient, making it difficult to manufacture high-precision circuits.

本発明の目的はこれらの欠点を改善し、繊維基材とマト
リックス樹脂の耐熱性を十分に活かした耐熱性に優れた
複合材を製造するにあたって、両者の接着性を向上させ
るために、繊維基材にカップリング剤を均一に付与する
ための処理方法を提供するものである。
The purpose of the present invention is to improve these drawbacks and to produce a composite material with excellent heat resistance that fully utilizes the heat resistance of the fiber base material and matrix resin. The present invention provides a treatment method for uniformly applying a coupling agent to a material.

(問題点を解決するための手段) 上述の目的は、無機繊維及び/又は有機繊維からなる繊
維基材にカップリング剤処理を施すに際し、該、ta 
M基材をカップリング剤に含浸後、絞液し、その後赤外
線乾燥機で乾燥することを特徴とする繊維基材の処理方
法により達成される。
(Means for Solving the Problems) The above object is to solve the problem when applying a coupling agent treatment to a fiber base material made of inorganic fibers and/or organic fibers.
This is achieved by a method for treating a fiber base material, which is characterized by impregnating the M base material with a coupling agent, squeezing the liquid, and then drying it with an infrared dryer.

本発明方法に用いられる無機m維は、特に限定されない
が、通常はガラス繊維または炭素繊維が用いられる。ま
た有機a維は、剛直性高分子系のものであれば特に限定
されないか、通常は芳香族lリアミド繊維または芳香族
ポリエステル繊維が用いられる。更に詳しくは芳香族ボ
リア電ドa維としでは、好ましくは、ポリ−p−フェニ
レンテレフタルアミド、ポリ−m−フェニレンテレフタ
ルアミドが挙げられ、芳香族ポリエステル繊維としては
、好ましくは、ポリアルキレンテレフタレート、ポリア
ルキレンイソフタレート及びポリアルキレンナフタレー
トが挙げられ、特に好ましくは、テレフタル酸、イソフ
タル酸、或いはそのエステル形成性誘導体と、エチレン
グリコール、1.4−ブタンジオール、或いはそのエス
テル形成性誘導体より得られる重合体及び共重合体が挙
げられる。
The inorganic fibers used in the method of the present invention are not particularly limited, but glass fibers or carbon fibers are usually used. Further, the organic a-fiber is not particularly limited as long as it is of a rigid polymer type, and aromatic l-aryamide fiber or aromatic polyester fiber is usually used. More specifically, as the aromatic boria fiber, poly-p-phenylene terephthalamide and poly-m-phenylene terephthalamide are preferably mentioned, and as the aromatic polyester fiber, preferably polyalkylene terephthalate and polyester fiber are used. Examples include alkylene isophthalates and polyalkylene naphthalates, and particularly preferred are polymers obtained from terephthalic acid, isophthalic acid, or ester-forming derivatives thereof, and ethylene glycol, 1,4-butanediol, or ester-forming derivatives thereof. Examples include polymers and copolymers.

本発明方法に用いられる繊維基材とは、上記の無機繊維
または上記の有機m維単独、またはそれ等の混紡あるい
は交織による織物及び編物が挙げられるが、通常は機械
的強度が大きいという特注から織物が好ましい。
The fiber base material used in the method of the present invention includes the above-mentioned inorganic fibers, the above-mentioned organic fibers alone, or woven and knitted fabrics made by blending or interweaving them. Textiles are preferred.

通常、繊維光てん複合材料の製造に際しては、マトリッ
クス樹脂の含浸前に繊維基材にカップリング剤等による
処理が施されるが、本発明方法においては該Jam基材
をカップリング剤に含浸後、絞液し、その後赤外線乾燥
機で乾燥することが行われる。
Normally, when producing fiber optic fiber composite materials, the fiber base material is treated with a coupling agent etc. before impregnation with the matrix resin, but in the method of the present invention, after the Jam base material is impregnated with the coupling agent. , squeezed, and then dried in an infrared dryer.

