JPH0247350A - Fabric for forming three-dimensional, three-axial steric shape and production thereof - Google Patents

Fabric for forming three-dimensional, three-axial steric shape and production thereof

Info

Publication number
JPH0247350A
JPH0247350A JP63195235A JP19523588A JPH0247350A JP H0247350 A JPH0247350 A JP H0247350A JP 63195235 A JP63195235 A JP 63195235A JP 19523588 A JP19523588 A JP 19523588A JP H0247350 A JPH0247350 A JP H0247350A
Authority
JP
Japan
Prior art keywords
yarn
yarns
dimensional
radial
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63195235A
Other languages
Japanese (ja)
Inventor
Hiroshi Hatta
博志 八田
Noboru Hiroshima
広嶋 登
Hide Yamashita
秀 山下
Takako Takei
竹井 多賀子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP63195235A priority Critical patent/JPH0247350A/en
Publication of JPH0247350A publication Critical patent/JPH0247350A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a three-dimensional, three-axial fabric consisting of yarn in the direction of diameter, yarn in the direction of circumference and yarn in the direction of thickness, having high stiffness and strength to axially symmetric load and suitable as a reinforcing material for a composite material. CONSTITUTION:A number of yarns 1 in the direction of diameter are stretched and installed radially from the central in multiple stages (five stages in the figure) and the whole is rotated. Yarns 3 in the direction of circumference are inserted into the direction of thickness with rapier 33 while inserting yarns 2 in the direction of circumference into the yarns 2 in the direction of diameter to entangle the yarns. The yarns 3 in the direction of thickness are formed into a loop 32 in the end of the direction of thickness by a hook 31 and engaged with the yarns 3 in the direction of thickness to be inserted next time. Three- dimensional, three axial fabric passing the yarns 2 in the direction of circumference and yarns 3 in the direction of thickness through between the yarns 1 in the direction of diameter stacked in the direction of thickness and multiple stage is obtained thereby.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は主として回転体シェル形状を有する構造用複合
材料の補強材として用いる立体形状をした厚肉の三次元
三軸立体賦形用織物およびその製造方法に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention mainly relates to a thick three-dimensional three-dimensional triaxial three-dimensional shaping fabric having a three-dimensional shape and used as a reinforcing material for a structural composite material having a rotating body shell shape. The present invention relates to a manufacturing method thereof.

〔従来の技術〕[Conventional technology]

連続繊維を補強材とする複合材料は、弾性率や強度など
の機械的特性に優れるため、多くの分野に応用されてい
る。しかしながら、連続繊維複合材料は複雑形状への賦
形が困難であるため、立体曲面を可展面に分割し、平面
布や一方向引きそろえ材を切り貼りするか、または平面
布を無理にひずませて製造が行われていた。これら従来
技術の欠点としては、切断された補強材のつなぎ11で
強度劣化が著しいことや、繊維含有率および配向分布に
乱れが生じることが指摘されている。
Composite materials that use continuous fibers as reinforcing materials have excellent mechanical properties such as elastic modulus and strength, so they are used in many fields. However, it is difficult to form continuous fiber composite materials into complex shapes, so it is necessary to divide the three-dimensional curved surface into developable surfaces, cut and paste a flat cloth or unidirectionally aligned material, or forcefully strain the flat cloth. Manufacturing was being carried out at the same time. It has been pointed out that the disadvantages of these conventional techniques include that the strength of the reinforcing material ties 11 that have been cut is significantly deteriorated, and that the fiber content and orientation distribution are disturbed.

