JPH0247244A - Production of rolled sheet of aluminum-base alloy - Google Patents

Production of rolled sheet of aluminum-base alloy

Info

Publication number
JPH0247244A
JPH0247244A JP19720288A JP19720288A JPH0247244A JP H0247244 A JPH0247244 A JP H0247244A JP 19720288 A JP19720288 A JP 19720288A JP 19720288 A JP19720288 A JP 19720288A JP H0247244 A JPH0247244 A JP H0247244A
Authority
JP
Japan
Prior art keywords
coil
annealing
temp
rolled
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19720288A
Other languages
Japanese (ja)
Other versions
JP2766482B2 (en
Inventor
Yoichiro Totsugi
洋一郎 戸次
Shigeru Hishikawa
菱川 滋
Takahiro Oguro
小黒 孝弘
Hiroyuki Kobayashi
博幸 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Aluminum Co Ltd
Original Assignee
Furukawa Aluminum Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Aluminum Co Ltd filed Critical Furukawa Aluminum Co Ltd
Priority to JP63197202A priority Critical patent/JP2766482B2/en
Publication of JPH0247244A publication Critical patent/JPH0247244A/en
Application granted granted Critical
Publication of JP2766482B2 publication Critical patent/JP2766482B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

PURPOSE:To prevent the occurrence of fluctuations in sheet thickness at the time of cold rolling by subjecting an ingot of Al-Mn-Mg alloy to soaking treatment and to hot rolling into a coiled state and then applying annealing to the above coil under specific conditions determined according to treatment temp. and coil temp. CONSTITUTION:An ingot of Al alloy containing Mn and Mg by >=0.3wt.%, respectively, is subjected to soaking treatment and then hot-rolled into a coiled state. The coil is annealed at a temp. in the range represented by -0.4TH +530<=Tmin<=400 and Tmax-Tmin<=200-0.5Tmin, where TH means soaking treatment temp. and Tmax and Tmin mean the values of the maximum temp. and the minimum temp. in the coil at the point of time when the maximum temp. of the coil is reached at the time ot annealing, respectively. After the above annealing, cold rolling is applied to the above coil to form the final product. By this method, the rolled sheet ot Al-base alloy can be produced without causing deterioration in quality, such as fluctuations in sheet thickness.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はA1基合金を圧延加工してキャンボディーやク
ロージヤーを製造する際に熱延コイル焼鈍に起因して冷
間圧延時に発生する周期的な板厚変動を防止するA1基
合金圧延板の製造方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is aimed at reducing the periodicity that occurs during cold rolling due to hot-rolled coil annealing when manufacturing cambodies and closures by rolling A1-based alloys. The present invention relates to a method of manufacturing an A1-based alloy rolled plate that prevents plate thickness fluctuations.

〔従来の技術及び発明が解決しようとする課題〕通常A
1−Mn−Mg系の合金はMn系微細析出物と固溶Mg
による再結晶阻止効果が大きいため一般に再結晶し難い
。またこれら合金に熱間圧延を施した板は熱間圧延時の
動的回復によって歪の蓄積が小さくなっている。
[Problems to be solved by conventional technology and invention] Normally A
1-Mn-Mg alloy contains Mn-based fine precipitates and solid solution Mg.
It is generally difficult to recrystallize because of its large recrystallization inhibiting effect. In addition, plates made of these alloys that have been hot rolled have reduced strain accumulation due to dynamic recovery during hot rolling.

従ってA 、e −M n −M g系合金を熱間圧延
してコイル状に巻き取ったもの(以下これを熱延コイル
という)は次工程の焼鈍時に再結晶し難いため通常比較
的高温(350〜400℃)で焼鈍されることが多かっ
た。このような条件で焼鈍する場合でも従来から多く用
いられていたサイズの熱延コイルであれば、コイル内で
の温度分布が小さいのでさらに次工程の冷間圧延におい
て板厚変動という問題は発生しなかった。
Therefore, A, e-Mn-Mg alloys that are hot-rolled and wound into a coil shape (hereinafter referred to as hot-rolled coils) are difficult to recrystallize during the next annealing process, so they are usually heated at a relatively high temperature ( It was often annealed at a temperature of 350 to 400°C. Even when annealing under these conditions, if the hot-rolled coil is of the size commonly used in the past, the temperature distribution within the coil is small, so there will be no problem of plate thickness variation during the next cold rolling process. There wasn't.

