JPH0247278B2 - - Google Patents

Info

Publication number
JPH0247278B2
JPH0247278B2 JP57076937A JP7693782A JPH0247278B2 JP H0247278 B2 JPH0247278 B2 JP H0247278B2 JP 57076937 A JP57076937 A JP 57076937A JP 7693782 A JP7693782 A JP 7693782A JP H0247278 B2 JPH0247278 B2 JP H0247278B2
Authority
JP
Japan
Prior art keywords
tank
denitrification
bod
sludge
denitrification tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57076937A
Other languages
Japanese (ja)
Other versions
JPS58193796A (en
Inventor
Kazuo Kimoto
Tomohiro Sato
Toshimitsu Fujimoto
Makoto Kaneda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP7693782A priority Critical patent/JPS58193796A/en
Publication of JPS58193796A publication Critical patent/JPS58193796A/en
Publication of JPH0247278B2 publication Critical patent/JPH0247278B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Description

【発明の詳細な説明】 本発明は、廃水の生物学的脱窒素法に関し、更
に詳しくは廃水中の有機態窒素及びアンモニア態
窒素の除去に特に顕著な効果を奏する生物学的脱
窒素法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a biological denitrification method for wastewater, and more particularly to a biological denitrification method that is particularly effective in removing organic nitrogen and ammonia nitrogen from wastewater. .

有機態窒素及びアンモニア態窒素(以下これ等
を窒素成分と総称する)の除去を目的として脱窒
槽、BOD酸化槽(或いは硝化槽)及び沈降槽を
使用する廃水の活性汚泥処理法は、公知である。
しかしながら、公知の方法においては、脱窒槽の
撹拌を機械的手段で行なう為動力費が高価とな
る、機械的撹拌では汚泥フロツクの微細化が十分
に行なわれない為処理効率が低い、従つて脱窒率
を十分に高める為には複数個の脱窒槽を使用する
必要がある等の種々の難点が存在する。
The activated sludge treatment method for wastewater that uses a denitrification tank, a BOD oxidation tank (or nitrification tank), and a settling tank for the purpose of removing organic nitrogen and ammonia nitrogen (hereinafter collectively referred to as nitrogen components) is a known method. be.
However, in known methods, the denitrification tank is agitated by mechanical means, resulting in high power costs, and mechanical agitation does not sufficiently refine the sludge flocs, resulting in low treatment efficiency. There are various disadvantages such as the need to use a plurality of denitrification tanks in order to sufficiently increase the nitrification rate.

本発明者は、脱窒槽、BOD酸化槽及び沈降槽
を使用する公知の廃水の生物学的脱窒素法の問題
点に留意しつつ研究を重ねた結果、脱窒槽内の諸
条件を特定範囲内に保持し且つ脱窒槽内の液撹拌
を空気吹込みにより行なう場合には、動力費が大
巾に節減され、汚泥フロツクの微細化により脱
窒、BOD酸化等の処理効率が大巾に向上し、
BOD酸化槽の小型化が可能となり、BOD酸化槽
への曝気用空気又は酸素吹込み量が減少する等の
顕著な効果が奏されることを見出した。
As a result of repeated research while paying attention to the problems of known biological denitrification methods for wastewater that use a denitrification tank, a BOD oxidation tank, and a settling tank, the inventor has determined that the various conditions inside the denitrification tank are within a specific range. If the liquid is kept at a constant temperature and the liquid in the denitrification tank is stirred by air blowing, the power cost will be greatly reduced, and the processing efficiency of denitrification, BOD oxidation, etc. will be greatly improved by making the sludge flocs finer. ,
It has been found that the BOD oxidation tank can be downsized and the amount of aeration air or oxygen blown into the BOD oxidation tank can be reduced, resulting in significant effects.