このような問題点を解決するため、本発明者らは、先に
特願昭62−143780号により球面状をなす立体形
状の布を製織する技術について提案している。この立体
布は、中央から放射状に伸びる多数の半径方向糸を一本
おきに上下させ、この半径方向糸の開口間に周方向糸を
渦巻き状に織り込み、次に半径方向糸の上下位置を逆に
して織り込むという動作の繰り返しにより製織されるが
、織物組織が通常の平織平面布と異ならず薄い織物であ
るため、実際の適用に際しては一定の厚みを持たせるた
めに、織物を積層して使用する必要があった。
In order to solve these problems, the present inventors previously proposed a technique for weaving a spherical three-dimensional cloth in Japanese Patent Application No. 143780/1983. This three-dimensional fabric consists of a large number of radial threads extending radially from the center that are raised and lowered every other thread, circumferential threads woven in a spiral between the openings of the radial threads, and then the upper and lower positions of the radial threads reversed. The fabric is woven by repeating the process of weaving and weaving, but the woven fabric is similar to normal plain weave cloth and is a thin woven fabric, so in actual applications, woven fabrics are layered to maintain a certain thickness. I needed to.

このように補強材を積層して使用する場合、得られる成
形物の積層体間の層間強度が弱いということの他、積層
という余分な工程を入れるために半径方向と周方向に配
向された繊維が乱れ易い、同一形状の立体を重ねること
になるので肉厚が大きくなると立体布にひずみを与える
ことになるなどの問題点がある。
When reinforcing materials are used in a laminated manner, the interlaminar strength between the laminated bodies of the resulting molded product is weak, and the fibers are oriented in the radial and circumferential directions due to the extra process of lamination. There are problems such as the fabric is easily disturbed, and since three-dimensional fabrics of the same shape are stacked on top of each other, if the wall thickness becomes large, it will cause distortion to the three-dimensional fabric.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明は上記のような問題点を解決するためになされた
もので、厚さを設定することができ、このため積層する
ことなく立体形状の複合材料を得ることが可能な三次元
三軸立体賦形用織物およびその製造方法を得ることを目
的とする。
The present invention was made in order to solve the above problems, and it is possible to set the thickness of a three-dimensional three-dimensional three-dimensional solid material, which makes it possible to obtain a three-dimensional composite material without laminating layers. The purpose of this invention is to obtain a woven fabric for shaping and a method for producing the same.

〔課題を解決するための手段〕 この発明の三次元三軸立体賦形用織物は、中央から放射
状に伸びる多数の径方向糸、円周方向に渦巻き状に織り
込まれる周方向糸、および厚さ方向に貫通する厚さ方向
糸から成り、上記径方向糸は織布の厚さ方向に多重に積
み重ねられており、径方向糸の間を周方向糸とJlメさ
方向糸が貫通しているものである。
[Means for Solving the Problems] The three-dimensional triaxial three-dimensional shaping fabric of the present invention has a large number of radial yarns extending radially from the center, circumferential yarns spirally woven in the circumferential direction, and a thickness The radial yarns are stacked in multiple layers in the thickness direction of the woven fabric, and circumferential yarns and Jl female yarns penetrate between the radial yarns. It is something.

またこの発明の三次元三軸立体賦形用織物の製造方法は
、中央から放射状に伸びる径方向糸全体を回転させ、こ
の間に周方向糸および厚さ方向糸を挿入し、二次元三軸
織物を形成する方法である。
In addition, the method for producing a three-dimensional triaxial three-dimensional shaping fabric of the present invention involves rotating the entire radial yarn extending radially from the center, inserting the circumferential yarn and the thickness direction yarn between them, and producing a two-dimensional triaxial fabric. This is a method of forming.

本発明の立体賦形用織物は、平面布としてすでに知られ
ている三次元三軸織物を回転体シェル形状に立体化して
おり、繊維の方向が半径方向と周方向ばかりでなく、厚
さ方向にも配向しており。
The fabric for three-dimensional shaping of the present invention is a three-dimensional triaxial fabric already known as a plane fabric, which is three-dimensionalized into a rotating shell shape, and the fiber directions are not only radial and circumferential, but also the thickness direction. It is also oriented.

しかも糸密度の変動が最小限に制御されている。Furthermore, fluctuations in yarn density are controlled to a minimum.