カップリング剤としては、通常シラン系のものが適用で
き、かかるものとしては例えば、r−アミノプロピルト
リエトキシシラン、r−アミノプロピルトリメトキシシ
ラン、イミダシリンシラン、N−アミノエチルアミノプ
ロピルトリメトキシシラン、N−フェニル−r−アミノ
プロピルトリメトキシシラン、N−β−(N−ビニルベ
ンジルアミノエチル)−r−アミノプロピルトリメトキ
シシラン塩酸塩等のアミノシラン類、γ−グリシドキシ
プロピルトリメトキシシラン等のエポキシシラン類、r
−クロロプロピルトリメトキシシラン等のクロルシラン
類、r−メタクリルオキシプロピルトリメトキシシラン
等のメタクリルレチン類、あるいはビニルトリメトキシ
シラン、ビニルトリエトキシシラン等のビニルシラン類
がある。カップリング剤の繊維基材への付着量も、一般
的に使用される0、01〜2重環%であり、好ましくは
0.1〜1重量%である。
As the coupling agent, silane-based ones can be used, such as r-aminopropyltriethoxysilane, r-aminopropyltrimethoxysilane, imidacillinsilane, N-aminoethylaminopropyltrimethoxysilane, etc. Silane, N-phenyl-r-aminopropyltrimethoxysilane, aminosilanes such as N-β-(N-vinylbenzylaminoethyl)-r-aminopropyltrimethoxysilane hydrochloride, γ-glycidoxypropyltrimethoxysilane Epoxysilanes such as r
Examples include chlorosilanes such as -chloropropyltrimethoxysilane, methacrylretins such as r-methacryloxypropyltrimethoxysilane, and vinylsilanes such as vinyltrimethoxysilane and vinyltriethoxysilane. The amount of the coupling agent attached to the fiber base material is also the commonly used 0.01 to 2 double ring%, preferably 0.1 to 1% by weight.

本発明方法に用いられる赤外線乾燥機の赤外線波長域は
特に限定されるものでないが、水を有効かつ短時間に加
熱する通常の赤外領域である0、76μ以上1 mm以
下の範囲が好ましい。しかし、本発明においてはこの波
長域に限られるものではなく、要は該赤外線が水分子の
固有振動数と概ね同レベルの周波数を有し、該赤外線の
エネルギーが無駄なく水tζ吸収されるような範囲の波
長の赤外線であれば良い。したがって、赤外線の熱源と
しては、タングステン電球、炭化珪素を焼結して棒状に
したグローバー、酸化亜鉛を主体にイツトリウムの酸化
物を加えて高温度で焼いたネルンスト・グローアー、水
銀灯等を用いることができるが、この範囲の熱源に限ら
れるものではない。
The infrared wavelength range of the infrared dryer used in the method of the present invention is not particularly limited, but is preferably in the range of 0.76 μm or more and 1 mm or less, which is the usual infrared range that heats water effectively and in a short time. However, the present invention is not limited to this wavelength range, and the point is that the infrared rays have a frequency that is approximately at the same level as the natural frequency of water molecules, so that the energy of the infrared rays is absorbed by water tζ without waste. Infrared rays with wavelengths within a certain range are sufficient. Therefore, as an infrared heat source, it is possible to use a tungsten light bulb, a glober made of sintered silicon carbide into a rod shape, a Nernst Gloer made of zinc oxide and yttrium oxide baked at high temperature, a mercury lamp, etc. However, it is not limited to heat sources within this range.

カップリング剤処理した繊維基材にマトリックス樹脂を
含浸させて繊維光てん複合材料を調整する工程は常法に
従って行うことが出来る。これらのマトリックス樹脂は
通常のものであってよく、例えばエポキシ樹脂、不飽和
ポリエステル樹脂、ポリイミド樹脂などが使用できる。
The step of preparing a fiber optic composite material by impregnating a fiber base material treated with a coupling agent with a matrix resin can be carried out according to a conventional method. These matrix resins may be conventional ones, such as epoxy resins, unsaturated polyester resins, and polyimide resins.

(作用) 繊維基材にカップリング処理を施すに際し、該繊維基材
をカップリング剤に含浸後、赤外線乾燥機で乾燥すると
、瞬間的にMAmの中心まで熱を行きわたらすことがで
きる故、カップリング剤がマイグレーションされること
なく、均一に付着するのである。
(Function) When performing a coupling treatment on a fiber base material, if the fiber base material is impregnated with a coupling agent and then dried with an infrared dryer, heat can be instantaneously distributed to the center of MAm. The coupling agent adheres uniformly without migration.

従って前記のようにして得られたカップリング剤処理後
の繊維に適宜のマトリックス樹脂を含浸せしめm雑光て
ん複合材料とすると、カップリング剤が両者の接着性を
高めているため、得られた複合材料の耐熱性が向上する
のである。
Therefore, when the fibers treated with the coupling agent obtained above are impregnated with an appropriate matrix resin to form a composite material, the coupling agent enhances the adhesion between the two. This improves the heat resistance of the composite material.

(実湘例) 実施例1 経糸、緯糸共にEOG75 110、撚数1zのガラス
繊維糸を使い、密度経44本/ ’l 5 mm。
(Actual example) Example 1 Glass fiber yarn with EOG75 110 and twist number 1z was used for both the warp and weft, and the density was 44 warp/'l 5 mm.

緯55本/ 25 mmにてガラス繊維平織物を製織し
た。
A glass fiber plain woven fabric was woven with a weft of 55 threads/25 mm.

次に該織物を370℃でヒートクリーニングをし、原線
バインダーと経糸糊剤を除去した。
Next, the fabric was heat cleaned at 370°C to remove the raw wire binder and warp sizing agent.

ヒートクリーニング後の織物をエポキシシラン(東しシ
リコーン社製 81(6040)  1″1J11%を
酢酸水溶液によりpH5〜4に調薬した処理液1ζ含浸
し、含浸率が25%xi%となるように絞液した後、!
、11μの波長を有する赤外線乾燥機Iこて乾二1.や
した。
After heat cleaning, the fabric was impregnated with 1ζ treatment solution prepared by adjusting epoxy silane (manufactured by Toshi Silicone Co., Ltd. 81 (6040) 1" 1J 11% to pH 5 to 4 with an acetic acid aqueous solution so that the impregnation rate was 25% xi%. After squeezing the liquid!
, an infrared dryer with a wavelength of 11μ I trowel dryer 2 1. I did it.

一方、ビスフェノールA型エポキシ闇脂(チバガイギー
社製、GZ801A75)100ij1部、ジシアンジ
アミド3重1部、ペンジルジメチルアミン0.2重量部
、アセトン15重量部、メチルセロソルブ20重量部、
ジメチルホルムアミド10重1部でエポキシ樹脂溶液を
作成した。
On the other hand, 100ij 1 part of bisphenol A type epoxy dark fat (manufactured by Ciba Geigy, GZ801A75), 1 part of dicyandiamide triplex, 0.2 parts by weight of penzyldimethylamine, 15 parts by weight of acetone, 20 parts by weight of methyl cellosolve,
An epoxy resin solution was prepared using 1 part by weight of dimethylformamide.

前記シラン処理ガラス繊維織物を前述のエポキシ樹脂溶
液に含浸させ160℃で4分乾燥させ、エポキシ樹脂を
50重1%付与したプリプレグを得た。このプリプレグ
を8枚重ね、両最外側表面に厚さ18μの銅箔を置き、
これを50 kf/cm愛で加圧下170℃で2時間加
熱し、厚さ1.6画の本発明実施例のプリント配線基板
を得た。
The silane-treated glass fiber fabric was impregnated with the epoxy resin solution and dried at 160° C. for 4 minutes to obtain a prepreg to which 50% by weight of epoxy resin was added. Stack 8 sheets of this prepreg, place 18μ thick copper foil on both outermost surfaces,
This was heated at 170° C. for 2 hours under pressure at 50 kf/cm to obtain a printed wiring board of an example of the present invention having a thickness of 1.6 squares.

比較例1 実施例1と同様のガラス繊維平織物を用い、実施例1の
2.9μの波長を有する赤外線乾燥機に代え、蒸気!春
風乾燥機で乾燥し、実施例1と同様の方法で比較例のプ
リント配線基板を得た。次に、本発明の実施例により得
られたプリント配線基板の#4熱性について、比較例と
比較した結果について説明する。
Comparative Example 1 The same glass fiber plain weave as in Example 1 was used, and instead of the infrared dryer having a wavelength of 2.9μ as in Example 1, steam! It was dried in a spring dryer, and a printed wiring board of a comparative example was obtained in the same manner as in Example 1. Next, the results of comparing #4 thermal properties of the printed wiring board obtained in the example of the present invention with a comparative example will be described.

耐熱性については、実施例1及び比較例1で得られたプ
リント配線基板を用い、煮沸保持時間、即ち260℃の
半田浴槽中で該プリント配線基板の界面の剥離が始まる
までの時間を測定した。測定結果を第1表に示す。
Regarding heat resistance, using the printed wiring boards obtained in Example 1 and Comparative Example 1, the boiling retention time, that is, the time until the interface of the printed wiring boards started peeling in a 260°C solder bath was measured. . The measurement results are shown in Table 1.

第1表 較して大幅に改善されているのである。Table 1 This is a significant improvement compared to the previous version.

更にポリ−p−フェニレンテレフタルアミド繊維布(デ
エポン社ケブラー48.平織、糸=(経/緯)188D
/195D、密変=34本/34本(fi5mm当り)
、厚さ: Q、l mm、目付=62f/mり  を用
い、実施例1と比較例1と同様の処理を行った所、同等
の効果が得られた。
Furthermore, poly-p-phenylene terephthalamide fiber cloth (Kevlar 48, manufactured by Depont Co., Ltd., plain weave, thread = (warp/weft) 188D
/195D, dense variation = 34 lines/34 lines (per fi5mm)
, thickness: Q, l mm, basis weight = 62 f/m, and the same treatment as in Example 1 and Comparative Example 1 was performed, and the same effect was obtained.

(発明の効果) 以上詳述した様に本発明方法で得られた繊維基材はカッ
プリング剤が均一に付着しており、マトリックス樹脂と
の接着性が良いため、両者でもって繊維光てん複合材料
とし、それを積層、硬化したプリント配線基板は耐熱性
にすぐれ、従って高性能化、小型化した電子機器の回路
に利用することができるものである。
(Effects of the invention) As detailed above, the fiber base material obtained by the method of the present invention has a coupling agent uniformly adhered to it and has good adhesion with the matrix resin, so both of them can be used to form a fiber optic composite. A printed wiring board made by laminating and curing these materials has excellent heat resistance, and can therefore be used for circuits of high-performance, miniaturized electronic devices.

Claims (1)

【特許請求の範囲】[Claims] (1)無機繊維及び/又は有機繊維からなる繊維基材に
カップリング剤処理を施すに際し、該繊維基材をカップ
リング剤に含浸後、絞液し、その後赤外線乾燥機で乾燥
することを特徴とする繊維基材の処理方法。
(1) When applying a coupling agent treatment to a fiber base material made of inorganic fibers and/or organic fibers, the fiber base material is impregnated with the coupling agent, squeezed, and then dried with an infrared dryer. A method for treating a fiber base material.
JP19735788A 1988-08-08 1988-08-08 Treatment of fiber substrate Pending JPH0247364A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19735788A JPH0247364A (en) 1988-08-08 1988-08-08 Treatment of fiber substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19735788A JPH0247364A (en) 1988-08-08 1988-08-08 Treatment of fiber substrate

Publications (1)

Publication Number Publication Date
JPH0247364A true JPH0247364A (en) 1990-02-16

Family

ID=16373139

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19735788A Pending JPH0247364A (en) 1988-08-08 1988-08-08 Treatment of fiber substrate

Country Status (1)

Country Link
JP (1) JPH0247364A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0470334A (en) * 1990-07-02 1992-03-05 Oji Paper Co Ltd Laminated sheet composed of sheet like pulp base material
JP2013057140A (en) * 2011-09-08 2013-03-28 Toho Tenax Co Ltd Carbon fiber bundle and method for producing carbon fiber bundle
CN105297452A (en) * 2015-12-03 2016-02-03 青岛华凯海洋科技有限公司 Waterproof and ultraviolet-proof safety rope coating

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0470334A (en) * 1990-07-02 1992-03-05 Oji Paper Co Ltd Laminated sheet composed of sheet like pulp base material
JP2013057140A (en) * 2011-09-08 2013-03-28 Toho Tenax Co Ltd Carbon fiber bundle and method for producing carbon fiber bundle
CN105297452A (en) * 2015-12-03 2016-02-03 青岛华凯海洋科技有限公司 Waterproof and ultraviolet-proof safety rope coating

Similar Documents

Publication Publication Date Title
JP6957563B2 (en) Glass cloth
KR970003990B1 (en) Laminating material for printed circuit board of low dielectric constant
JP7145586B2 (en) Glass cloth, prepreg, and printed wiring board
JP3401381B2 (en) Aromatic polyamide fiber paper, prepreg and laminate made of the aromatic polyamide fiber paper
US5100722A (en) Glass fiber-reinforced resin composite materials
JPH0247364A (en) Treatment of fiber substrate
JP6915999B2 (en) Glass cloth, prepreg, and printed wiring board
JPH0192233A (en) Resin impregnated sheet
JP2854591B2 (en) Processing method of fiber base material
JPH01292173A (en) Treatment of fibrous substrate
JPH02269864A (en) Method for treating fiber substrate
JPS62111493A (en) Treatment of glass cloth
JP4277563B2 (en) Colored glass fiber fabric and method for producing the same
JPH02264072A (en) Treatment of fiber or structure thereof with coupling agent
JPS63267514A (en) Material for flexible printed circuit board
JP3588423B2 (en) Heat-resistant fiber paper, method for producing the same, and prepreg using the heat-resistant fiber paper
JPS597819B2 (en) Manufacturing method for nonwoven fabric that can withstand high temperatures
JPH0722719A (en) Glass woven fabric material base and laminated sheet using same
JP7011396B2 (en) Glass cloth, prepreg, and printed wiring board
JPS5856275B2 (en) Manufacturing method for copper-clad laminates for printed wiring boards
JP2847875B2 (en) Manufacture of nonwoven fabric substrates for laminates, laminates and laminates
JP2580905B2 (en) Manufacturing method of prepreg
JPH0274327A (en) Fiber-reinforced resin composite material
JP3264443B2 (en) Printed circuit board manufacturing method
JPH05140873A (en) Production of glass cloth for reinforcing resin