JPS61138743A - Reinforcing material for fiber reinforced resin and its production - Google Patents

Reinforcing material for fiber reinforced resin and its production

Info

Publication number
JPS61138743A
JPS61138743A JP59260860A JP26086084A JPS61138743A JP S61138743 A JPS61138743 A JP S61138743A JP 59260860 A JP59260860 A JP 59260860A JP 26086084 A JP26086084 A JP 26086084A JP S61138743 A JPS61138743 A JP S61138743A
Authority
JP
Japan
Prior art keywords
fiber
reinforcing material
reinforced resin
groups
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59260860A
Other languages
Japanese (ja)
Inventor
清 本間
明 西村
隆 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP59260860A priority Critical patent/JPS61138743A/en
Publication of JPS61138743A publication Critical patent/JPS61138743A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は繊維強化樹脂用補強材料に関し、さらに詳しく
はガラス繊維あるいは炭素繊維使用強度樹脂用の補強用
中間基材として好適な補強材料に関するものである。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a reinforcing material for fiber-reinforced resins, and more particularly to a reinforcing material suitable as an intermediate base material for reinforcing strong resins using glass fibers or carbon fibers. be.

〔従来技術とその問題点〕[Prior art and its problems]

飛行機の翼のスキン材などのように、板状体の面方向に
おいてねじり荷重が与えられる用途に用いられる繊維強
化樹脂の場合、その繊維強化樹脂の補強材料としては強
化繊維がバイアス方向にも交差するよう構成したものが
好ましい。
In the case of fiber-reinforced resins used in applications where torsional loads are applied in the plane direction of a plate-shaped object, such as the skin material of airplane wings, the reinforcing material for the fiber-reinforced resin is one in which the reinforcing fibers also intersect in the bias direction. It is preferable that the

バイアス方向に補強繊維が交差する方法として、一般の
経緯織物や補強繊維を一方向に揃えて樹脂含浸させた一
方向プリプレグをバイアスカットして積層する方法が一
般的であるが、カットロスが多量に発生し、作業の連続
化ができず大変面倒である。またバイアス方向に補強繊
維が連続していない点で十分な強度が得られない。ある
いは積層の仕方において、精度高く隣接せねば物性にバ
ラツキが生じる問題がある。
A common method for reinforcing fibers to intersect in the bias direction is to bias-cut and laminate unidirectional prepreg, which is made by aligning general warp and warp fabrics or reinforcing fibers in one direction and impregnating them with resin, but this method results in a large amount of cut loss. This is very troublesome as it makes it impossible to continue the work. Furthermore, sufficient strength cannot be obtained because the reinforcing fibers are not continuous in the bias direction. Alternatively, there is a problem in how the layers are stacked, which may cause variations in physical properties if they are not placed adjacent to each other with high precision.

更に積層を連続化させる手段として、補強繊維が互にバ
イアス方向に交差した織物があるが、その織物は長手方
向に連続する繊維が設けられていないため、長手方向に
張力が加わるとバイアス方向に配列した補強繊維の交差
角が変化したり、密度ムラが生じ、取り扱いが非常に難
しいという問題がある。
Furthermore, as a means to make the lamination continuous, there is a fabric in which reinforcing fibers cross each other in the bias direction, but since this fabric does not have continuous fibers in the longitudinal direction, when tension is applied in the longitudinal direction, the fabric will move in the bias direction. There are problems in that the intersection angle of the arranged reinforcing fibers changes and density unevenness occurs, making it extremely difficult to handle.

〔発明の目的〕[Purpose of the invention]

本発明の目的は上述のような従来技術の欠点を解消し、
バイアス方向にも補強繊維を交差するよう構成した織物
材料でありながら形態が安定し、しかも繊維強化樹脂に
した場合に強度ムラの発生することがないようにした繊
維強化樹脂用補強材料を提供せんとするものである。
The purpose of the present invention is to overcome the drawbacks of the prior art as mentioned above,
To provide a reinforcing material for fiber-reinforced resin, which is a woven material configured so that reinforcing fibers intersect even in the bias direction, but has a stable form, and does not cause uneven strength when made into fiber-reinforced resin. That is.

