JPH02293434A - Tri-axial fabric and production thereof - Google Patents

Tri-axial fabric and production thereof

Info

Publication number
JPH02293434A
JPH02293434A JP1115678A JP11567889A JPH02293434A JP H02293434 A JPH02293434 A JP H02293434A JP 1115678 A JP1115678 A JP 1115678A JP 11567889 A JP11567889 A JP 11567889A JP H02293434 A JPH02293434 A JP H02293434A
Authority
JP
Japan
Prior art keywords
weaving
yarn
core
group
yarns
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1115678A
Other languages
Japanese (ja)
Other versions
JPH0359177B2 (en
Inventor
Takahisa Ueda
隆久 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Pillar Packing Co Ltd
Original Assignee
Nippon Pillar Packing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Pillar Packing Co Ltd filed Critical Nippon Pillar Packing Co Ltd
Priority to JP1115678A priority Critical patent/JPH02293434A/en
Publication of JPH02293434A publication Critical patent/JPH02293434A/en
Publication of JPH0359177B2 publication Critical patent/JPH0359177B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Braiding, Manufacturing Of Bobbin-Net Or Lace, And Manufacturing Of Nets By Knotting (AREA)
  • Woven Fabrics (AREA)
  • Looms (AREA)

Abstract

PURPOSE:To obtain the subject tri-axial fabric for a membrane-structured architecture, etc., having a high weaving density and an excellent reinforcing effect by intersecting a group of core yarns from parallel fixed core yarn-supplying units with a group of weaving yarns from oppositely arranged weaving yarn-supplying units alternately situated between the above mentioned core yarn-supplying units in a form of plain weave at the point of action. CONSTITUTION:While a group of core yarns 2 supplied from a group of parallel fixed core yarn-supplying units 7, a group of the first weaving yarns 3a and a group of the second weaving yarns 3b respectively supplied from oppositely arranged plural pairs of the first weaving yarn-supplying unit 11a and the second weaving yarn-supplying unit 11b alternately situated between the above mentioned core yarn-supplying units 7 are made to advance to the point 9 of weaving action, the respective first and second weaving yarn-supplying units 11a and 11b are made to pass through between the respective adjacent core yarn-supplying units 7 in the mutually opposite directions at the point of weaving action in order to mutually intersecting the group of the first weaving yarns 3a, the group of the second weaving yarns 3b and the core yarns 2 in such a plain weave form that the respective core yarns 2 are situated between the group of the first weaving yarns 3a and the group of the second weaving yarns 3b in the weaving direction. Thereby the objective tri-axial fabric 1 composed of the groups of the first and second weaving yarns 3a and 3b passing through between the group of the core yarns 2 spreading in the weaving direction and the respective adjacent core yarns 2 in an aligned state in order and mutually intersecting in a form of plain weave is obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、膜構造建築物,ボート等に使用するコーティ
ング基布やダイヤフラム等に使用するモールディング加
工用基布等として好適に使用される三軸織物及びこれを
製造するための製造方法に関するものである. 〔従来の技術〕 従来の三輪織物としては,第13図及び第14図に示す
如く、所定角度θ(約60度)をもって重合させた縦糸
3’a・・・,3′b・・・を交互に拡開させ、その拡
関部にレピアを使用して横糸2′・・・を挿入させたも
の(以下「従来織物」という)が知られている. このような王軸織物は,糸が三方向に延びているため、
あらゆる方向の引張強度が略等しく、引裂強度,剪断強
度等に優れたものである。
Detailed Description of the Invention [Industrial Field of Application] The present invention is a three-layer fabric that is suitably used as a coating base fabric used in membrane structure buildings, boats, etc., and as a base fabric for molding processing used in diaphragms, etc. This article relates to shaft fabrics and manufacturing methods for manufacturing them. [Prior art] As shown in FIGS. 13 and 14, conventional three-wheeled fabrics include warp yarns 3'a..., 3'b... that are polymerized at a predetermined angle θ (approximately 60 degrees). There is a known fabric in which the fabric is expanded alternately and the weft threads 2' are inserted into the expanded area using a rapier (hereinafter referred to as ``conventional fabric''). This kind of royal textile has threads extending in three directions, so
It has approximately the same tensile strength in all directions and is excellent in tear strength, shear strength, etc.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、従来織物にあっては、横糸2′・・・が織り方
向(A方向)に直交する方向に平行して配置されている
ため、筒形状のものを得ることができず、フラット形状
のものしか得ることができない.しかも、織物の長手方
向つまり織り方向における補強効果が乏しい. また,第13図及び第14図に示す如く、両縦糸3’a
・・・,3′b・・・が互いに交終しておらず,各横糸
2′が、これに直交する方向において隣接する縦糸交差
部P′よ・・・,P′2・・・の何れにも交絡するため
、つまり各横糸2′の両側に縦糸3’a・・・,3′b
・・・による移動規制点pよ・・・T Psa・・・が
形成されるため、横糸間隔ないし各縦糸間隔は糸の太さ
によって必然的に決定されることになる.すなわち、横
糸間隔は、縦糸の交差部分が占める領域(第13図にお
いて右下がり斜線を施した領域)以下に小さくすること
ができず.縦糸間隔は、横糸と他方の縦糸との交差部分
が占める領域(例えば,同図において左下がり斜線を施
した領域)以下に小さくすることができない.したがっ
て5糸径,糸数等を如何に変更したとしても織り密度を
一定以上に大きくすることができない. 本発明は、かかる点に鑑み.フラット形状のみならず筒
形状にも製作でき、しかも織り方向たる長手方向におけ
る補強効果に優れ、織り密度を大きくすることのできる
三軸織物を提供すると共に、これを容易に製造しうる方
法を提供することを目的とするものである。
However, in conventional textiles, the weft threads 2'... are arranged parallel to the direction perpendicular to the weaving direction (direction A), so it is not possible to obtain a cylindrical shape, and a flat shape cannot be obtained. You can only get things. Moreover, the reinforcing effect in the longitudinal direction of the fabric, that is, in the weaving direction, is poor. Also, as shown in Figures 13 and 14, both warp threads 3'a
. . , 3'b . In order to intertwine both warp threads 3'a..., 3'b on both sides of each weft thread 2',
Since the movement control point p...TPsa... is formed by..., the weft spacing or each warp spacing is inevitably determined by the thickness of the yarn. That is, the weft pitch cannot be made smaller than the area occupied by the intersection of the warp yarns (the area shaded downward to the right in FIG. 13). The warp spacing cannot be made smaller than the area occupied by the intersection of the weft and the other warp (for example, the area shaded downward to the left in the same figure). Therefore, no matter how you change the thread diameter, number of threads, etc., it is not possible to increase the weaving density beyond a certain level. The present invention has been made in view of this point. Provided is a triaxial fabric that can be manufactured not only in a flat shape but also in a cylindrical shape, has an excellent reinforcing effect in the longitudinal direction, which is the weaving direction, and can increase the weaving density, and also provides a method for easily manufacturing the same. The purpose is to