すなわち、本発明は、下記の方法を提供するも
のである: 脱窒槽、硝化槽及び沈降槽を順次使用する廃水
の生物学的脱窒素法において、 () 開放型の脱窒槽内の撹拌を空気吹き込みに
より行ない、 () 被処理廃水、密閉型の硝化槽からの循環液
及び沈降槽から返送汚泥により形成される脱窒
槽内汚泥濃度を2000〜8000mg/の範囲内に保
持し、 () 脱窒槽内のBOD濃度を25ppm以上とし、 () 脱窒槽内への空気吹込み量を空気量/脱窒
槽内液量=0.5〜10m3/m3・hrの範囲内に保持
する ことを特徴とする廃水の生物学的脱窒素法。
That is, the present invention provides the following method: In a biological denitrification method for wastewater that sequentially uses a denitrification tank, a nitrification tank, and a sedimentation tank, () agitation in an open denitrification tank is replaced with air; () The sludge concentration in the denitrification tank formed by the wastewater to be treated, the circulating liquid from the closed nitrification tank, and the sludge returned from the settling tank is maintained within the range of 2000 to 8000 mg/, () The denitrification tank () The amount of air blown into the denitrification tank is maintained within the range of air amount/liquid amount in the denitrification tank = 0.5 to 10 m 3 /m 3 hr. Biological denitrification of wastewater.

周知の如く、好気性条件下にある硝化槽中には
BOD酸化菌、亜硝酸菌及び硝化菌が生息してお
り、廃水中の窒素成分を順次NH+ 4、NO- 2及び
NO- 3に酸化して行く。そして、脱窒槽内に生息
する通性嫌気性菌即ち脱窒菌によりNO- 2及び
NO- 3が最終的にN2に還元され、大気中に放散さ
れる。一般に、脱窒槽においては、溶存酸素濃度
(DO)0.5ppm以下の嫌気性状態において脱窒菌
がNO- 2及びNO- 3を体内に取り入れ、これ等をN2
に転換させるものと考えられている。即ち、DO
が0.5ppmを上回る好気性状態においては、脱窒
菌は、BOD酸化菌としての代謝活動を行ない、
BODの酸化処理を行なうのである。従つて、脱
窒槽に空気を吹込んで汚泥の撹拌を行なうことは
DO濃度を増大させて脱窒菌としての活動を阻害
し、BOD酸化菌としての活動を活発化させる為、
従来常識からは到底考え難いところであつた。し
かるに、本発明者の研究によれば、脱窒槽内の
BOD濃度を25ppm以上とし、脱窒槽内のMLSS
を2000〜8000mg/に保持しつつ、特定条件下に
空気吹込みを行なう場合には、BOD酸化菌の酸
素消費速度によつて脱窒槽内のDOは0.5ppm以下
に維持され、脱窒菌が活発に代謝活動を行ない、
極めて良好な窒素除去効果が達成されるのであ
る。
As is well known, in a nitrification tank under aerobic conditions,
BOD oxidizing bacteria, nitrite bacteria, and nitrifying bacteria live there, and they sequentially convert nitrogen components in wastewater into NH + 4 , NO - 2 , and
It oxidizes to NO - 3 . Then, NO - 2 and
NO - 3 is eventually reduced to N2 and dissipated into the atmosphere. Generally, in a denitrification tank, denitrifying bacteria take NO - 2 and NO - 3 into the body under anaerobic conditions with a dissolved oxygen concentration (DO) of 0.5 ppm or less, and convert these into N 2
It is thought that it will convert to That is, D.O.
In aerobic conditions where BOD exceeds 0.5 ppm, denitrifying bacteria perform metabolic activities as BOD oxidizing bacteria.
This involves oxidizing BOD. Therefore, it is not possible to stir the sludge by blowing air into the denitrification tank.
In order to increase DO concentration, inhibit the activity of denitrifying bacteria, and activate the activity of BOD oxidizing bacteria,
This was completely inconceivable based on conventional wisdom. However, according to the research of the present inventor, the denitrification tank
MLSS in the denitrification tank with a BOD concentration of 25ppm or more
If air is blown under specific conditions while maintaining DO at 2000 to 8000mg/, the oxygen consumption rate of BOD oxidizing bacteria will keep DO in the denitrification tank below 0.5ppm, and denitrification bacteria will become active. carry out metabolic activities,
A very good nitrogen removal effect is achieved.

以下本発明の一実施態様を示すフローチヤート
を参照しつつ、本発明をより詳細に説明する。
The present invention will be described in more detail below with reference to a flowchart showing one embodiment of the present invention.