〔発明の構成〕[Structure of the invention]

上記目的を達成するため本発明は次の技術的構成を有す
る。即ち、少なくとも2つの整経糸条群から構成されて
おり、その両糸条群は互に0°あるいは90”でない角
度で、かつ互に交錯屈曲することなく平面的交差状態で
積層され、かつこれ等の両糸条群は織組織をもって交錯
している補助糸により一体化されていることを特徴とす
る繊維強化樹脂用補強材料、および少なくとも2つの整
経糸条群が互に90”の角度でかつ互に交錯屈曲するこ
となく交差積層され、かつ咳両糸条群は織組織をもって
交錯する補助糸により一体化されている布帛体を製造し
た後、該布帛体を当該布帛体の中方向に対し一定の角度
をもたせて引取ることを特徴とする繊維強化樹脂用補強
材料の製造方法である。
In order to achieve the above object, the present invention has the following technical configuration. That is, it is composed of at least two warp yarn groups, and both yarn groups are laminated at an angle other than 0° or 90'' to each other in a planar cross state without being crossed or bent. A reinforcing material for fiber-reinforced resin characterized in that both groups of yarns are integrated by auxiliary yarns intersecting each other with a weaving structure, and at least two groups of warp yarns are arranged at an angle of 90" to each other. After producing a fabric body which is cross-laminated without intersecting or bending each other, and in which both yarn groups are integrated by intersecting auxiliary yarns with a weave structure, the fabric body is folded in the middle direction of the fabric body. This is a method for producing a reinforcing material for fiber-reinforced resin, which is characterized in that the reinforcing material is taken at a certain angle.

本発明の基本的な技術思想を要約するならば、繊維強化
樹脂用補強材料として、ねじれに強(変形が少なく、か
つ等方性を有するものが必要であり、それには積層型バ
イアスカット方式が通常使用されているが、この種の方
式では連続化、高速化、均質化が不可能であるため、補
強用繊維の一方の整経糸条群は連続化されたちのとし、
この糸条群に対し他の糸条群を任意の角度で交差せしめ
るものであり、かかる構成とするため、予め二つの補強
用繊維からなる整経糸条群を通常の方法で互にほぼ90
”に近い形で交差させたものを作り、次でこれを所定の
角度に屈折させながら引取ることによって、上記した布
帛体をうるちのである。
To summarize the basic technical idea of the present invention, a reinforcing material for fiber-reinforced resins needs to be strong against torsion (with little deformation and isotropic), and the laminated bias cut method is required for this purpose. Although this type of method is commonly used, it is impossible to achieve continuity, high speed, and homogenization, so one group of warp yarns of the reinforcing fibers is made continuous.
This yarn group is made to intersect with another yarn group at an arbitrary angle, and in order to create this structure, warp yarn groups consisting of two reinforcing fibers are warped in advance by a normal method so as to cross each other by approximately 90 degrees.
The above-mentioned cloth body is made by making a cloth that crosses each other in a shape similar to that of ``1'', and then taking it off while bending it at a predetermined angle.

〔発明の作用機能〕[Function of the invention]

ここで本発明を添付図面に従い詳細に説明する。 The invention will now be described in detail with reference to the accompanying drawings.

第1図は本発明により得られた繊維強化樹脂用補強材料
の一例を示すものである。■、2はガラス繊維あるいは
炭素繊維からなる補強繊維、3.4はガラス繊維または
ポリアラミド繊維からなる補助糸である。炭素繊維2等
からなる一方の経糸条群と補助糸4は炭素繊維1等から
なる他方の整経糸条群と補助糸3の糸軸方向に対し角度
αで交差しており、角度αは90°より小さく、20”
 〜70” の範囲さらに好ましくは45°である。さ
らに角度αは一20’〜−70°であってもよい。
FIG. 1 shows an example of a reinforcing material for fiber-reinforced resin obtained by the present invention. (2), 2 are reinforcing fibers made of glass fiber or carbon fiber, and 3.4 are auxiliary threads made of glass fiber or polyaramid fiber. One warp group made of carbon fiber 2 etc. and the auxiliary yarn 4 intersect at an angle α with respect to the yarn axis direction of the other warp yarn group made of carbon fiber 1 etc. and the auxiliary yarn 3, and the angle α is 90 °less than 20”
-70'', more preferably 45°. Further, the angle α may be -20' to -70°.