〔作 用〕[For production]

この発明における織物は、立体形状を有しかつ厚さを任
意に設定しうるため1回転体曲面等の立体形状の複合材
料への適用に当たり、従来のように平面的な薄物を立体
賦形して積層するという繊維配向の乱れや糸密度の変動
を生ずる工程を経ることがないため、直線複合材料用の
補強材として用いることができるとともに、部材内の特
性の変動が少なく、特性の高度な安定性を要求される部
材への適用に有効である。また強化材としての糸が回転
曲面の周方向および半径方向に配向されているため、軸
対称荷重に対し最大剛性、最大強度を有する。
The woven fabric of this invention has a three-dimensional shape and the thickness can be arbitrarily set, so when it is applied to a composite material with a three-dimensional shape such as the curved surface of a one-rotation body, it is not necessary to three-dimensionally shape a flat thin material as in the past. Since there is no need to go through the process of laminating the fibers, which causes disturbances in fiber orientation and fluctuations in thread density, it can be used as a reinforcing material for linear composite materials, and it can also be used as a reinforcing material for linear composite materials. Effective for application to members that require stability. Furthermore, since the reinforcing threads are oriented in the circumferential direction and radial direction of the rotating curved surface, it has maximum rigidity and maximum strength against axisymmetric loads.

〔発明の実施例〕[Embodiments of the invention]

以下、この発明の実施例を図面を参照しながら詳述する
Embodiments of the present invention will be described in detail below with reference to the drawings.

第1図は本発明に係る立体賦形用織物の織物組織を模式
的に示している。図において、立体賦形用織物(A)は
第2図に示すような回転体シェル等の立体形状を有する
複合材料(B)の補強材として用いるもので、一般的に
は炭素繊維、ガラス繊維、ケブラー繊維等により形成さ
れるが、必要に応じて他の各種繊維を用いることもでき
る。
FIG. 1 schematically shows the fabric structure of the fabric for three-dimensional shaping according to the present invention. In the figure, the three-dimensional shaping fabric (A) is used as a reinforcing material for a composite material (B) having a three-dimensional shape such as the shell of a rotating body as shown in Figure 2, and is generally made of carbon fiber or glass fiber. , Kevlar fiber, etc., but other various fibers can be used as needed.

上記織物組織は三次元三軸織物として知られるもので、
中央から放射状に伸びる多数の径方向糸(1)、それら
に対してほぼ直交する方向に織り込まれた周方向糸(2
)および厚さ方向糸(3)から成り。
The above textile structure is known as a three-dimensional triaxial textile.
A large number of radial yarns (1) extending radially from the center, and circumferential yarns (2) woven in a direction almost perpendicular to them.
) and thickness direction yarn (3).

周方向糸(2)を径方向糸(1)に対して渦巻き状に織
り込むとともに、レピア方式で厚さ方向糸(3)を挿入
することにより製織されている。
Weaving is carried out by spirally weaving the circumferential yarn (2) into the radial yarn (1) and inserting the thickness direction yarn (3) using a rapier method.

第3図は立体賦形用織物(A)の製織方法を模式的に示
す平面図であり、図中には径方向糸(1)と周方向糸(
2)のみが示されている。
FIG. 3 is a plan view schematically showing the weaving method of the three-dimensional shaping fabric (A), and the figure shows radial yarn (1) and circumferential yarn (1).
Only 2) is shown.

上記径方向糸(1)は、各製織半径における糸密度の偏
差が一定の範囲内に収まるように、製織半径に比例して
糸本数が増加され、望ましくは径方向糸(1)の糸密度
の偏差が常に±lθ%の範囲内に収まるように、111
織半径の増加に比例して径方向糸(1)が逐次追加され
る。また上記周方向糸(2)および厚さ方向糸(3)は
、径方向糸(1)と同程度の糸密度および同程度の糸密
度の偏差をもつようにして、径方向糸(1)に対し織り
込み、それによって複合材料用の織物(A)が製織され
ている。
The number of radial yarns (1) is increased in proportion to the weaving radius so that the deviation of the yarn density at each weaving radius falls within a certain range, and preferably the yarn density of the radial yarn (1) is increased in proportion to the weaving radius. 111 so that the deviation always falls within the range of ±lθ%.
Radial threads (1) are added successively in proportion to the increase in weaving radius. Further, the circumferential yarn (2) and the thickness direction yarn (3) are made to have the same yarn density and the same yarn density deviation as the radial yarn (1). The fabric (A) for composite material is woven in this way.