ところが歩留りや生産性の向上を目的とした鋳塊の大型
化によって最近熱延コイルの径は大きいものとなってき
た。そしてこのようにサイズの大きいコイルに対しては
従来の焼鈍条件ではコイル内の温度差が大きくなってし
まい上記板厚変動が発生してしまう。例えばJI330
04合金(1,0〜1.5 wt%M n −0,8〜
1.3 wt%MCJ−A1)やJI33105合金(
0,30〜0.8 wt%Mn−0,20〜0.8 育
t%Mg−/Mり等のA 、g −M n−Mg系合金
を熱間圧延して熱延コイルとした後、冷間圧延すること
なく、バッチタイプの雰囲気調整炉(CA炉)で焼鈍す
る工程を取り、次工程で冷間圧延を行なう場合はその冷
間圧延の時に、周期的な板厚変動が発生することがある
。これは鋳塊を大型化し、大直径のコイルになるほど発
生し易く、板厚精度等の製品品質の低下を招き、鋳塊大
型化の妨げとなっていた。
However, as ingots have become larger in order to improve yield and productivity, the diameter of hot-rolled coils has recently become larger. For such a large-sized coil, the temperature difference within the coil becomes large under conventional annealing conditions, resulting in the above-mentioned plate thickness variation. For example JI330
04 alloy (1,0~1.5 wt%M n -0,8~
1.3 wt%MCJ-A1) and JI33105 alloy (
0,30~0.8 wt%Mn-0,20~0.8 Growth t%Mg-/Mri etc. A, g-M After hot rolling the n-Mg alloy into a hot-rolled coil If annealing is performed in a batch-type atmosphere-controlled furnace (CA furnace) without cold rolling, and cold rolling is performed in the next process, periodic sheet thickness fluctuations will occur during the cold rolling. There are things to do. This problem is more likely to occur as the size of the ingot is increased and the diameter of the coil becomes larger, leading to a decline in product quality such as plate thickness accuracy, and hindering the increase in size of the ingot.

〔課題を解決するための手段〕[Means to solve the problem]

そこで本発明者は上記板厚変動の発生原因を調査・研究
したところ、以下に示すメカニズムであることが判明し
た。
Therefore, the present inventor investigated and researched the cause of the above-mentioned plate thickness variation, and found that the mechanism is as shown below.

(1)熱間圧延時にクーラントの中の水分が熱延コイル
表面に残存する。
(1) Moisture in the coolant remains on the surface of the hot rolled coil during hot rolling.

(2)該熱延コイルの焼鈍時に材料の表面が残存水分と
反応し、酸化膜を形成する。
(2) During annealing of the hot-rolled coil, the surface of the material reacts with residual moisture to form an oxide film.

(3)焼鈍時のコイル内の温度差によって、顔化膜の厚
さが変化する。
(3) The thickness of the facial film changes due to the temperature difference within the coil during annealing.

(4)M化膜厚の差によって、冷延時の摩擦係数が変化
し、板厚の変動となる。
(4) Due to the difference in M film thickness, the coefficient of friction during cold rolling changes, resulting in fluctuations in plate thickness.

ざらに/1−Mn−Mg系合金においては熱間圧延板は
加工度が小さく、Mn系微細析出物、固溶Mgによる再
結晶遅延力が大きいので、安定して再結晶を完了させる
ために焼鈍温度を高めに設定しであることが多く、従っ
て組成中のMgが酸化されやすいこともあって、AJ7
−Mn−Mg系熱間圧延板は焼鈍時の表面酸化が進む傾
向がある。
In the case of ZARANI/1-Mn-Mg alloy, hot-rolled sheets have a small working degree and the recrystallization retardation force due to Mn-based fine precipitates and solid solution Mg is large, so in order to stably complete recrystallization, The annealing temperature is often set high, and therefore the Mg in the composition is easily oxidized, so AJ7
-Mn-Mg hot-rolled sheets tend to undergo surface oxidation during annealing.

そしてコイルが大型化すると一般的な流気炉の中では炉
気の流れが変化し、コイル内の温度差は大きくなる傾向
がある。例えば、380℃で2時間焼鈍した場合、従来
の通常の条件で、重量5 tonのコイルで゛はコイル
内の最高到達温度の差は5〜10℃であるのに対し、重
110tonのコイルでは10〜30℃にも達する。
As the coil becomes larger, the flow of furnace air changes in a typical flow air furnace, and the temperature difference within the coil tends to increase. For example, when annealing is performed at 380℃ for 2 hours, under conventional conditions, a coil weighing 5 tons will have a maximum temperature difference of 5 to 10℃, whereas a coil weighing 110 tons will have a difference of 5 to 10℃. It reaches 10-30℃.