処理さるべき廃水は、ライン1を経て脱窒槽3
に供給される。脱窒槽3には、硝化槽即ちBOD
酸化槽)5からの循環液がライン7を経て、又沈
降槽9からの返送汚泥がライン11を経て、夫々
送給されており、そのBOD濃度は25ppm以上に
保持されている。リサイクル比即ち循環液流量+
返送汚泥流量/被処理水流量は、通常3〜15程度
である。脱窒槽3には、汚泥の撹拌を行なう為
に、ライン13、ブロワー15及びライン17を
通つて空気(以下単に気体という場合がある)が
吹き込まれる。気体吹込みは、スパージヤ、散気
管、エゼクター等により行なわれる。1時間当り
脱窒槽内液1m2当りの空気吹込み量は、0.5〜10
m2の範囲内とする。脱窒槽3内では、硝化槽5か
らの循環液に含まれているDO及び吹込み空気に
より部分的に好気状態となる。しかしながらこの
状態で沈降槽9からの返送汚泥(いわゆる飢餓性
汚泥)が25ppm以上の高いBOD濃度の脱窒槽3
内の液と接触すると、脱窒槽3内の細菌の一部が
BOD酸化菌として働き、DOを高速度で消費する
ので、結局、脱窒槽3内のDOな0.5ppm以下とな
り、嫌気状態に保持されることになる。脱窒槽3
内のBOD濃度が25ppm未満では、DOが十分に消
費されず、嫌気状態に保持し得ない。又、空気吹
込み量が、脱窒槽内液1m3及び1時間当り0.5m3
未満では、脱窒槽3の懸濁汚泥が浮遊せず、槽底
に蓄積するのに対し、10m3を上回る場合には、
DOが0.5ppmを上回り、いずれの場合にも窒素除
去率が低下する。
Wastewater to be treated passes through line 1 to denitrification tank 3.
is supplied to Denitrification tank 3 includes a nitrification tank, or BOD.
The circulating liquid from the oxidation tank 5 is sent through line 7, and the return sludge from the settling tank 9 is sent through line 11, and the BOD concentration thereof is maintained at 25 ppm or higher. Recycling ratio, i.e. circulating fluid flow rate +
The return sludge flow rate/to-be-treated water flow rate is usually about 3 to 15. Air (hereinafter simply referred to as gas) is blown into the denitrification tank 3 through a line 13, a blower 15, and a line 17 in order to stir the sludge. Gas blowing is performed using a spargeer, a diffuser pipe, an ejector, or the like. The amount of air blown per 1 m2 of liquid in the denitrification tank per hour is 0.5 to 10
Within the range of m2 . Inside the denitrification tank 3, the DO contained in the circulating fluid from the nitrification tank 5 and the blown air create a partially aerobic state. However, in this state, the return sludge (so-called starvation sludge) from the settling tank 9 has a high BOD concentration of 25 ppm or more in the denitrification tank 3.
When it comes into contact with the liquid in the tank, some of the bacteria in the denitrification tank 3
Since it acts as a BOD oxidizing bacterium and consumes DO at a high rate, the DO in the denitrification tank 3 ends up being less than 0.5 ppm and is kept in an anaerobic state. Denitrification tank 3
If the BOD concentration in the reactor is less than 25 ppm, DO will not be sufficiently consumed and cannot be maintained in an anaerobic state. In addition, the amount of air blown is 0.5 m 3 per 1 m 3 of the liquid in the denitrification tank and 0.5 m 3 per hour.
If it is less than 10m3, the suspended sludge in denitrification tank 3 will not float and will accumulate at the bottom of the tank, but if it is more than 10m3 ,
When DO exceeds 0.5 ppm, the nitrogen removal rate decreases in both cases.