本発明にあっては、かくして得られた補強材料のうち、
任意の交差角度のものを必要に応じて2枚〜10枚選択
し重ね合せて一体化した上で樹脂を含浸するものである
。より具体的には、一定の交差角度を有するものと、こ
れと反対の交差角度を有するもの(前者のものを裏返し
に使用すればよい)と、従来からある交差角が90°で
ある二つの補強繊維糸条群からなるものとの3者を市ね
合せ一体化することが出来る。
In the present invention, among the reinforcing materials thus obtained,
2 to 10 sheets with arbitrary intersection angles are selected as needed, stacked and integrated, and then impregnated with resin. More specifically, there are two types: one with a constant intersection angle, one with an opposite intersection angle (the former can be used inside out), and the conventional one with an intersection angle of 90°. It is possible to combine and integrate the reinforcing fiber yarn group and the reinforcing fiber thread group.

この場合各補強材料の整経糸条群のうち連続化されてい
る糸条群の方向に全ての補強材を重ね合せることによっ
て連続化が容易に達成しうる。
In this case, continuity can be easily achieved by overlapping all the reinforcing materials in the direction of the continuous yarn group among the warp yarn groups of each reinforcing material.

例えば、45°方向、−45°方向、O°方向と90°
方向(バイアス加工していない原布)を連続的に複数枚
積層してステッチ縫合等により一体化すれば4軸方向に
補強した補強材料が得られる。
For example, 45° direction, -45° direction, O° direction and 90°
A reinforcing material reinforced in four axes can be obtained by sequentially laminating a plurality of sheets in different directions (unbiased original fabrics) and integrating them by stitching or the like.

第2図において、■は応力が集中するような屈曲を有し
ない炭素繊維(マルチフィラメント)からなる整経糸条
群の1つであり、製造する場合、この糸条群を経糸とし
て使用することが多い。2はlと同様に応力が集中する
ような屈曲を有しない炭素繊維(マルチフィラメント)
からなる他の整経糸条群であり、製造上は緯糸として使
用されることが多い。両糸条群は交錯することなく交差
状態にある。3は炭素繊維群1の中間位置に配置した補
助糸でガラス繊維(マルチフィラメント)またはポリア
ラミド繊維(マルチフィラメント)からなる。また4も
3と同様に炭素繊維群2の中間位置に配置した補助糸で
ガラス繊維(マルチフィラメント)またはポリアラミド
繊維(マルチフィラメント)からなり、それぞれの補助
糸3.4は互に平織組織を構成し直交する炭素繊維に対
して屈曲状態で交錯して炭素繊維1.2を1体保持させ
ている。
In Figure 2, ■ is one of the warp yarn groups made of carbon fiber (multifilament) that does not have bends that would cause stress concentration, and when manufacturing, this yarn group can be used as warp yarns. many. 2 is a carbon fiber (multifilament) that does not have bends that cause stress concentration, similar to 1.
This is another group of warp threads consisting of warp threads, and is often used as weft threads in manufacturing. Both thread groups are in a crossing state without crossing each other. Reference numeral 3 denotes an auxiliary thread disposed at an intermediate position of the carbon fiber group 1, which is made of glass fiber (multifilament) or polyaramid fiber (multifilament). Similarly to 3, auxiliary threads 3 and 4 are made of glass fiber (multifilament) or polyaramid fiber (multifilament) and are placed in the middle of carbon fiber group 2, and each of the auxiliary threads 3 and 4 mutually form a plain weave structure. The carbon fibers 1.2 are held in one body by crisscrossing the carbon fibers that are perpendicular to each other in a bent state.

以上の組織構造をとることにより、炭素繊維は実質的に
屈曲のない状態で存在させることができ、かつガラス繊
維やポリアラミド繊維は高強度、高弾性であり、しかも
炭素繊維に比べ十分大きな破断伸度を有しているから応
力が加わった場合、補助糸に応力が集中しても炭素繊維
、が破断する前に補助糸が破断してしまうことはない。
By adopting the above-mentioned structure, carbon fibers can exist in a substantially unbent state, and glass fibers and polyaramid fibers have high strength and high elasticity, and have a sufficiently large elongation at break compared to carbon fibers. Because of this, when stress is applied, even if the stress is concentrated on the auxiliary yarn, the auxiliary yarn will not break before the carbon fibers break.