そのため、従来のサイズのコイルでは問題とならなかっ
た焼鈍時の温度分布のバラツキに起因する板厚変動が大
型コイルの場合発生する頻度が極めて高くなり、生産性
、歩留りを低下させていることが明らかになった。
As a result, variations in plate thickness due to variations in temperature distribution during annealing, which were not a problem with conventionally sized coils, occur extremely frequently with large coils, reducing productivity and yield. It was revealed.

そしてざらに検討した結果本発明は大型の鋳塊を用いて
もA1基合金において冷間圧延時に熱延コイル焼鈍に起
因する周期的板厚変動の発生を防止したA1基合金圧延
板のIl!造方決方法発したものである。
As a result of a rough study, the present invention has developed an A1-based alloy rolled plate that prevents the occurrence of periodic sheet thickness fluctuations caused by hot-rolled coil annealing during cold rolling in an A1-based alloy even when a large ingot is used. This is the result of the decision on how to make it.

即ち本発明はMnおよびMgをそれぞれ0.3wt%以
上含有するアルミニウム合金鋳塊を均熱処理後熱間圧延
を行なってコイルとした後焼鈍し、その後冷間圧延を施
す製造方法において次式で示す温度範囲で焼鈍すること
を特徴とするものでおる。
That is, the present invention relates to a manufacturing method in which an aluminum alloy ingot containing 0.3 wt% or more of Mn and Mg each is soaked and then hot rolled to form a coil, annealed, and then cold rolled as shown by the following formula. It is characterized by being annealed in a temperature range.

−0,4Tl−1+530≦Tnun≦400  ・(
1)Tmax  Tnun≦200−0.57rmn 
  ・・・(2)但しTH:均熱処理温度(”C) T7:焼鈍の際コイルの最高温度到達 時におけるコイル内最高温度の 値(℃) Tnun:焼鈍の際コイルの最高温度到達時におけるコ
イル内最低温度の 値(”C) 〔作 用〕 上記A1−Mn−Mg系合金においてMnまたはMgが
0.3wt%未満の合金については表面酸化に伴なう板
厚変動は発生し難く、また工程上焼鈍の前に冷間圧延を
行なうものについては材料表面の水分が冷間圧延油で置
き換えられると共に加工度が上り、再結晶温度が下るた
め板厚変動は発生し難いので、これらの場合は板厚精度
上の品質の低下は問題にならない。
-0,4Tl-1+530≦Tnun≦400 ・(
1) Tmax Tnun≦200-0.57rmn
...(2) However, TH: Soaking temperature ("C) T7: Value of the maximum temperature inside the coil when the maximum temperature of the coil is reached during annealing (℃) Tnun: The value of the maximum temperature inside the coil when the maximum temperature of the coil is reached during annealing The value of the lowest temperature ("C) [Function] Among the A1-Mn-Mg alloys mentioned above, for alloys containing less than 0.3 wt% of Mn or Mg, plate thickness fluctuations due to surface oxidation are unlikely to occur, and For products that are cold rolled before annealing during the process, the moisture on the surface of the material is replaced with cold rolling oil, the degree of work increases, and the recrystallization temperature decreases, so thickness fluctuations are less likely to occur. In this case, deterioration in quality due to plate thickness accuracy is not a problem.

次に上記第(1)式及び第(2)式のように冷間圧延の
前に行なう焼鈍の温度範囲を限定したのは次の理由によ
るものである。
Next, the reason why the temperature range of the annealing performed before cold rolling is limited as shown in the above equations (1) and (2) is as follows.

即ち先ず第(1)式においてThmnが−0,4Th+
530未満の場合は再結晶が完了しない場合があり焼鈍
の目的が達せられないからである。また王□、。が40
0℃を超えると酸化膜が極めて厚くなり変色等の問題も
生じる。
That is, first, in equation (1), Thmn is -0,4Th+
This is because if it is less than 530, recrystallization may not be completed and the purpose of annealing cannot be achieved. King □ again. is 40
If the temperature exceeds 0° C., the oxide film becomes extremely thick, causing problems such as discoloration.