〔課題を解決するための手段〕[Means to solve the problem]

この課題を解決した本発明の三軸織物は、織り方向に延
びる芯糸群と、各隣接芯糸間を斜交状に順次通過し、互
いに平織形態をなして交絡する第1及び第2織糸群と,
からなるものである.また、この織物を製造するための
本発明の方法は、並列固定された芯糸繰出部群から繰出
された芯糸群と一つおきの芯糸繰出部を挟んで対向配置
された複数組の第1及び第2織糸繰出部から繰出された
第1及び第2織糸群とを織成作用点へと進行させながら
、各第1及び第2織糸繰出部を,各隣接芯糸繰出部間を
互いに逆方向に順次通過させることによって,織成作用
点において、第1織糸群と第2織糸群とが各芯糸を織物
厚み方向に挟んだ平織形態をなして互いに交絡せしめら
れるようにしたものである. 一般に,筒形状の織物を製造する場合には、芯糸繰出部
を環状に並設して、各2N(Nは任意の自然数》個の第
1及び第2織糸繰出部が、4N個の芯糸繰出部間を通る
環状の蛇行経路を回行するようにしておくことが好まし
い.また、フラット形状の織物を製造する場合には、芯
糸繰出部をC字状又は直線状に並設して、各2N個の第
1及び第2織糸繰出部が4N−1個の芯糸繰出部間を通
るC字状又は直線状の蛇行経路を往復移動するようにし
ておくことが好ましい. 〔作用〕 織り形態上,芯糸及び各織糸は従来織物における横糸2
′及び各縦糸3’a,3’bに夫々対応するものである
が、芯糸は織り方向に延びるものであるから、芯糸群を
環状に並列配置しておくことによって、筒形状の三軸織
物となすことができる.また.m物の長手方向(筒形状
のものでは軸線方向)における補強効果は、該方向に延
びる芯糸の存在により大幅に向上することになる。
The triaxial fabric of the present invention that solves this problem has a group of core yarns extending in the weaving direction, and first and second groups of yarns that sequentially pass between adjacent core yarns in an oblique manner and intertwine with each other in a plain weave pattern. and,
It consists of In addition, the method of the present invention for producing this woven fabric includes a group of core threads let out from a group of core thread let-out parts fixed in parallel, and a plurality of sets of core yarns disposed opposite to each other with every other core thread let-out part interposed therebetween. While advancing the first and second yarn groups let out from the first and second weaving yarn letting-out portions to the weaving application point, the first and second weaving yarn letting-out portions are moved between the adjacent core yarn letting-out portions. By sequentially passing the fibers in opposite directions to each other, the first yarn group and the second yarn group are intertwined with each other in a plain weave configuration in which each core yarn is sandwiched in the fabric thickness direction at the weaving point. It is something. Generally, when manufacturing a cylindrical woven fabric, the core yarn feeding sections are arranged in a circular manner, so that each of the 2N (N is any natural number) first and second yarn feeding sections is replaced by the 4N core thread feeding sections. It is preferable that the core yarn is arranged in a circular meandering path passing between the core thread delivery parts.In addition, when manufacturing a flat-shaped woven fabric, the core thread delivery parts may be arranged in a C-shape or in a straight line. It is preferable that each of the 2N first and second weaving thread delivery parts reciprocate along a C-shaped or linear meandering path passing between 4N-1 core thread delivery parts. [Function] Due to the weaving form, the core thread and each weaving thread are similar to the weft thread 2 in conventional textiles.
' and corresponding to each warp thread 3'a, 3'b, respectively, but since the core threads extend in the weaving direction, by arranging the core threads in parallel in an annular shape, a cylindrical triaxial It can be made into textiles. Also. The reinforcing effect in the longitudinal direction of the m-piece (in the axial direction in the case of a cylindrical piece) is greatly improved by the presence of the core yarn extending in this direction.