脱窒槽3を出る液は、ライン18を経て硝化槽
5に送られる。硝化槽5内に於いては、ライン1
9から槽内上方空間に供給給される空気又は残素
富化空気、純酸素等の酸素含有気体が、ブロワー
21、ライン23及び散気管25を経て、液内に
吹込まれる。硝化槽5内のMLSSは2000〜8000
mg/の範囲内とし、BOD汚泥負荷は、0.1〜1
Kg・BOD/Kg−SS・dayとする。MLSSが2000
mg/未満の場合には、汚泥濃度が低い為、脱窒
及びBODの酸化分解が十分に行なわれ難いのに
対し、8000mg/を上回ると、汚泥濃度が高い
為、懸濁を均一に保持し得ず、槽底に汚泥の一部
が沈殿する傾向がある。又、DOは2ppm以上の
好気条件とし、通常2〜6ppm程度とすることが
好ましい。尚、ライン27からは排ガスが系外に
排出される。本発明方法に於ては、前述の如く、
撹拌気体として空気又は酸素含有気体を使用する
場合には脱窒槽3内ですでにBOD酸化が一部行
なわれているので、硝化槽5の容積を減少し得る
とともに、硝化槽5への酸素含有気体の吹込み量
を減少させることも出来る。
The liquid leaving the denitrification tank 3 is sent to the nitrification tank 5 via line 18. In the nitrification tank 5, line 1
Air, residue-enriched air, pure oxygen, or other oxygen-containing gas supplied from 9 to the upper space inside the tank is blown into the liquid through the blower 21, line 23, and diffuser pipe 25. MLSS in nitrification tank 5 is 2000 to 8000
mg/, and the BOD sludge load is 0.1 to 1.
Kg・BOD/Kg−SS・day. MLSS is 2000
If it is less than 8000mg/, the sludge concentration is low, making it difficult for denitrification and oxidative decomposition of BOD to occur sufficiently, whereas if it exceeds 8000mg/, the sludge concentration is high, making it difficult to maintain a uniform suspension. There is a tendency for some of the sludge to settle at the bottom of the tank. Further, the DO is preferably set to aerobic conditions of 2 ppm or more, and usually about 2 to 6 ppm. Note that exhaust gas is discharged from the line 27 to the outside of the system. In the method of the present invention, as mentioned above,
When air or an oxygen-containing gas is used as the stirring gas, since some BOD oxidation has already taken place in the denitrification tank 3, the volume of the nitrification tank 5 can be reduced, and the oxygen content in the nitrification tank 5 can be reduced. It is also possible to reduce the amount of gas blown.

硝化槽5内での処理を終えた液は、ライン29
から沈降槽9に送られ、常法に従つて沈降処理を
受ける。上澄水は、ライン31から系外に排出さ
れ、必要ならば、更に高次の処理を行なう。沈降
した汚泥の大部分は、沈降槽9からライン11を
経て脱窒槽3に返送され、少量の余剰汚泥がライ
ン33から系外に排出される。
The liquid that has been processed in the nitrification tank 5 is transferred to the line 29.
From there, it is sent to a sedimentation tank 9, where it undergoes sedimentation treatment in accordance with conventional methods. The supernatant water is discharged from the system through line 31, and is subjected to higher-level treatment if necessary. Most of the settled sludge is returned from the settling tank 9 to the denitrification tank 3 via the line 11, and a small amount of excess sludge is discharged from the system through the line 33.

本発明によれば、以下の如き顕著な効果が達成
される。
According to the present invention, the following remarkable effects are achieved.

() 脱窒槽の撹拌を機械的手段で行なう場合に
比して、動力費が低減される。
() Power costs are reduced compared to when the denitrification tank is stirred by mechanical means.

() 脱窒槽の撹拌を機械的手段で行なう場合に
比して、汚泥フロツクの微細化が十分に行なわ
れるので、窒素除去効率が高い。
() Compared to the case where the denitrification tank is agitated by mechanical means, the sludge flocs are sufficiently refined, so the nitrogen removal efficiency is high.

() 脱窒槽内にBOD酸化菌の休止領域を含む従
来法と異なり、脱窒槽内においてもBOD酸化
の一部を行ない得るので、後続する硝化槽の
BOD負荷を低下させ得る。従つて、硝化槽を
小型化し、且つ硝化槽における酸素供給量を減
少させることが出来る。
() Unlike the conventional method, which includes a resting area for BOD oxidizing bacteria in the denitrification tank, part of the BOD oxidation can also be performed in the denitrification tank, so the subsequent nitrification tank is
Can reduce BOD load. Therefore, the nitrification tank can be downsized and the amount of oxygen supplied to the nitrification tank can be reduced.