なお鋳塊に施す均熱処理はMn系析出物の形態や分布の
密度を制御するために重要であって、その温度THが高
温はど析出物が粗大で粗な分布となり、焼鈍時の再結晶
温度が低下する。そして第(1)式ではTHを上げると
T□Inが低くても再結晶することを示しており、逆に
T)Iが低いとT□1oを上げる必要が生じてくること
を示している。
The soaking treatment applied to the ingot is important for controlling the morphology and distribution density of Mn-based precipitates; the higher the temperature TH, the coarser the precipitates will be and the more likely they will be recrystallized during annealing. Temperature drops. Equation (1) shows that when TH is increased, recrystallization occurs even if T□In is low, and conversely, when T)I is low, it becomes necessary to increase T□1o. .

次に第(2)式で示すTrmx  Tm1nはコイル内
の温度分布であり、これが大きいと酸化膜厚の差が生じ
、冷間圧延での板厚変動の原因となる。
Next, Trmx Tm1n expressed by equation (2) is the temperature distribution within the coil, and if this is large, a difference in oxide film thickness will occur, which will cause plate thickness variation during cold rolling.

しかし、コイル全体の温度が低いと、酸化膜の成長が少
なく、比較的大きな温度差でも板厚変動は生じにくくな
る。そこで第(2)式の条件が必要となる。
However, if the temperature of the entire coil is low, the oxide film will grow less, and plate thickness variations will be less likely to occur even with a relatively large temperature difference. Therefore, the condition of equation (2) is required.

これらの条件から次のことがわかる。即ち焼鈍時、雰囲
気温度とコイル温度の差を小さくするとTmax  T
nnnを小さくすることができるが、この場合、きわめ
て焼鈍時間が長くなる。そこで、TIT、−T□1oが
大きくなりやすい大型コイルでは、そのコイルの大きさ
に見合った高温均熱処理をおこない、Tm1nを下げた
方が操業上有利となる。一方、Trmx  Tm+nが
小さい小型コイルでは均熱温度および焼鈍時の雰囲気制
御も厳密にする必要はない。このように本発明条件にも
とづいて、どのようなサイズのコイルでもそれぞれ最も
操業しやすい条件を選択でき、コスト低減、生産性の向
上を図りつつ、板厚変動をおさえることができる。
The following can be seen from these conditions. That is, during annealing, if the difference between the ambient temperature and the coil temperature is reduced, Tmax T
Although nnn can be made smaller, in this case, the annealing time becomes extremely long. Therefore, in the case of a large coil where TIT, -T□1o tends to be large, it is operationally advantageous to perform a high temperature soaking treatment commensurate with the size of the coil to lower Tm1n. On the other hand, in a small coil with a small Trmx Tm+n, it is not necessary to strictly control the soaking temperature and the atmosphere during annealing. As described above, based on the conditions of the present invention, the conditions that are most convenient for operation can be selected for any size coil, and variations in plate thickness can be suppressed while reducing costs and improving productivity.

〔実施例〕〔Example〕

第1表に示す組成のA1基合金鋳塊を常法により造った
復第2表に示す温度で均熱処理及び熱間圧延を行ない、
板厚2.4Mでコイル重量が6tOnまたは10ton
の熱延コイルを製造し、その後それぞれの熱延コイルに
ついて第2表に示す条件で焼鈍を施してから冷間圧延を
行ない最終板厚0.35mの薄板を得た。
An A1-based alloy ingot having the composition shown in Table 1 was produced by a conventional method, and subjected to soaking treatment and hot rolling at the temperature shown in Table 2,
Plate thickness 2.4M and coil weight 6tOn or 10ton
After that, each hot rolled coil was annealed under the conditions shown in Table 2, and then cold rolled to obtain a thin plate with a final thickness of 0.35 m.

これら焼鈍後の熱延コイルについて、冷間圧延1パス後
の板厚変動幅を調べ、その値を次のように分類し、それ
ぞれ次のような記号で評価して第2表に併記した。
For these hot-rolled coils after annealing, the plate thickness variation range after one pass of cold rolling was investigated, and the values were classified as follows, and each was evaluated using the following symbols and listed in Table 2.