そのため炭素繊維の高強度、高弾性といった優れた特性
を何ら損うことなく利用できる。
Therefore, the excellent properties of carbon fiber such as high strength and high elasticity can be used without any loss.

さらにもう一つの大きな特性として、両整経糸条群の炭
素繊維が交錯しておらず平面的に積層しているため非常
にバイアス方向にずれ易く、かつその状態での安定性が
優れていることである。
Another major characteristic is that the carbon fibers in both warp yarn groups are not interlaced and are layered in a flat manner, making them extremely easy to shift in the bias direction, and providing excellent stability in that state. It is.

第3図は上記説明した織物体を連続的にバイアス加工す
る一方法で、5,5′は供給ニップローラ、6は第2図
で説明した布帛体、7は巻き取り装置である。
FIG. 3 shows one method of continuously bias-processing the fabric described above, 5 and 5' are supply nip rollers, 6 is the fabric explained in FIG. 2, and 7 is a winding device.

布帛体6を供給ニップローラ5.5′に対して直角に通
過せしめ、次いで供給ニップローラ5.5′の中心軸に
対して角度αが20°〜70°または一20°〜−70
°の方向に斜めに引き取り、そして引き取った織物の長
さ方向に対して直角に巻き取ることにより本発明の一方
向のバイアス補強材料が得られる。実際面での引取り角
αは45゛または一45°が好ましい。
The fabric body 6 is passed at right angles to the supply nip roller 5.5' and then at an angle α of 20° to 70° or -20° to -70° with respect to the central axis of the supply nip roller 5.5'.
The unidirectional bias reinforcing material of the present invention is obtained by taking off the fabric obliquely in the direction of 0 and then winding it at right angles to the length of the taken fabric. In practice, the take-off angle α is preferably 45° or -45°.

このバイアス加工によって得られた布帛体の幅は原布幅
W1に対し加工後の布帛幅W2はW2=W1cosαの
関係となり、バイアス角α=45°の場合、原布幅は必
要幅の1丁倍の幅が必要となる。
The width of the fabric obtained by this bias processing is the original fabric width W1, and the fabric width W2 after processing is in the relationship W2 = W1 cos α, and when the bias angle α = 45°, the original fabric width is one block of the required width. Requires twice the width.

第4図は本発明の繊維強化樹脂用補強材料を用いて4軸
方向補強構造体を得る一例を示すもので、8はO°方向
と90”方向のバイアス加工なしの補強用原布、9は4
5°方向のバイアス加工した本発明の繊維強化樹脂用補
強材料、10は一45°方間のバイアス加工した本発明
の繊維強化樹脂用補強材料である。ここで−45°バイ
アス加工品は45°バイアス加工品を表裏逆にして使用
することで可能である。
FIG. 4 shows an example of obtaining a four-axis reinforced structure using the reinforcing material for fiber-reinforced resin of the present invention, 8 is a reinforcing raw fabric without bias processing in the 0° direction and 90'' direction, 9 is 4
The reinforcing material for fiber-reinforced resin of the present invention is bias-processed in the 5° direction, and 10 is the reinforcing material for fiber-reinforced resin of the present invention that is bias-processed in the -45° direction. Here, the −45° bias processed product can be obtained by turning the 45° bias processed product upside down.

それぞれの補強材料8.9.10はロール状に連続的に
巻かれたもので、それぞれ平行に配置し、回転させなが
ら解いて連続的にg、層を行ない、次いでステッチニー
ドル12、およびスチッチ糸13によりステッチを行な
い一体化することにより4軸方向の補強構造体が連続的
に得られる。ここでステッチ縫合に用いるステッチ糸は
プリプレグ加工温度(120℃〜180℃)でほとんど
収縮しないポリアラミド繊維、または低収縮ポリエステ
ル繊維が好ましい。
Each reinforcing material 8.9.10 is continuously wound into rolls, each placed parallel to each other, unrolled with rotation to perform successive layers, then stitched with stitch needle 12 and stitch thread. By stitching and integrating the parts 13, a reinforcing structure in four axial directions can be obtained continuously. The stitch thread used for stitching is preferably polyaramid fiber or low shrinkage polyester fiber, which hardly shrinks at the prepreg processing temperature (120° C. to 180° C.).