実施例 1 第1図に示す形式の廃水処理装置を使用して廃
水を処理した。
Example 1 Wastewater was treated using a wastewater treatment apparatus of the type shown in FIG.

縦0.3m×横0.4m×高さ0.4mの脱窒槽3に
DO5ppm、BOD濃度150ppm、アンモニア態窒素
濃度20ppmの廃水15/hrを供給し、これに硝化
槽5からのDO5ppmの循環液65/hr及び沈降
槽9からの返送汚泥10/hrを加え、脱窒槽1m3
当り毎時1.3Nm3の空気を吹込んだ。尚、脱窒槽
3及び硝化槽5内の懸濁汚泥濃度は、3500mg/
であつた。
Denitrification tank 3 with length 0.3m x width 0.4m x height 0.4m
15/hr of wastewater with DO5ppm, BOD concentration 150ppm, and ammonia nitrogen concentration 20ppm is supplied, to which 65/hr of DO5ppm circulating liquid from nitrification tank 5 and 10/hr of return sludge from sedimentation tank 9 are added to the denitrification tank. 1m3
1.3Nm3 of air was blown per hour. The suspended sludge concentration in the denitrification tank 3 and nitrification tank 5 is 3500mg/
It was hot.

次いで、脱窒槽3からの液を硝化槽5に送り、
ライン19から純酸素15/hrを供給してDOを
5ppmに保つた。硝化槽5の大きさは縦0.2m×横
0.8m×高さ0.4mである。
Next, the liquid from the denitrification tank 3 is sent to the nitrification tank 5,
Supply pure oxygen 15/hr from line 19 to generate DO.
It was kept at 5ppm. The size of the nitrification tank 5 is 0.2m in length x width.
It is 0.8m x height 0.4m.

次いで、硝化槽5からの液を沈降槽9に送り、
汚泥と処理済水とに分離した。
Next, the liquid from the nitrification tank 5 is sent to the settling tank 9,
Separated into sludge and treated water.

処理済水中のアンモニア態窒素濃度は2ppm、
硝酸態窒素濃度は4ppm、亜硝酸態窒素は検出さ
れなかつた。又、BODは12ppmであつた。窒素
除去率は70%であり、BOD除去率は92%であつ
た。
Ammonia nitrogen concentration in treated water is 2ppm,
Nitrate nitrogen concentration was 4 ppm, and nitrite nitrogen was not detected. Also, BOD was 12ppm. The nitrogen removal rate was 70% and the BOD removal rate was 92%.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明方法の一実施態様を示すフロ
ーチヤートである。 3……脱窒槽、5……硝化槽、7……循環液供
給ライン、9……沈降槽、11……返送汚泥供給
ライン、15……ブロワー、17……撹拌用気体
吹込みライン、19……空気又は酸素含有気体供
給ライン、21……ブロワー、25……散気管、
33……余剰汚泥排出ライン。
FIG. 1 is a flowchart showing one embodiment of the method of the present invention. 3... Denitrification tank, 5... Nitrification tank, 7... Circulating liquid supply line, 9... Sedimentation tank, 11... Return sludge supply line, 15... Blower, 17... Stirring gas blowing line, 19 ... Air or oxygen-containing gas supply line, 21 ... Blower, 25 ... Diffuser pipe,
33... Surplus sludge discharge line.