上記織物(A)は、予め回転体シェル形状等に賦形して
製織することもできるが、平面状に製織し、複合材料化
に際して回転体シェル等の立体形状に成形してもよい、
この場合径方向糸(1)1周方向糸(2)および厚さ方
向糸(3)により製織しているので、複合材料化に際し
て回転体シェル形状程度の立体形状への賦形を行っても
、糸密度に格別大きな変動は生じない。
The above-mentioned textile (A) can be shaped in advance into the shape of a rotating body shell and then woven, but it may also be woven into a flat shape and then formed into a three-dimensional shape such as a rotating body shell when it is made into a composite material.
In this case, since weaving is carried out using radial direction yarn (1), circumferential direction yarn (2), and thickness direction yarn (3), it is possible to shape it into a three-dimensional shape similar to the shape of a rotating body shell when making a composite material. , there is no particularly large change in thread density.

第4図は上記織物(A)を回転体シェル形状の立体布と
してI2織するための製織装置を示す構成図で、この製
織装置は、機枠(10)の中心に製織すべき立体布の形
状を規定する型(11)を備え、この型(11)を、モ
ータ(12)で駆動されて昇降する昇降軸(13)によ
り昇降可能に設置している。径方向糸(1)5周方向糸
(2)および厚さ方向糸(3)はそれぞれボビン(1/
l)、 (15) 、 (16)に取付けられた張力制
御装置によってそれぞれ独立に糸張力が調整されている
。この張力調整機構としては、例えば摩擦により動力を
伝達する部材を備え、外部からの電気的信号によりその
部材間の摩擦力を調整して、糸(2) 、 (3)の張
力を調節可能にした機構等が適し5上記電気的信号とし
ては、織り口の半径に比例した信シ手がその織り口の位
置やホルダーの回転数の検出結果に基づいて与えられる
FIG. 4 is a configuration diagram showing a weaving device for weaving the above-mentioned fabric (A) as a three-dimensional cloth in the shape of a rotating shell. A mold (11) for defining the shape is provided, and the mold (11) is installed so as to be able to be raised and lowered by a lifting shaft (13) that is driven by a motor (12) and raised and lowered. The radial direction thread (1), the circumferential direction thread (2) and the thickness direction thread (3) are respectively attached to the bobbin (1/
The thread tension is adjusted independently by tension control devices attached to (1), (15), and (16). This tension adjustment mechanism includes, for example, a member that transmits power through friction, and adjusts the frictional force between the members using an external electrical signal, thereby making it possible to adjust the tension of the threads (2) and (3). A mechanism such as the one shown in FIG.

径方向糸(1)は型(11)の中心に一端が固定され、
他端はボビン(14)を介して回転ドラム(17)に固
定される。径方向糸(1)の本数は、織物(A)の最外
周において必要とされるだけ製織前に取付けられる。
One end of the radial thread (1) is fixed at the center of the mold (11),
The other end is fixed to a rotating drum (17) via a bobbin (14). As many radial threads (1) as required at the outermost periphery of the fabric (A) are installed before weaving.