〔発明の効果〕〔Effect of the invention〕

(1)  補強繊維である炭素繊維がバイアス方向に配
列しているためバイアス方向の強度が向上し、ねじれに
対して強い板状体を得ることができる。
(1) Since the carbon fibers, which are reinforcing fibers, are arranged in the bias direction, the strength in the bias direction is improved, and a plate-like body that is resistant to twisting can be obtained.

(2)補強繊維である炭素繊維が布帛の長平方向にも配
列しているので長手方向に張力が加わっても変形しない
ため、連続的な積層が可能になり、作業能率が非常に向
上すると同時に精度の高い積層が可能となる。
(2) Since carbon fibers, which are reinforcing fibers, are arranged in the longitudinal direction of the fabric, they do not deform even when tension is applied in the longitudinal direction, allowing continuous lamination, which greatly improves work efficiency. Highly accurate lamination is possible.

(3)補強繊維である炭素繊維等の各整経糸条群はそれ
ぞれ交錯かつ屈曲せずして交差し、補助糸で織組織させ
ているので補強繊維である炭素繊維等は屈曲がなく、し
かも繊維の広がりが良いため炭素繊維等の高強度、高弾
性といった優れた特性を何んら損うことなく利用できる
(3) Each warp yarn group of reinforcing fibers, such as carbon fibers, intersects without being interlaced or bent, and is woven with auxiliary threads, so the reinforcing fibers, such as carbon fibers, do not bend. Because the fibers spread well, the excellent properties of carbon fibers such as high strength and high elasticity can be used without any loss.

(4)補強繊維である炭素繊維等の両整経糸条群に交錯
点がないため、バイアス加工後の安定性が優れており、
精度の高い積層とステッチ縫合が可能になる。
(4) Since there are no intersecting points in both warp yarn groups such as carbon fibers, which are reinforcing fibers, stability after bias processing is excellent.
Enables highly accurate lamination and stitching.

(5)  補強繊維である炭素繊維等糸条群を一体化さ
せている補助糸にはガラス繊維またはポリアラミド繊維
を用いているので、プリプレグに加工するときの温度(
120℃〜180℃)でもほとんど収縮しないから補強
繊維である炭素繊維へほとんど影響を及ぼさない。
(5) Glass fibers or polyaramid fibers are used as the auxiliary yarns that unify the reinforcing fibers such as carbon fibers, so the temperature (
120°C to 180°C), it hardly shrinks, so it has almost no effect on the carbon fibers that are reinforcing fibers.

実施例 東し株式会社製炭素繊維“トレカ”T−300(フィラ
メント数3000、断面積0.112m++2.)と、
日東紡績株式会社製ガラス繊維EC0450110(フ
ィラメント数約200.断面積0.0044a+m2)
とを準備した。
Example Carbon fiber “Trading Card” T-300 manufactured by Toshi Co., Ltd. (number of filaments: 3000, cross-sectional area: 0.112 m++2.),
Glass fiber EC0450110 manufactured by Nittobo Co., Ltd. (number of filaments: approx. 200. Cross-sectional area: 0.0044a+m2)
and prepared.

次にレピア織機を用い、上記炭素繊維とガラス繊維とを
経糸として1本交互に配列し、一方ヨコ方向から上記炭
素繊維とガラス繊維とをレピアで1本交互に打込み、炭
素繊維とガラス繊維のそれぞれの密度がタテ方向6.0
本/ am、ヨコ方向2.1本/csとし、第2図に示
す組織の布帛体(A)と、さらに経糸をガラス繊維のみ
で配列し、緯糸を炭素繊維のみでレピアにより打込み、
その密度がタテ方向6.0本7国、ヨコ方向3.0本/
e11とした平織組織の布帛体CB)を得た。
Next, using a rapier loom, the carbon fibers and glass fibers are alternately arranged as warp yarns, and one carbon fiber and one glass fiber are alternately driven in from the weft direction with a rapier, so that the carbon fibers and glass fibers are Each density is 6.0 in the vertical direction
The fabric body (A) has a structure shown in Fig. 2, with a thread/am and a width of 2.1 threads/cs, and the warp threads are only made of glass fibers, and the weft threads are made of only carbon fibers, and are implanted with a rapier.
The density is 6.0 in the vertical direction, 7 countries, and 3.0 in the horizontal direction.
A fabric body CB) having a plain weave structure designated as e11 was obtained.