Claims (1)

【特許請求の範囲】 1 脱窒槽、硝化槽及び沈降槽を順次使用する廃
水の生物学的脱窒素法において、 () 開放型の脱窒槽内の撹拌を空気吹き込みに
より行ない、 () 被処理廃水、密閉型の硝化槽からの循環液
及び沈降槽からの返送汚泥により形成される脱
窒槽内汚泥濃度を2000〜8000mg/の範囲内に
保持し、 () 脱窒槽内のBOD濃度を25ppm以上とし、 () 脱窒槽内への空気吹込み量を空気量/脱窒
槽内液量=0.5〜10m3/m3・hrの範囲内に保持
する ことを特徴とする廃水の生物学的脱窒素法。
[Scope of Claims] 1. In a biological denitrification method for wastewater that sequentially uses a denitrification tank, a nitrification tank, and a settling tank, () agitation in an open denitrification tank is performed by blowing air; () wastewater to be treated; , The concentration of sludge in the denitrification tank, which is formed by the circulating fluid from the closed nitrification tank and the sludge returned from the settling tank, is maintained within the range of 2000 to 8000 mg/, () The BOD concentration in the denitrification tank is maintained at 25 ppm or more. () A biological denitrification method for wastewater characterized by maintaining the amount of air blown into the denitrification tank within the range of air amount/liquid amount in the denitrification tank = 0.5 to 10 m 3 /m 3 hr. .
JP7693782A 1982-05-07 1982-05-07 Biologically denitrifying method of waste water Granted JPS58193796A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7693782A JPS58193796A (en) 1982-05-07 1982-05-07 Biologically denitrifying method of waste water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7693782A JPS58193796A (en) 1982-05-07 1982-05-07 Biologically denitrifying method of waste water

Publications (2)

Publication Number Publication Date
JPS58193796A JPS58193796A (en) 1983-11-11
JPH0247278B2 true JPH0247278B2 (en) 1990-10-19

Family

ID=13619640

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7693782A Granted JPS58193796A (en) 1982-05-07 1982-05-07 Biologically denitrifying method of waste water

Country Status (1)

Country Link
JP (1) JPS58193796A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4867097B2 (en) * 2001-07-26 2012-02-01 栗田工業株式会社 Biological denitrification method and biological denitrification apparatus
JP5597002B2 (en) * 2010-03-19 2014-10-01 水ing株式会社 Waste water treatment apparatus and waste water treatment method
JP5238830B2 (en) * 2011-01-17 2013-07-17 株式会社東芝 Waste water treatment equipment

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5738993A (en) * 1980-08-22 1982-03-03 Kubota Ltd Denitrifying method for water treatment

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5738993A (en) * 1980-08-22 1982-03-03 Kubota Ltd Denitrifying method for water treatment

Also Published As

Publication number Publication date
JPS58193796A (en) 1983-11-11

Similar Documents

Publication Publication Date Title
US5182021A (en) Biological process for enhanced removal of ammonia, nitrite, nitrate, and phosphate from wastewater
WO2010074008A1 (en) Method and device for removing biological nitrogen and support therefor
JP4892917B2 (en) Biological treatment method and apparatus for organic wastewater
KR19980051067A (en) Simultaneous Biological and Nitrogen Eliminators
KR100275563B1 (en) Wastewater treatment methods using anaerobic condition and two stage altering-intermittent aerating condition
JPH0247278B2 (en)
KR20000037351A (en) Process and apparatus for nitrogen and phosphorus removal
KR20010047158A (en) Wastewater treatment process using return sludge reaction tank
JP2841131B2 (en) Activated sludge treatment method for sewage
KR100439212B1 (en) Method and system for removal of organic matters and nitrogen in industrial wastewater
JP3125628B2 (en) Wastewater treatment method
JP3837757B2 (en) Method for treating selenium-containing water
KR100318367B1 (en) Waste water treatment apparatus
JP2000024698A (en) Biological treatment of waste water and device therefor
KR100453453B1 (en) Apparatus for treament of waste water containing nitrogen and phosphorus and treatment process using the same
KR100198028B1 (en) Nitrogen removal method of organic wastewater with high concentration in liquid phase corrosive method
JPH0459959B2 (en)
JP2001269697A (en) Nitrogen-containing drainage treating method
JPS6244998B2 (en)
JPS61125495A (en) Method and device for biological denitrification treatment of organic waste water
KR890004711B1 (en) Method for treatment of organic waste water
JPH05154491A (en) Treatment of waste water containing high-concentration nitrogen
KR100318368B1 (en) Wastewater Treatment System
JPS61216798A (en) Denitrification and dephosphorization of waste water
JPH0631297A (en) Method for treating waste water containing high concentration of nitrogen sophistically