さらに,第1織糸と第2織糸とは平織形態をなして互い
に交絡されているから、芯糸を各織糸と交絡させる必要
がなく、各芯糸は第1織糸と第1織糸との間に挿通され
ているに過ぎない.したがって,芯糸に直交する方向に
おいては、各芯糸の移動が隣接する織糸交絡部の一方に
よってのみ規制されるに過ぎず,各芯糸を織糸交絡部を
通過させることにより、芯糸間隔ないし各織糸間隔を大
幅に小さくすることができる. 〔実施例〕 以下、本発明の構成を第1図〜第8図に示す実施例に基
づいて具体的に説明する. この実施例の三軸織物1は、第1図及び第2図に示す如
く、軸線方向つまり織り方向(八方向)に延びる4N(
この実施例ではN=4)本の芯糸2・・・と適宜の角度
θ(この実施例では約60度)で斜交する各2N本の第
1及び第2織糸3a・・・3b・・・とにより,外径1
0nnの円筒形状に織成されたものである。各芯糸2及
び織糸3a,3bとしては.1500デニールのパラ系
アラミド・マルチフィラメント糸等が使用されている。
Furthermore, since the first weaving yarn and the second weaving yarn are intertwined with each other in a plain weave form, there is no need to intertwine the core yarn with each weaving yarn, and each core yarn is intertwined with the first weaving yarn and the first weaving yarn. It is simply inserted between the thread and the thread. Therefore, in the direction perpendicular to the core threads, the movement of each core thread is only regulated by one of the adjacent weaving thread entanglement parts, and by passing each core thread through the weaving thread entanglement part, the core thread The spacing or the spacing between each yarn can be significantly reduced. [Example] Hereinafter, the structure of the present invention will be specifically explained based on the example shown in FIGS. 1 to 8. As shown in FIGS. 1 and 2, the triaxial fabric 1 of this example has 4N (
In this embodiment, N=4) core threads 2... and 2N first and second weaving threads 3a...3b diagonally intersecting each other at an appropriate angle θ (approximately 60 degrees in this embodiment) ..., outer diameter 1
It is woven into a cylindrical shape of 0 nn. Each core thread 2 and weaving threads 3a, 3b are as follows. 1500 denier para-aramid multifilament yarn is used.