上記布帛体(A)を第3図に示すバイアス加工機に仕掛
け、供給ニップローラ5.5′に対して直角に供給せし
め、供給ニップローラ5.5′の中心軸と布帛体の経糸
方向との角度を45゜となるよう引き取り、次いで引き
取り方向に対して直角に巻き取ることにより、経糸はO
°方向で、緯糸が45°バイアスした布帛体が得られた
The fabric body (A) is placed in the bias processing machine shown in FIG. 3, and is fed perpendicularly to the supply nip roller 5.5', so that the angle between the center axis of the supply nip roller 5.5' and the warp direction of the fabric body is The warp threads are taken off at an angle of 45 degrees, and then wound at right angles to the take-up direction.
A fabric body was obtained in which the weft yarns were biased at 45° in the ° direction.

このとき、供給ニップローラ5を金属スムースローラ、
トップ側5′をゴムローラとし、金属ローラ5を駆動さ
せ、ローラ表面速度を10m/n+inで通過せしめた
。さらに引き取り及び巻き取りローラ7は引き取った織
物体の幅に合った大きなフランジを設けて幅規制を行っ
た。
At this time, the supply nip roller 5 is replaced with a metal smooth roller.
The top side 5' was a rubber roller, the metal roller 5 was driven, and the roller surface speed was 10 m/n+in. Furthermore, the take-up and winding roller 7 was provided with a large flange that matched the width of the taken-up woven fabric to regulate its width.

また巻き取りローラ7の駆動に関しては間にパワダーク
ラッチを設け、引き取られる織物体の張力が常時一定と
なるよう巻取った。
In addition, a power clutch was provided between the winding rollers 7 to drive the winding rollers 7, and the winding was carried out so that the tension of the taken-up textile body was always constant.

次いで、上記バイアス加工で得られた布帛体(A)の表
使い及び裏使いと前記布帛体(B)の三種のロール体を
第4図のように配列し、連続的に積層しながらデュポン
社製ポリアラミド繊維200D (ケブラー29、フィ
ラメント数134、断面積0.031IIIII+2)
を用い、タテ方向及びヨコ方向の密度をそれぞれlステ
ッチ/c11でもってステッチして一体化させた。
Next, the three types of rolls of the fabric body (A) obtained by the bias processing, the front side and the back side, and the fabric body (B), are arranged as shown in FIG. Made of polyaramid fiber 200D (Kevlar 29, number of filaments 134, cross-sectional area 0.031III+2)
The fabric was integrated by stitching at a density of l stitches/c11 in both the vertical and horizontal directions.

このようにして得られた積層体にエポキシ樹脂を含浸さ
せ、プレス加工して硬化させ、CFRPを得た。得られ
たCFRPは面方向においてあらゆる方向にほぼ均一な
強度を示し、ねじり剛性の高い物性を示した。
The thus obtained laminate was impregnated with an epoxy resin, pressed and cured to obtain CFRP. The obtained CFRP exhibited substantially uniform strength in all directions in the plane, and exhibited physical properties of high torsional rigidity.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の繊維強化樹脂用補強材料の一実施例を
示す組織構造図である。第2図は本発明の繊維強化樹脂
用補強材料に用いる原布量の組織構造図である。第3図
はバイアス加工製雪の斜視図、第4図は本発明補強材料
を用いて積層体を製造する方法の概略図である。 1.2・・・炭素繊維、3.4・・・ガラス繊維または
ポリアラミド繊維(補助糸)、5.5’・・・供給ニッ
プローラ、6・・・原布、7・・・巻き取りローラ、8
・・・0°、90°の織物、9.10・・・バイアス加
工後の織物体、11・・・ステッチ縫合積層体、12・
・・ステッチニードル、13・・・ステッチ糸。
FIG. 1 is a structural diagram showing an example of the reinforcing material for fiber-reinforced resin of the present invention. FIG. 2 is a diagram showing the structure of the amount of raw fabric used in the reinforcing material for fiber-reinforced resin of the present invention. FIG. 3 is a perspective view of bias processing snowmaking, and FIG. 4 is a schematic diagram of a method for manufacturing a laminate using the reinforcing material of the present invention. 1.2... Carbon fiber, 3.4... Glass fiber or polyaramid fiber (auxiliary yarn), 5.5'... Supply nip roller, 6... Original fabric, 7... Winding roller, 8
... 0°, 90° woven fabric, 9.10... Fabric body after bias processing, 11... Stitched laminate, 12.
... Stitch needle, 13... Stitch thread.