O・・・・・・・パ±10μm未満のものΔ・・・・・
・・・±10〜±15μm間のもの×・・・・・・・・
±15μ扉を超えるものまたこれら薄板について製品と
しての性能を調べ、その結果を第2表に併記した。
O・・・・・・Para±10μm Δ・・・・・・
・・・Things between ±10 and ±15μm×・・・・・・・・・
The performance of these thin plates as products was investigated, and the results are also listed in Table 2.

なお第2表のそれぞれの製造方法のうちTH−600℃
のときに第(1)式及び第(2)式で表わされる本発明
法の焼鈍条件の範囲を第1図に斜線で示した。第1図に
よれば本発明法A及びBは本発明法の条件範囲内にあり
、比較法F及びGは範囲外でおることがわかる。
Of the manufacturing methods in Table 2, TH-600°C
The range of annealing conditions for the method of the present invention expressed by equations (1) and (2) is indicated by diagonal lines in FIG. According to FIG. 1, it can be seen that the methods A and B of the present invention are within the condition range of the method of the present invention, and the comparative methods F and G are outside the range.

また同様にT = 550℃のときに第(1)式及び第
(2)式で表わされる本発明法の焼鈍条件の範囲を第2
図に斜線で示した。第2図によれば本発明法C,D及び
Eは本発明法の範囲内にあり、比較法Hは範囲外である
ことがわかる。
Similarly, when T = 550°C, the range of annealing conditions of the present invention method expressed by equations (1) and (2) is
It is indicated by diagonal lines in the figure. According to FIG. 2, it can be seen that methods C, D, and E of the present invention are within the range of the method of the present invention, and comparative method H is outside the range.

第1表 第2表に示す各製造方法とそのときの板厚変動及び製品
性能の結果について以下に述べる。
The following describes each manufacturing method shown in Tables 1 and 2, and the results of plate thickness variation and product performance.

先ず本発明法Aは大型コイルを600℃で均熱し、焼鈍
時の雰囲気と該コイルの温度差を小さくして板厚変動を
抑えたものであり、焼鈍時間が若干長いが板厚変動幅は
小さく、最終製品は良好な強度及び耳率を有することが
わかる。
First, method A of the present invention is a method in which a large coil is soaked at 600°C, and the temperature difference between the atmosphere during annealing and the coil is reduced to suppress plate thickness variation.Although the annealing time is slightly longer, the plate thickness variation width is reduced. It can be seen that the final product has good strength and selvage.

次に本発明法Bは大型コイルを600℃で均熱し、この
高温均熱(TH−600℃)を利用して焼鈍時のTmI
oを低く設定し、焼鈍所要時間も短くしたものでおり、
コイル内温度差は大きいが板厚変動及び製品性能は良好
である。
Next, in method B of the present invention, a large coil is soaked at 600°C, and by utilizing this high temperature soaking (TH-600°C), the TmI during annealing is
o is set low and the annealing time is shortened.
Although the temperature difference inside the coil is large, the plate thickness variation and product performance are good.

また本発明法Cは大型コイルを550℃で均熱し、この
温度(TH=550℃)に対応したできるだけ低いT 
m、o@段設定、焼鈍所要時間は若干長くなったもので
あるが、板厚変動、製品性能共に優れている。
In addition, in method C of the present invention, a large coil is soaked at 550°C, and the T
Although the m and o@ stage settings and the annealing time are slightly longer, both plate thickness variation and product performance are excellent.

また本発明法りは比較的小型のコイルを550℃で均熱
したものであり比較的小型コイルでおるため焼鈍時のコ
イル内温度差が小さいので板厚変動と製・品性能は優れ
ている。
In addition, in the method of the present invention, a relatively small coil is soaked at 550℃, and because the coil is relatively small, the temperature difference inside the coil during annealing is small, so plate thickness variation and product performance are excellent. .

ざらに本発明法Eも比較的小型のコイルを550℃で均
熱し、焼鈍時に比較的小型でおることの特性を生かして
雰囲気温度を上げたものであり、焼鈍所要時間を大きく
短縮でき、板厚変動を良好に保ち、製品性能も優れたも
のである。
Roughly speaking, method E of the present invention also involves soaking a relatively small coil at 550°C and raising the ambient temperature during annealing by taking advantage of the characteristics of the relatively small size. Thickness variation is maintained well and product performance is also excellent.

一方比較法Fは大型コイルを600 ℃で均熱したもの
であるが、大型コイルでおるため焼鈍時コイル内の温度
差が大きくなり、板厚変動が生じた。
On the other hand, in Comparative Method F, a large coil was soaked at 600°C, but since the large coil was used, the temperature difference within the coil during annealing became large, resulting in plate thickness variation.