第1織糸3a・・・と第2織糸3b・・・とは,第2図
及び第3図に示す如く、各隣接芯糸2,2間を順次螺旋
状に通過すると共に,平織形態をなして互いに交絡され
ている。一方、各芯糸2は,軸線方向に並列する各織糸
交絡部群P・・・を通過しており、芯糸間隔及び各織糸
間隔は極めて小さくなっている. 次に、かかる三輪織物1の製造方法について説明する. この方法を実施するための織機としては、例えば所jl
32打丸編機に類似する構造をなすものが用いられる. すなわち,第5図〜第8図に示す如く、固定基盤4には
,4N個の羽車5・・・が環状に近接配置されると共に
、各羽車5の周縁に沿って内側案内溝6a・・・及び外
側案内溝6b・・・が形成されている.各隣接羽車5,
5は,図示しない駆動機構により,互いに逆方向に回転
駆動されるようになっている. 各羽車5の中心部には,筒状の芯糸繰出部7が相対回転
自在に固定保持されている.基盤4下には,各芯糸繰出
部7に対応して4N個の芯糸ボビン8・・・が配置され
ている.各芯糸ボビン8には芯糸2が巻装されており,
各ボビン8から繰出された芯糸2は芯糸繰出部7から基
盤4上の織成作用点9に導かれている. 各羽車5の周縁部分には、180度をなして直対向する
一対のキャリア保持溝5a,5aが形成されている.一
つおきの羽車5・・・の保持溝5a・・・には、第7図
に示す如く、各2N個の第1及び第2キャリア10a・
・・ ゛10b・・・が係合保持されている.各第1キ
ャリア10a・・・には第1織糸3aを巻装したボビン
である第1織糸繰出部11aが支持されており、各第2
キャリア10bには第2織糸3bを巻装したボビンであ
る第2織糸繰出部1lbが支持されている.各織糸3a
,3bは各織糸繰出部11a,llbから前記織成作用
点9に導かれている. 各キャリア10a,10bは、羽車5の回転に伴って移
動されて、隣接する羽車5との近接点に至った時点で隣
接羽車5の保持溝5aに受け渡されるようになっている
(第6図参照).シたがって,各キャリア10a,10
bは各案内溝6a,6bを交互に通過するように移動さ
れ、これに伴って、織糸繰出部11a,llbが各隣接
芯糸繰出部7,7間を順次通過する環状の蛇行経路12
a,12bに沿って等速移動せしめられる.すなわち、
第1織糸繰出部11a・・・は、第8図に実線で示す第
1蛇行経路12a上を時計回り方向に同行せしめられ,
第2織糸繰出部1lb・・・は,同図に破線で示す第2
蛇行経路12b上を反時計回り方向に同行せしめられる
.なお,織成作用点9上には、織物1を巻取るための巻
取機構13が設けられている. したがって,巻取機構13により各芯糸2及び織糸3a
,3bを織り方向Aに進行させながら、羽車5・・・を
駆動させて、第1織糸繰出部11a・・・と第2織糸繰
出部1lb・・・とを蛇行経路12a,12bに沿って
逆方向に移動させつつ、各隣接芯糸繰出部7,7間を順
次通過させると、織成作用点9においては,第1織糸3
a・・・と第2織糸3b・・・とが各隣接芯糸2,2間
を順次通過しつつ互いに交絡せしめられていく.その結
果、織成作用点9においては,第1図及び第2図に示す
如き円筒状の三軸織物1が織成せしめられる.そして,
この三軸織物1を前記巻取機構13により順次巻取って
いく.この巻取速度は各糸2,3a,3bの織り方向A
への進行速度であり、これと織糸繰出部11a,llb
の同行速度との関係から織糸3a.3bの交差角度が決
定される. また,本発明に係る三軸織物1は、第2図に示す織り組
織をなすフラット形状のものとすることもできる. かかるフラット形状の三軸織物は、例えば第9図又は第
11図に示す如き織機を用いて、前記実施例と同様の手
法により織成することができる.何れの織機も原理的に
は前記実施例のものと同様構造のものであるが、第9図
に示す織機では、基盤4に4N−3(この実施例ではN
=4)個の前記羽車同様の小径羽車5・・・と2個の大
径羽車5′,5′とをC字状に近接配置し、各羽車5,
5′の中心部位に芯糸繰出部7を配置してある.各大径
羽車5′の周縁部分には、小径羽車5における保持溝5
a,5a間閘と同一の間閑をもって3個の保持溝5’a
・・・が形成されている.羽車5・・・,5′・・・の
保持溝5a・・・,5′a・・・には、各2N個の第1
及び第2キャリア10a・・・,10b・・・が保持さ
れている。
As shown in FIGS. 2 and 3, the first weaving yarns 3a... and the second weaving yarns 3b... are intertwined with each other. On the other hand, each of the core yarns 2 passes through each of the weaving yarn intertwining portion groups P parallel to each other in the axial direction, and the intervals between the core yarns and the intervals between each of the weaving yarns are extremely small. Next, a method for manufacturing the tricycle fabric 1 will be explained. As a loom for carrying out this method, for example,
A machine with a structure similar to a 32-stroke circular knitting machine is used. That is, as shown in FIGS. 5 to 8, 4N impellers 5 are arranged close to each other in an annular manner on the fixed base 4, and an inner guide groove 6a is formed along the periphery of each impeller 5. ... and an outer guide groove 6b... are formed. Each adjacent impeller 5,
5 are rotated in opposite directions by a drive mechanism (not shown). At the center of each impeller 5, a cylindrical core yarn delivery section 7 is fixedly held so as to be relatively rotatable. Under the base 4, 4N core thread bobbins 8 are arranged corresponding to each core thread payout section 7. A core thread 2 is wound around each core thread bobbin 8.
The core yarn 2 unwound from each bobbin 8 is guided from the core yarn unwinding section 7 to a weaving application point 9 on the base 4. A pair of carrier holding grooves 5a, 5a are formed in the peripheral portion of each impeller 5, and are directly opposed to each other at 180 degrees. As shown in FIG. 7, each of the holding grooves 5a of every other impeller 5 has 2N first and second carriers 10a.
... 10b... is engaged and held. Each of the first carriers 10a... supports a first weaving thread delivery section 11a, which is a bobbin wound with a first weaving thread 3a, and each of the second
The carrier 10b supports a second weaving thread delivery portion 1lb, which is a bobbin around which the second weaving thread 3b is wound. Each thread 3a
, 3b are led to the weaving application point 9 from the respective weaving yarn delivery portions 11a, llb. Each carrier 10a, 10b is moved as the impeller 5 rotates, and when it reaches a point of proximity to the adjacent impeller 5, it is transferred to the holding groove 5a of the adjacent impeller 5. (See Figure 6). Therefore, each carrier 10a, 10
b is moved so as to alternately pass through each of the guide grooves 6a and 6b, and along with this, an annular meandering path 12 in which the yarn feeding sections 11a and llb sequentially pass between the adjacent core yarn feeding sections 7 and 7.
It is made to move at a constant speed along a and 12b. That is,
The first weaving yarn delivery section 11a... is made to follow a first meandering path 12a shown in a solid line in FIG. 8 in a clockwise direction,
The second weaving yarn feeding section 1lb...
It is made to follow the meandering route 12b in a counterclockwise direction. Note that a winding mechanism 13 for winding up the fabric 1 is provided on the weaving application point 9. Therefore, each core thread 2 and weaving thread 3a are wound by the winding mechanism 13.
, 3b in the weaving direction A, the impellers 5... are driven to move the first yarn feeding section 11a... and the second yarn feeding section 1lb... to the meandering paths 12a, 12b. When the core thread is moved in the opposite direction along
a... and the second weaving yarns 3b... are intertwined with each other while successively passing between the adjacent core yarns 2, 2. As a result, at the weaving point 9, a cylindrical triaxial fabric 1 as shown in FIGS. 1 and 2 is woven. and,
This triaxial fabric 1 is sequentially wound up by the winding mechanism 13. This winding speed is the weaving direction A of each yarn 2, 3a, 3b.
This is the advancing speed of the weaving yarn feeding section 11a, llb.
From the relationship with the accompanying speed of weaving yarn 3a. The intersection angle of 3b is determined. Further, the triaxial fabric 1 according to the present invention can also be made into a flat-shaped fabric having the weaving structure shown in FIG. Such a flat triaxial fabric can be woven using a loom such as that shown in FIG. 9 or FIG. 11 in the same manner as in the above embodiment. Both looms have the same structure as that of the previous embodiment in principle, but in the loom shown in FIG.
=4) small-diameter impellers 5 similar to the above impellers and two large-diameter impellers 5', 5' are arranged close to each other in a C-shape, and each impeller 5,
A core yarn feeding section 7 is arranged at the center of the 5'. A retaining groove 5 in the small diameter impeller 5 is provided at the peripheral edge of each large diameter impeller 5'.
Three retaining grooves 5'a with the same spacing as the gaps a and 5a.
... is formed. The holding grooves 5a..., 5'a... of the impellers 5..., 5'... each have 2N first grooves.
and second carriers 10a..., 10b... are held.