Claims (8)

【特許請求の範囲】[Claims] (1)少なくとも2つの整経糸条群から構成されており
、その両糸条群は互に0°あるいは90°でない角度で
、かつ互に交錯屈曲することなく平面的交差状態で積層
され、かつこれ等の両糸条群は織組織をもって交錯して
いる補助糸により一体化されていることを特徴とする繊
維強化樹脂用補強材料。
(1) It is composed of at least two groups of warp yarns, and both groups of yarns are laminated at an angle other than 0° or 90° to each other and intersect in a plane without being crossed or bent, and A reinforcing material for fiber-reinforced resin, characterized in that both of these thread groups are integrated by auxiliary threads that intersect with each other in a weave structure.
(2)整経糸条群の少なくとも一部が炭素繊維である特
許請求の範囲第1項記載の繊維強化樹脂用補強材料。
(2) The reinforcing material for fiber-reinforced resin according to claim 1, wherein at least a part of the warp yarn group is carbon fiber.
(3)補助糸が、ガラス繊維、ポリアラミド繊維から選
ばれた一種の繊維である特許請求の範囲第1項記載の繊
維強化樹脂用補強材料。
(3) The reinforcing material for fiber-reinforced resin according to claim 1, wherein the auxiliary yarn is a type of fiber selected from glass fiber and polyaramid fiber.
(4)両整経糸条群の交差角度が20°〜70°である
特許請求の範囲第1項記載の繊維強化樹脂用補強材料。
(4) The reinforcing material for fiber-reinforced resin according to claim 1, wherein the intersecting angle of both warp thread groups is 20° to 70°.
(5)少なくとも2つの整経糸条群が互に90°の角度
でかつ互に交錯屈曲することなく交差積層され、かつ該
両糸条群は織組織をもって交錯する補助糸により一体化
されている布帛体を製造した後、該布帛体を当該布帛体
の巾方向に対し一定の角度をもたせて引取ることを特徴
とする繊維強化樹脂用補強材料の製造方法。
(5) At least two groups of warp yarns are cross-stacked at an angle of 90° to each other without intersecting or bending, and both groups of yarns are integrated by intersecting auxiliary yarns with a weaving structure. 1. A method for producing a reinforcing material for fiber-reinforced resin, which comprises producing a fabric and then taking the fabric at a certain angle to the width direction of the fabric.
(6)引取り角度を20°〜70°とする特許請求の範
囲第5項記載の繊維強化樹脂用補強材料の製造方法。
(6) The method for manufacturing a reinforcing material for fiber reinforced resin according to claim 5, wherein the take-up angle is 20° to 70°.
(7)少なくとも2つの整経糸糸条群から構成されてお
り、その両糸条群は互に0°あるいは90°でない角度
で、かつ互に交錯屈曲することなく平面的交差状態で積
層され、かつこれ等の両糸条群は織組織をもって交錯し
ている補助糸により一体化されている布帛体を、他の布
帛体と積層し一体化したことを特徴とする繊維強化樹脂
用補強材料。
(7) It is composed of at least two groups of warp yarns, and both groups of yarns are laminated at an angle other than 0° or 90° to each other and in a planar crossing state without being crossed or bent, A reinforcing material for a fiber-reinforced resin, characterized in that a fabric body in which both yarn groups are integrated by auxiliary yarns that intersect with each other in a weaving structure is laminated and integrated with another fabric body.
(8)他の布帛体が、互にほぼ90°の角度で交差して
いる二つの整経糸条群から構成されている特許請求の範
囲第7項記載の繊維強化樹脂用補強材料。
(8) The reinforcing material for fiber-reinforced resin according to claim 7, wherein the other fabric body is composed of two groups of warp threads intersecting each other at an angle of approximately 90°.
JP59260860A 1984-12-12 1984-12-12 Reinforcing material for fiber reinforced resin and its production Pending JPS61138743A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59260860A JPS61138743A (en) 1984-12-12 1984-12-12 Reinforcing material for fiber reinforced resin and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59260860A JPS61138743A (en) 1984-12-12 1984-12-12 Reinforcing material for fiber reinforced resin and its production

Publications (1)