第4図では径方向糸(1)を5段に重ねて示したが、こ
れは必要な厚さに応じて調節すべきものであることはい
うまでもない。この事情は周方向糸(2)においても同
じである。製織動作に参加する径方向糸(1)の本数は
、製織時の織り口半径に比例して増加させることが好ま
しい。このため回転ドラム(17)に、第5図に示すよ
うに径方向糸(1)の−部を待機させる特機部分(I8
)を余分に設けておき。
In FIG. 4, the radial yarns (1) are shown stacked in five layers, but it goes without saying that this should be adjusted according to the required thickness. This situation is the same for the circumferential yarn (2). The number of radial threads (1) participating in the weaving operation is preferably increased in proportion to the weave radius during weaving. For this reason, a special part (I8) is placed on the rotating drum (17) to hold the negative part of the radial yarn (1) as shown in FIG.
) is provided extra.

織り口半径に比例して特機部分(18)の径方向糸(1
)を製織部分(19)の径方向糸(1)の所まで降ろし
て製織動作に参加させる。したがって径方向糸(1)を
取付けるボビン(14)は、重ねられた1列の径方向糸
ボビン(14)を一体として上下にスライドさせる機構
が設置されている。
The radial yarn (1
) is lowered to the radial thread (1) of the weaving section (19) to participate in the weaving operation. Therefore, the bobbin (14) to which the radial thread (1) is attached is provided with a mechanism that slides one row of stacked radial thread bobbins (14) up and down as one body.

この他、径方向糸(1,)はモータ(2工)によって型
(11)と一体となって中心軸のまわりを径方向糸(1
)の1ピツチずつ回転する。厚さ方向糸(3)の糸密度
は、このとき何ピッチに一度厚さ方向糸(3)を挿入す
るかによって制御される。−右同方向糸(2)は磁石(
22)等の手段によって一定位置に固定されている。こ
のため1回転ドラム(17)には周方向に沿って溝(2
3)が切られており、ドラム(17)の回転時に周方向
糸(2)はこの溝(23)をスライドする。
In addition, the radial thread (1,) is integrally moved with the mold (11) by a motor (2nd step) around the central axis.
) rotates one pitch at a time. The thread density of the thickness direction yarn (3) is controlled by how many pitches the thickness direction yarn (3) is inserted once. -The right same direction thread (2) is attached to the magnet (
22) or the like at a fixed position. Therefore, the one-rotation drum (17) has grooves (2
3) is cut, and the circumferential thread (2) slides through this groove (23) when the drum (17) rotates.

厚さ方向糸(3)は第6図に示される工程で耳形成(セ
ルフステイツチング)を行いながら織り込まれる(この
図では周方向糸は省略されている)。すなわち、径方向
糸(1)の上側で、フック(31)により形成された厚
さ方向糸(3)のループ(32)の中にレピア(33)
が上昇して挿入される(第6図(a)から(b)の工程
)。次にフック(31)が外され、レピア(33)に設
けられた糸間隙(34)を利用して再度厚さ方向糸(3
)が引っかけられ、再度ループ(36)が形成される(
第6図(C))。続いて、レピア(33)が下降するこ
とにより、ループ(32)から外された厚さ方向糸(3
7)が固定される。この後径方向糸(1)が1ピツチ分
だけ回転されて第6図(d)の状態になり、製織部を織
物(A)の織り口へ移動させるためのおぎ打ち用の捧(
38)が挿入され、この捧(38)に伴って製織部は織
物(A)へ寄せられる。さらにおさ打ち用の捧(38)
が外され、厚さ方向糸(3)の挿入動作が終了し初期状
態に復帰する。
Thickness direction yarns (3) are woven while performing selvage formation (self-stitching) in the step shown in FIG. 6 (circumferential direction yarns are omitted in this figure). That is, on the upper side of the radial thread (1), the rapier (33) is inserted into the loop (32) of the thickness thread (3) formed by the hook (31).
is raised and inserted (steps from FIG. 6(a) to (b)). Next, the hook (31) is removed, and the thread gap (34) provided in the rapier (33) is used again to
) is hooked and a loop (36) is formed again (
Figure 6(C)). Subsequently, as the rapier (33) descends, the thickness direction yarn (3) removed from the loop (32) is removed.
7) is fixed. This rear radial direction yarn (1) is rotated by one pitch and becomes the state shown in FIG.
38) is inserted, and the weaving section is brought together to the fabric (A) along with this weaving (38). In addition, a offering for making rice balls (38)
is removed, the insertion operation of the thickness direction thread (3) is completed, and the state returns to the initial state.