而して、各キャリアloa,10bに支持された各第1
及び第2織糸繰出部11a,llbは、第10図に示す
如く、各隣接芯糸繰出部7,7間で交差するC字状の蛇
行経路12a,12b上を各大径羽車5′で反転して矢
印方向に往復移動せしめられるようになっている. また,第11図に織機では、長尺矩形状の基盤4に4N
−3(この実施例ではN=3)個の小径羽車5・・・と
2個の大径羽車5’,5’とを直線状に近接配置してあ
る.而して,各2N個の第1及び第2織糸繰出部11a
・・・,1lb・・・は、第12図に示す如く、直線状
の蛇行経路12a,12b上を各大径羽車5′で反転し
て矢印方向に往復移動せしめられるようになっている。
Thus, each first carrier supported by each carrier loa, 10b
As shown in FIG. 10, the second weaving thread delivery parts 11a and llb pass each large-diameter impeller 5' on C-shaped meandering paths 12a and 12b that intersect between the adjacent core thread delivery parts 7 and 7. It can be reversed and moved back and forth in the direction of the arrow. In addition, in the loom shown in Fig. 11, 4N is applied to the long rectangular base 4.
-3 (N=3 in this embodiment) small diameter impellers 5... and two large diameter impellers 5', 5' are arranged close to each other in a straight line. Thus, each of 2N first and second yarn feeding sections 11a
. . , 1lb, . . . are configured to be reciprocated in the direction of the arrow by being reversed by each large-diameter impeller 5' on linear meandering paths 12a and 12b, as shown in FIG. .