Publication Number Publication Date
JPS61138743A true JPS61138743A (en) 1986-06-26

Family

ID=17353758

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59260860A Pending JPS61138743A (en) 1984-12-12 1984-12-12 Reinforcing material for fiber reinforced resin and its production

Country Status (1)

Country Link
JP (1) JPS61138743A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02194062A (en) * 1989-01-20 1990-07-31 Konica Corp Method for preventing light discoloration of organic coloring material
JPH0297149U (en) * 1989-01-18 1990-08-02
JPH02106477U (en) * 1989-02-06 1990-08-23
JPH02246458A (en) * 1989-03-20 1990-10-02 Nippon Telegr & Teleph Corp <Ntt> Matrix board
JPH036478U (en) * 1989-06-06 1991-01-22
JPH07243149A (en) * 1994-03-07 1995-09-19 Toray Ind Inc Woven fabric for one direction reinforcement
JPH08296148A (en) * 1995-04-26 1996-11-12 Toray Ind Inc Carbon fiber sheet-like material
JP2002540306A (en) * 1999-03-22 2002-11-26 エクセル・ファブリーク Bias fabric, manufacturing method and loom for continuously manufacturing such fabric

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4830871U (en) * 1971-08-19 1973-04-14
JPS5035157A (en) * 1973-04-26 1975-04-03
JPS5530974A (en) * 1978-08-29 1980-03-05 Toray Industries Fabric construction for composite material

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4830871U (en) * 1971-08-19 1973-04-14
JPS5035157A (en) * 1973-04-26 1975-04-03
JPS5530974A (en) * 1978-08-29 1980-03-05 Toray Industries Fabric construction for composite material

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0297149U (en) * 1989-01-18 1990-08-02
JPH02194062A (en) * 1989-01-20 1990-07-31 Konica Corp Method for preventing light discoloration of organic coloring material
JPH02106477U (en) * 1989-02-06 1990-08-23
JPH02246458A (en) * 1989-03-20 1990-10-02 Nippon Telegr & Teleph Corp <Ntt> Matrix board
JPH036478U (en) * 1989-06-06 1991-01-22
JPH07243149A (en) * 1994-03-07 1995-09-19 Toray Ind Inc Woven fabric for one direction reinforcement
JPH08296148A (en) * 1995-04-26 1996-11-12 Toray Ind Inc Carbon fiber sheet-like material
JP2002540306A (en) * 1999-03-22 2002-11-26 エクセル・ファブリーク Bias fabric, manufacturing method and loom for continuously manufacturing such fabric

Similar Documents

Publication Publication Date Title
US4410577A (en) Woven layered cloth reinforcement for structural components
US4055697A (en) Woven material with filling threads at angles other than right angles
US4679519A (en) Laminated cloth construction
US4379798A (en) Integral woven reinforcement for structural components
EP0865525B1 (en) Improved warp/knit reinforced structural fabric
RU2503757C2 (en) Hybrid three-dimensional fabric/layered spacers for use with composite constructions
JPS5841950A (en) Reinforcing base material for fiber reinforced resin
US4567738A (en) Structural fabric and method for making same
JPS61138743A (en) Reinforcing material for fiber reinforced resin and its production
US20070117486A1 (en) Fibreglass yarn-based woven cloth for reinforcing moulded parts
JPS61194246A (en) Reinforced fabric used in production of laminated composite and production of said composite
JPH0125699B2 (en)
WO2021014851A1 (en) Fiber structure and fiber-reinforced composite
CN113547800B (en) Carbon fiber-reinforced plastic sheet, processed product, and method for producing carbon fiber-reinforced plastic sheet
JP2553612Y2 (en) Golf club shaft
JP6210097B2 (en) Fabric laminate, fabric laminate production method, and fabric laminate production apparatus
JPH0647022Y2 (en) Triaxial reinforced fabric
JP2932321B2 (en) Triaxial fabric
WO2013035518A1 (en) Woven fabric base material and fiber-reinforced composite material
JP2006022471A (en) Fiber-reinforced sheet
JPH04120769U (en) golf club shaft
JP2553611Y2 (en) Golf club shaft
JPH0138904B2 (en)
JPS6127498B2 (en)
JP2640924B2 (en) Plate-like fiber-reinforced composite material using reinforced fabric composed of high-strength, high-modulus fibers