径方向糸(1)および厚さ方向糸(3)の糸密度は既述
のように、径方向糸(1)の製織参加本数およびレピア
(33)の作IIJひん度をそれぞれ制御することによ
って設定可能である。一方、周方向糸(2)の糸密度を
制御あるいは均一化するには、径方向糸(1)と周方向
糸(2)の張力の比を制御すればよいことが実験により
明らかになっている。すなわち周方向糸(2)の糸密度
を織り口半径にかかわらず一定にするには、径方向糸(
1)の張力を一定にして、周方向糸(2)の張力を織り
口半径に比例して増加させればよい。
As mentioned above, the thread density of the radial direction yarn (1) and the thickness direction yarn (3) is determined by controlling the number of radial direction yarns (1) participating in weaving and the weaving frequency of the rapier (33), respectively. Configurable. On the other hand, experiments have revealed that in order to control or equalize the thread density of the circumferential thread (2), it is sufficient to control the tension ratio of the radial thread (1) and the circumferential thread (2). There is. In other words, in order to make the yarn density of the circumferential yarn (2) constant regardless of the weave radius, the radial yarn (2)
The tension of the circumferential thread (2) may be increased in proportion to the weave radius while keeping the tension of the thread (1) constant.

径方向糸(1)が500本の製織実験において、炭素繊
維ロービング(12000f)を用い、周方向糸(2)
の1回挿入毎に径方向糸(1)を追加し、周方向糸張力
を増加させた場合と同じことを周方向糸(2)の3回転
毎に行った。このとき織り口半径30a+mの初期状態
で径方向糸(1)および周方向糸(2)の張力はそれぞ
れlongおよび180 g 、厚さ方向糸(3)の挿
入は1ピツチ毎に行うこととした。これにより、糸ピッ
チは3.5a+mで各方向とも等密度のものが得られる
ことは予備実験で確認ずみである。以上の条件の試織の
結果、前者(1回転毎)の場合1周方向糸(2)の密度
の変動は5.2%以内に抑えることができ、また後者の
場合(3回転毎)、 14.6%程度に抑えることがで
きた。従って、径方向糸(1)の挿入をある程度段階的
に行っても糸密度の目標値を設定した場合、その目標値
に対する糸密度の偏差を±lθ%程度以内に抑えること
が可能である。
In a weaving experiment with 500 radial yarns (1), carbon fiber roving (12000f) was used, and circumferential yarns (2)
The same thing was done every third rotation of the circumferential thread (2) as in the case where the radial thread (1) was added every time the circumferential thread (1) was inserted and the circumferential thread tension was increased. At this time, in the initial state with a weaving radius of 30 a + m, the tension of the radial yarn (1) and the circumferential yarn (2) were long and 180 g, respectively, and the thickness direction yarn (3) was inserted every pitch. . It has been confirmed in preliminary experiments that this allows yarn pitch of 3.5a+m and uniform density in each direction to be obtained. As a result of trial weaving under the above conditions, in the former case (every 1 rotation), the variation in the density of the circumferential yarn (2) can be suppressed within 5.2%, and in the latter case (every 3 rotations), We were able to keep it down to around 14.6%. Therefore, even if the radial yarn (1) is inserted stepwise to some extent, if a target value for the thread density is set, it is possible to suppress the deviation of the thread density from the target value to within approximately ±lθ%.