かかる各織機によれば,4N−1本の芯糸2・・・と各
2N本の織糸3a・・・,3b・・・とにより,第3図
に示す織り組織をなすフラット形状の三軸織物を織成す
ることかできる。なお、何れの場合においても、各織糸
繰出部11a,Llbの大径羽車5′による反転作用に
よって織物の耳部が形成される.ところで、1 5 0
 0デニールのパラ系アラミド・マルチフィラメント糸
を使用して得られた、第2図に示す織り組織をなす本発
明に係るフラット状織物と第13図に示す織り#1mを
なす従来織物とについて厚み(.a),目付( g /
 rd ) ,開口率(%)を測定したところ,次のよ
うに顕著な差が認められた. このような円筒形状又はフラット形状の三軸織物1にあ
っては,第3図に示す如く、織糸3a・・・3b・・・
が平織形態で交絡しているため,芯糸に直交する方向に
おいては、芯糸2の移動が隣接する3列の織糸交終部の
うち第1列のものPよ・・・と第3列のものP3・・・
によって規制されるが、第2列のものP2・・・によっ
ては規制されない.したがって,各芯糸2が第1列及び
第3列の織糸交絡部P・・・ p3・・・によって規制
される範囲内において、芯糸2,2間隔及び織糸3a,
3a又3b,3b間隔を自由に設定できる.その結果、
芯糸2に対応する各横糸2′(芯糸2に対応する)の移
動が隣接する縦糸交差部pl、・・・,P′2・・・(
第1及び第2列の織糸交差部Pエ・・・pPQ・・・に
対応する)によって規制される従来織物に比して、第2
図に示す如く糸間隔を極めて小さくし得て、織り密度を
大幅に大きくすることができる.逆に、糸の使用本数等
はそのままでも、織り方向に直交する織り幅(円筒状織
物の場合には、その径)を大きくすれば,例えば第4図
に示す如く、織り密度を小さくできる. 〔発明の効果〕 以上の説明から容易に理解されるように、本発明の三軸
織物は、従来織物における横糸に相当する芯糸を織り方
向に平行としたものであるから,フラット形状のみなら
ず筒形状の何れにも製作でき、しかも織り方向たる長手
方向における補強効果に優れるものである. さらに、従来織物における縦糸に相当する第1及び第2
織糸が、平織形態をなして互いに交絡されているから、
従来織物に比して織り密度を大幅に大きくすることがで
きる. また、本発明の方法によれば、かがる三一織物を容易に
製造することができる。
According to each of these looms, 4N-1 core yarn 2... and 2N weaving yarns 3a..., 3b... each form a flat three-dimensional weaving structure as shown in FIG. It is possible to weave shaft fabrics. In either case, the selvage of the fabric is formed by the reversing action of the large-diameter impellers 5' of the yarn feeding sections 11a and Llb. By the way, 1 5 0
Thickness of the flat fabric according to the present invention obtained using 0 denier para-aramid multifilament yarn and having the weave structure shown in FIG. 2 and the conventional fabric having the weave #1m shown in FIG. (.a), basis weight (g/
When we measured the aperture ratio (%), we found significant differences as shown below. In such a cylindrical or flat triaxial fabric 1, as shown in FIG. 3, weaving threads 3a...3b...
are intertwined in a plain weave form, so that in the direction perpendicular to the core threads, the movement of the core threads 2 moves from P of the first row to the third row of the intersecting ends of the weaving threads of three adjacent rows. Row thing P3...
However, it is not restricted by the second column P2... Therefore, within the range in which each core yarn 2 is regulated by the yarn interlacing portions P...
3a or 3b, 3b spacing can be set freely. the result,
Movement of each weft yarn 2' (corresponding to core yarn 2) corresponding to core yarn 2 occurs at adjacent warp yarn intersections pl,...,P'2...(
Compared to conventional fabrics, which are regulated by the weaving thread intersections PE...pPQ...) in the first and second rows, the second
As shown in the figure, the thread spacing can be made extremely small, and the weaving density can be greatly increased. Conversely, even if the number of threads used remains the same, the weaving density can be reduced by increasing the weaving width (or its diameter in the case of cylindrical fabric) perpendicular to the weaving direction, as shown in FIG. 4, for example. [Effects of the Invention] As can be easily understood from the above explanation, the triaxial fabric of the present invention has core threads parallel to the weaving direction, which correspond to the weft threads in conventional fabrics, so it can be used only in a flat shape. It can be manufactured in any cylindrical shape and has an excellent reinforcing effect in the longitudinal direction, which is the weaving direction. Furthermore, the first and second yarns, which correspond to the warp yarns in conventional textiles, are
Because the weaving threads are intertwined with each other in a plain weave form,
The weaving density can be significantly increased compared to conventional woven fabrics. Moreover, according to the method of the present invention, it is possible to easily produce a darning Sanichi fabric.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第3図は本発明に係る三軸織物の一実施例を示
したもので、第1図は斜視図、第2図は要部の織り組織
図、第3図は芯糸を除いて示す第2図に対応する部分の
織り組織図であり、第4図はその変形例を示す第2図相
当の織り組織図であり、第5図〜第8図は本発明に係る
方法を実施するだめの織機の一例を示したもので、第5
図は側面図,第6図は第5図のvt−vt線に沿う横断
平面図、第7図は羽車を第6図の状態から約45度回転
させたときの状態を示す横断平面図、第8図は織糸繰出
部の移動経路図であり,第9図は織機の変形例を示す第
5図相当の横断平面図,第10図はその織糸繰出部の移
動経路図であり、第11図は織機の他の変形例を示す第
5図相iの横断平面図、第12図はその織糸繰出部の移
動経路図であり,第13図は従来の三軸織物を示す要部
の織り組織図、第14図は横糸を除いて示す第13図に
対応する部分の織り組織図である. 1・・・三軸織物、2・・・芯糸、3a・・・第1jl
l糸、3b・・・第2織糸、7・・・芯糸繰出部、9・
・・織成作用点,11a・・・第1織糸繰出部、llb
・・・第2織糸繰出部。 第8図 第10図 第7図 第9図
Figures 1 to 3 show an embodiment of the triaxial fabric according to the present invention, where Figure 1 is a perspective view, Figure 2 is a weaving structure diagram of the main part, and Figure 3 is a diagram of the core yarn. FIG. 4 is a weaving structure chart corresponding to FIG. 2 showing a modified example thereof, and FIGS. 5 to 8 are weaving structure charts corresponding to FIG. This is an example of a loom that implements the 5th loom.
The figure is a side view, FIG. 6 is a cross-sectional plan view taken along the vt-vt line in FIG. 5, and FIG. 7 is a cross-sectional plan view showing the state when the impeller is rotated approximately 45 degrees from the state shown in FIG. , FIG. 8 is a diagram of the movement path of the weaving yarn unwinding section, FIG. 9 is a cross-sectional plan view corresponding to FIG. 5 showing a modification of the loom, and FIG. 10 is a movement path diagram of the weaving yarn unwinding section. , Fig. 11 is a cross-sectional plan view of Fig. 5 phase i showing another modification of the loom, Fig. 12 is a movement path diagram of the weaving yarn delivery section, and Fig. 13 shows a conventional triaxial woven fabric. Fig. 14 is a weaving structure diagram of the main part, which corresponds to Fig. 13, excluding the weft threads. 1... Triaxial fabric, 2... Core yarn, 3a... 1st jl
l yarn, 3b...second weaving yarn, 7...core yarn feeding section, 9.
・・Weaving application point, 11a ・・1st yarn feeding part, llb
...Second yarn feeding section. Figure 8 Figure 10 Figure 7 Figure 9