また比較法Gは大型コイルを600℃で均熱し、焼鈍時
雰囲気とコイルとの温度差を小さくしたが焼鈍温度その
ものの設定が高いため板厚変動が大きくなった。
In Comparative Method G, a large coil was soaked at 600° C. to reduce the temperature difference between the annealing atmosphere and the coil, but the annealing temperature itself was set high, resulting in large variations in plate thickness.

ざらに比較法Hは大型コイルを550℃で均熱したもの
であるが、焼鈍時にTm+nが均熱温度(TH=550
℃)に対して低すぎたため再結晶が完了せずに強度が過
大となり、耳率が大きくなって性能不良となった。
Roughly Comparative Method H is a method in which a large coil is soaked at 550℃, but Tm+n is the soaking temperature (TH=550
℃), the recrystallization was not completed and the strength became excessive, resulting in a large selvage rate and poor performance.

〔発明の効果〕〔Effect of the invention〕

このように本発明によればA1基合金の圧延板を板厚変
動等の品質不良を発生させずに、コイルサイズに応じた
製造条件で製造でき、優れた生産性やコスト低減を実現
できる等工業上顕著な効果を奏するものである。
As described above, according to the present invention, rolled sheets of A1-based alloy can be manufactured under manufacturing conditions according to the coil size without causing quality defects such as sheet thickness variations, and excellent productivity and cost reduction can be achieved. This has a remarkable industrial effect.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はTH=800℃のときの本発明法による焼鈍条
件の範囲を斜線で示した線図、第2図はTl−1=55
0℃のときの本発明法による焼鈍条件の範囲を斜線で示
した線図である。 Tmax −Tmin (0C) Tmax −Tmin (0C)
Figure 1 is a hatched line diagram showing the range of annealing conditions according to the present invention when TH = 800°C, and Figure 2 is a diagram showing the range of annealing conditions according to the present invention when TH = 800°C.
FIG. 2 is a diagram in which the range of annealing conditions according to the present invention method at 0° C. is indicated by diagonal lines. Tmax - Tmin (0C) Tmax - Tmin (0C)

Claims (1)

【特許請求の範囲】[Claims] (1)MnおよびMgをそれぞれ0.3wt%以上含有
するアルミニウム合金鋳塊を均熱処理後熱間圧延を行な
ってコイルとした後焼鈍し、その後冷間圧延を施す製造
方法において次式で示す温度範囲で焼鈍することを特徴
とするアルミニウム基合金圧延板の製造方法。 −0.4T_H+530≦T_m_i_n≦400 T_m_a_x−T_m_i_n≦200−0.5T_
m_i_n 但し T_H:均熱処理温度(℃) T_m_a_x:焼鈍の際コイルの最高温度到達時にお
けるコイル内最高温度の値(℃)T_m_i_n:焼鈍
の際コイルの最高温度到達時におけるコイル内最低温度
の値(℃)
(1) In a manufacturing method in which an aluminum alloy ingot containing 0.3 wt% or more of Mn and Mg each is soaked, hot rolled to form a coil, annealed, and then cold rolled at a temperature expressed by the following formula: A method for manufacturing an aluminum-based alloy rolled plate, characterized by annealing in a range. −0.4T_H+530≦T_m_i_n≦400 T_m_a_x−T_m_i_n≦200−0.5T_
m_i_n However, T_H: Soaking temperature (℃) T_m_a_x: Value of the maximum temperature inside the coil when the maximum temperature of the coil is reached during annealing (℃) T_m_i_n: Value of the minimum temperature inside the coil when the maximum temperature of the coil is reached during annealing ( ℃)
JP63197202A 1988-08-09 1988-08-09 Manufacturing method of rolled aluminum base alloy plate Expired - Lifetime JP2766482B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63197202A JP2766482B2 (en) 1988-08-09 1988-08-09 Manufacturing method of rolled aluminum base alloy plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63197202A JP2766482B2 (en) 1988-08-09 1988-08-09 Manufacturing method of rolled aluminum base alloy plate

Publications (2)

Publication Number Publication Date
JPH0247244A true JPH0247244A (en) 1990-02-16
JP2766482B2 JP2766482B2 (en) 1998-06-18

Family

ID=16370515

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63197202A Expired - Lifetime JP2766482B2 (en) 1988-08-09 1988-08-09 Manufacturing method of rolled aluminum base alloy plate

Country Status (1)

Country Link
JP (1) JP2766482B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003004448A1 (en) * 2001-07-05 2003-01-16 Millennium Specialty Chemicals Catalyst system and process for rearrangement of epoxides to allylic alcohols
WO2005049878A3 (en) * 2003-10-29 2005-08-25 Corus Aluminium Walzprod Gmbh Method for producing a high damage tolerant aluminium alloy
US7666267B2 (en) 2003-04-10 2010-02-23 Aleris Aluminum Koblenz Gmbh Al-Zn-Mg-Cu alloy with improved damage tolerance-strength combination properties
US10472707B2 (en) 2003-04-10 2019-11-12 Aleris Rolled Products Germany Gmbh Al—Zn—Mg—Cu alloy with improved damage tolerance-strength combination properties

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01208438A (en) * 1988-02-15 1989-08-22 Kobe Steel Ltd Manufacture of aluminum alloy hard plate for wrapping

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01208438A (en) * 1988-02-15 1989-08-22 Kobe Steel Ltd Manufacture of aluminum alloy hard plate for wrapping

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003004448A1 (en) * 2001-07-05 2003-01-16 Millennium Specialty Chemicals Catalyst system and process for rearrangement of epoxides to allylic alcohols
US7666267B2 (en) 2003-04-10 2010-02-23 Aleris Aluminum Koblenz Gmbh Al-Zn-Mg-Cu alloy with improved damage tolerance-strength combination properties
US10472707B2 (en) 2003-04-10 2019-11-12 Aleris Rolled Products Germany Gmbh Al—Zn—Mg—Cu alloy with improved damage tolerance-strength combination properties
WO2005049878A3 (en) * 2003-10-29 2005-08-25 Corus Aluminium Walzprod Gmbh Method for producing a high damage tolerant aluminium alloy
GB2421739A (en) * 2003-10-29 2006-07-05 Corus Aluminium Walzprod Gmbh Method for producing a high damage tolerant aluminium alloy
GB2421739B (en) * 2003-10-29 2008-02-06 Corus Aluminium Walzprod Gmbh Method for producing a high damage tolerant aluminium alloy

Also Published As

Publication number Publication date
JP2766482B2 (en) 1998-06-18

Similar Documents

Publication Publication Date Title
JP2009242843A (en) Aluminum alloy substrate for magnetic disk and method for producing the same
US4421574A (en) Method for suppressing internal oxidation in steel with antimony addition
JPH0247244A (en) Production of rolled sheet of aluminum-base alloy
JP3600022B2 (en) Manufacturing method of aluminum base alloy sheet for deep drawing
JPH10130729A (en) Production of grain-oriented silicon steel sheet having extremely low core loss
JPS6191352A (en) Method for annealing al alloy plate for substrate of magnetic disk hardly causing micro-waving
US3413165A (en) Hot rolling process for making grain oriented silicon iron sheet
JP3392579B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JP2023071471A (en) Aluminum alloy sheet for magnetic disk, aluminum alloy blank for magnetic disk and aluminum alloy substrate for magnetic disk
JPH02267242A (en) Low carbon aluminum killed cold rolled steel sheet having excellent workability, roughening resistance on the surface and earing properties and its manufacture
JPS61133323A (en) Production of thin steel sheet having excellent formability
JPH10330897A (en) Production of aluminum base alloy sheet for deep drawing
JPH01225724A (en) Production of non-oriented flat rolled magnetic steel sheet having excellent low magnetic field magnetic characteristic
JPH0533056A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property
JPH0585630B2 (en)
JPH01218702A (en) Manufacture of aluminum foil base
JPH0346541B2 (en)
JPH10251754A (en) Manufacture of nonoriented silicon steel sheet
JPH0288741A (en) Stock for high recording density disk and its manufacture
JPS6362853A (en) Manufacture of material for magnetic disk substrate
JPH06248404A (en) Production of titanium sheet excellent in press formability
JPH0690792B2 (en) Method for manufacturing Al substratum for magnetic disk
JPS63444A (en) Manufacture of aluminum hard sheet reduced in ear rate and excellent in strength and ductility
KR900005372B1 (en) Hot rolling process for cold rolled steel plate
JPH05186831A (en) Production of grain-oriented silicon steel sheet having crystal orientation integrated in goss orientation