このようにして径方向糸および周方向糸の糸密度を±1
0%以内に抑えると、外観においても密度が非常に均一
化された織物が得られ、また立体曲面を有する複合材料
の特性の改善に極めて有効である。なお、この実施例で
は、各方向の糸密度を等しくするように設定したが1周
方向糸の初期張力を変えることにより周方向糸の密度を
変えることも可能である。
In this way, the thread density of the radial and circumferential threads can be adjusted by ±1.
When the content is kept within 0%, a fabric with a very uniform density can be obtained in terms of appearance, and it is also extremely effective in improving the properties of composite materials having three-dimensional curved surfaces. In this embodiment, the yarn density in each direction was set to be equal, but it is also possible to change the density of the circumferential yarn by changing the initial tension of the circumferential yarn.

第4図に示した製織装置では、製織される立体布の形状
を球面の一部として描いたが、同図に示す型(11)の
形状を適宜選択することにより、円錐、パラボラ、円筒
等の各種回転体シェル形状の厚さを制御できる立体布が
製織可能である6〔発明の効果〕 以上のとおり1本発明によれば、径方向糸、周方向糸お
よび厚さ方向糸より成る糸密度のばらつきの少ない三次
元三軸立体賦形用織物が得られるため、軸対称荷重に対
し高剛性、高強度を有する複合材料用の補強材を得るこ
とができ、一般複合材料のように積層する必要がない、
また糸密度が均一であるため、熱構造安定性に優れ、熱
膨張係数、熱伝導率1弾性率等の設計を三次元金ての方
向に行える点でも有利である。
In the weaving apparatus shown in Fig. 4, the shape of the three-dimensional cloth to be woven is drawn as a part of a spherical surface, but by appropriately selecting the shape of the mold (11) shown in the figure, it can be made into a cone, parabola, cylinder, etc. It is possible to weave a three-dimensional cloth in which the thickness of the shell shape of various rotating bodies can be controlled.6 [Effects of the Invention] As described above, according to the present invention, a yarn consisting of a radial direction yarn, a circumferential direction yarn, and a thickness direction yarn. Because it is possible to obtain a three-dimensional triaxial shaping fabric with little variation in density, it is possible to obtain a reinforcing material for composite materials that has high rigidity and high strength against axially symmetrical loads, and can be laminated like general composite materials. There is no need to
Furthermore, since the yarn density is uniform, it has excellent thermal structural stability, and is advantageous in that it can be designed in a three-dimensional direction with respect to thermal expansion coefficient, thermal conductivity, 1 elastic modulus, etc.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る織物の組織を模式的に示した斜視
図、第2図は本発明に係る立体布形状の代表例を示す斜
視図、第3図は織物の製織方法を模式的に示す平面図、
第4図は製織装置の構成図。 第5図(a)は回転ドラムの動作を示す平面図、(b)
はその側面図、第6図(a)〜(d)は厚さ方向糸の挿
入方法を示す説明図である。 各図中、同一符号は同一または相当部分を示し、(1)
は径方向糸、(2)は周方向糸、(3)は厚さ方向糸、
(11)は型、(14) 、 (15) 、 (16)
はボビン、(17)は回転ドラムである。
Fig. 1 is a perspective view schematically showing the structure of the fabric according to the present invention, Fig. 2 is a perspective view showing a typical example of the three-dimensional fabric shape according to the present invention, and Fig. 3 is a schematic diagram showing the weaving method of the fabric. The plan shown in
FIG. 4 is a configuration diagram of the weaving device. Figure 5 (a) is a plan view showing the operation of the rotating drum, (b)
6 is a side view thereof, and FIGS. 6(a) to 6(d) are explanatory views showing the method of inserting the thickness direction yarn. In each figure, the same reference numerals indicate the same or corresponding parts, (1)
is a radial direction thread, (2) is a circumferential direction thread, (3) is a thickness direction thread,
(11) is the type, (14), (15), (16)
is a bobbin, and (17) is a rotating drum.

Claims (2)

【特許請求の範囲】[Claims] (1) 中央から放射状に伸びる多数の径方向糸、円周
方向に渦巻き状に織り込まれる周方向糸、および厚さ方
向に貫通する厚さ方向糸から成り、上記径方向糸は織布
の厚さ方向に多重に積み重ねられており、径方向糸の間
を周方向糸と厚さ方向糸が貫通していることを特徴とす
る三次元三軸立体賦形用織物。
(1) Consists of a large number of radial threads extending radially from the center, circumferential threads spirally woven in the circumferential direction, and thickness threads penetrating in the thickness direction, and the radial threads are woven according to the thickness of the woven fabric. A three-dimensional triaxial three-dimensional shaping fabric characterized in that it is stacked in multiple layers in the widthwise direction, and that circumferential yarns and thickness direction yarns penetrate between the radial yarns.
(2) 中央から放射状に伸びる径方向糸全体を回転さ
せ、この間に周方向糸および厚さ方向糸を挿入し、三次
元三軸織物を形成することを特徴とする三次元三軸立体
賦形用織物の製造方法。
(2) Three-dimensional triaxial shaping characterized by rotating the entire radial yarn extending radially from the center and inserting circumferential yarn and thickness direction yarn between them to form a three-dimensional triaxial fabric. Method for manufacturing textiles.
JP63195235A 1988-08-04 1988-08-04 Fabric for forming three-dimensional, three-axial steric shape and production thereof Pending JPH0247350A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63195235A JPH0247350A (en) 1988-08-04 1988-08-04 Fabric for forming three-dimensional, three-axial steric shape and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63195235A JPH0247350A (en) 1988-08-04 1988-08-04 Fabric for forming three-dimensional, three-axial steric shape and production thereof

Publications (1)

Publication Number Publication Date
JPH0247350A true JPH0247350A (en) 1990-02-16

Family

ID=16337734

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63195235A Pending JPH0247350A (en) 1988-08-04 1988-08-04 Fabric for forming three-dimensional, three-axial steric shape and production thereof

Country Status (1)

Country Link
JP (1) JPH0247350A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009534236A (en) * 2006-04-26 2009-09-24 スネクマ・プロピュルシオン・ソリド Method for producing fiber layers for the production of composite part preforms

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009534236A (en) * 2006-04-26 2009-09-24 スネクマ・プロピュルシオン・ソリド Method for producing fiber layers for the production of composite part preforms

Similar Documents

Publication Publication Date Title
US4312261A (en) Apparatus for weaving a three-dimensional article
Mohamed Three-dimensional textiles
JPH04327242A (en) Three-dimensional woven fabric for reinforcing heterogeneously functional composite material
JPH0450408B2 (en)
US6315007B1 (en) High speed three-dimensional weaving method and machine
US5242745A (en) Spiral-shaped textile structure
EP0481772B1 (en) Tubular multilayer woven fabric and method for manufacturing the same
JPH04108137A (en) Three-dimensional woven fabric for bonding member
US5091246A (en) Three dimensional fabric and method for making the same
US8161775B2 (en) Integrated hollow fabric structure
JPH0247350A (en) Fabric for forming three-dimensional, three-axial steric shape and production thereof
JP2873117B2 (en) Cylindrical multilayer fabric and method for producing the same
US4889063A (en) Multilayer textile material and method and apparatus for producing the same
JP2875865B2 (en) Three-dimensional fabric
JPS61138743A (en) Reinforcing material for fiber reinforced resin and its production
JPH09132844A (en) Improved braider and production of cylindrical woven fabric, cylindrical woven fabric, and production of columnar woven fabric
JPH06170958A (en) Production of conical body of rotation
JPH04300340A (en) Tubular multilayer woven fabric and production thereof
JPH01246439A (en) Woven fabric for stereoscopic shape and production thereof
JPH0623558U (en) Golf club shaft
JPH02293434A (en) Tri-axial fabric and production thereof
JPH01148836A (en) Three-dimensional shaped fabric and its production
JPH02200840A (en) Disklike woven fabric and production thereof
JPH0770865A (en) Tubular multilayer woven fabric and its production
US8341980B2 (en) Integrated multiaxial articles: method, apparatus and fabrics