Claims (2)

【特許請求の範囲】[Claims] (1)織り方向に延びる芯糸群と、各隣接芯糸間を斜交
状に順次通過し、互いに平織形態をなして交絡する第1
及び第2織糸群と、からなることを特徴とする三軸織物
(1) A group of core yarns extending in the weaving direction and a first core yarn that passes sequentially in an oblique manner between adjacent core yarns and intertwines with each other in a plain weave form.
and a second yarn group.
(2)並列固定された芯糸繰出部群から繰出された芯糸
群と一つおきの芯糸繰出部を挟んで対向配置された複数
組の第1及び第2織糸繰出部から繰出された第1及び第
2織糸群とを織成作用点へと進行させながら、各第1及
び第2織糸繰出部を、各隣接芯糸繰出部間を互いに逆方
向に順次通過させることによって、織成作用点において
、第1織糸群と第2織糸群とが各芯糸を織物厚み方向に
挟んだ平織形態をなして互いに交絡せしめられるように
したことを特徴とする三軸織物の製造方法。
(2) A group of core threads let out from a group of core thread let-out parts fixed in parallel and a group of threads let out from a plurality of sets of first and second yarn let-out parts arranged opposite to each other with every other core thread let-out part in between. While advancing the first and second weaving yarn groups to the weaving application point, the first and second weaving yarn feeding sections are sequentially passed between adjacent core yarn feeding sections in mutually opposite directions, thereby weaving. A method for producing a triaxial fabric, characterized in that the first yarn group and the second yarn group are intertwined with each other in a plain weave configuration in which core yarns are sandwiched in the thickness direction of the fabric at a production point.
JP1115678A 1989-05-08 1989-05-08 Tri-axial fabric and production thereof Granted JPH02293434A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1115678A JPH02293434A (en) 1989-05-08 1989-05-08 Tri-axial fabric and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1115678A JPH02293434A (en) 1989-05-08 1989-05-08 Tri-axial fabric and production thereof

Publications (2)

Publication Number Publication Date
JPH02293434A true JPH02293434A (en) 1990-12-04
JPH0359177B2 JPH0359177B2 (en) 1991-09-09

Family

ID=14668575

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1115678A Granted JPH02293434A (en) 1989-05-08 1989-05-08 Tri-axial fabric and production thereof

Country Status (1)

Country Link
JP (1) JPH02293434A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6148865A (en) * 1996-12-02 2000-11-21 A & P Technology, Inc. Braided sleeve, tubular article and method of manufacturing the tubular article
US6250193B1 (en) 1996-12-02 2001-06-26 A & P Technology, Inc. Braided structure with elastic bias strands
JP2009056024A (en) * 2007-08-30 2009-03-19 明 ▲吉▼田 Shaft
JP2010150722A (en) * 2008-12-26 2010-07-08 Gosen:Kk Protective sleeve for motor component and production method thereof
JP2015511668A (en) * 2012-03-29 2015-04-20 ガラン ロンゲラス, ホルディGALAN LLONGUERAS, Jordi Super lightweight plain woven fabric with two weft directions
CN110528168A (en) * 2019-09-26 2019-12-03 山东三同新材料股份有限公司 A kind of kernmantle and preparation method thereof and molding machine reducing wire rope core sliding

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6148865A (en) * 1996-12-02 2000-11-21 A & P Technology, Inc. Braided sleeve, tubular article and method of manufacturing the tubular article
US6250193B1 (en) 1996-12-02 2001-06-26 A & P Technology, Inc. Braided structure with elastic bias strands
JP2009056024A (en) * 2007-08-30 2009-03-19 明 ▲吉▼田 Shaft
JP2010150722A (en) * 2008-12-26 2010-07-08 Gosen:Kk Protective sleeve for motor component and production method thereof
JP2015511668A (en) * 2012-03-29 2015-04-20 ガラン ロンゲラス, ホルディGALAN LLONGUERAS, Jordi Super lightweight plain woven fabric with two weft directions
CN110528168A (en) * 2019-09-26 2019-12-03 山东三同新材料股份有限公司 A kind of kernmantle and preparation method thereof and molding machine reducing wire rope core sliding

Also Published As

Publication number Publication date
JPH0359177B2 (en) 1991-09-09

Similar Documents

Publication Publication Date Title
EP0538481B1 (en) Three-dimensional fabric for reinforcing irregularly functional composite material and method of manufacturing said fabric
EP0426878B1 (en) Three-dimensional textile and method of producing the same
JP3930913B2 (en) Network-like three-dimensional fabric
US6315007B1 (en) High speed three-dimensional weaving method and machine
US4922969A (en) Multi-layer woven fabric having varying material composition through its thickness
JPS6392751A (en) Quadruple fabric and loom
KR20190002679A (en) Method for making circular looms and hollow profile fabrics
CN105121719B (en) The press felt substrate fabric for reducing interference is presented
EP2759626A1 (en) Helical textile with uniform thickness
RU2474627C2 (en) Technological process of production of non-laddering knitted fabric
JPH02293434A (en) Tri-axial fabric and production thereof
US2006275A (en) Knitted yarn and fabric made therefrom
JP5210679B2 (en) Knitting method and apparatus for knitting
US8114506B2 (en) Helical textile with uniform thickness
JP2672832B2 (en) Four-axis loom
US8486517B2 (en) Helical textile with uniform thickness
Sugun et al. Orthogonal weaving
WO2023276311A1 (en) Industrial fabric
EP0845552A2 (en) Carrier tape and fabric for rapier loom
JP4388217B2 (en) Weaving method for four-axis multi-woven fabric
JPH03220343A (en) Tri-dimensional multiaxial woven fabric structure and loom for weaving the same
JPS6215366A (en) Method and apparatus for producing knitted fabric
KR101478340B1 (en) Multi layer textile and circular loom therefor
JPH0726389Y2 (en) Net sheet
JPH0364619B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees