JPH024711B2 - - Google Patents

Info

Publication number
JPH024711B2
JPH024711B2 JP2404187A JP2404187A JPH024711B2 JP H024711 B2 JPH024711 B2 JP H024711B2 JP 2404187 A JP2404187 A JP 2404187A JP 2404187 A JP2404187 A JP 2404187A JP H024711 B2 JPH024711 B2 JP H024711B2
Authority
JP
Japan
Prior art keywords
fibers
oxygen
container
irradiated
processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2404187A
Other languages
Japanese (ja)
Other versions
JPS63196775A (en
Inventor
Akimori Yamagata
Katsuo Akyama
Susumu Saito
Yukya Sasaki
Mitsuo Sugyama
Kazuo Ametani
Takeshi Sawai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOKYOTO
Original Assignee
TOKYOTO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOKYOTO filed Critical TOKYOTO
Priority to JP2404187A priority Critical patent/JPS63196775A/en
Publication of JPS63196775A publication Critical patent/JPS63196775A/en
Publication of JPH024711B2 publication Critical patent/JPH024711B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)

Description

【発明の詳細な説明】 ビニル系化合物を放射線の作用により、繊維の
官能基と化学結合させてグラフト重合を行なう場
合、空気中の酸素の存在が大きな障害となつてい
る。このような場合には、通常空気を排除して窒
素気流中で行なうのが一般である。
DETAILED DESCRIPTION OF THE INVENTION When performing graft polymerization by chemically bonding a vinyl compound to a functional group of a fiber by the action of radiation, the presence of oxygen in the air poses a major obstacle. In such cases, it is common to exclude air and perform the process in a nitrogen stream.

本発明は、窒素などの不活性ガスを空気と置換
する方法をとらずに、酸素吸収剤を用いて密閉容
器中の酸素濃度を極度に低減化し、脱酸素化した
状態で各種繊維とビニル系化合物とのグラフト重
合を促進させる方法である。
The present invention uses an oxygen absorbent to extremely reduce the oxygen concentration in a sealed container without replacing inert gas such as nitrogen with air, and uses various fibers and vinyl materials in a deoxygenated state. This is a method of promoting graft polymerization with a compound.

すなわち、各種繊維に加工目的に合致した量の
ビニル系化合物を含浸させ、脱液、乾燥したのち
に、空気透過能のきわめて少ない容器、あるいは
空気透過能のまつたくない容器(シート状の各種
合成樹脂をラミネートした袋状のもの、あるいは
鉄製、ステンレス鋼製などのドラム缶で気密度の
高いもの)中に酸素吸収剤と共に封入して、容器
内の酸素量を極度に減少させ(少なくとも
300ppm以下)つぎに酸素吸収剤を容器から取り
除いた状態、あるいは封入したままの状態で放射
線を照射して重合を行なわせるものである。
In other words, various types of fibers are impregnated with a vinyl compound in an amount that matches the processing purpose, deliquified and dried, and then either a container with extremely low air permeability or a container with poor air permeability (sheet-like various synthetic The amount of oxygen in the container is extremely reduced (at least
(300 ppm or less) Next, the oxygen absorber is removed from the container or is still sealed and irradiated with radiation to cause polymerization.

従来は、電子線のようなベータ線による加工の
場合、放射線の線源を固定し被照射体を移動する
連続的放射線加工であるために、照射部位に窒素
ガスを連続的に流入させて空気を排除し、酸素濃
度を低下させる方法が取られているために、多量
の不活性ガスを必要とし、これが操作の調整を難
しくさせる一方で、加工コストを高める大きな要
因となつている。
Conventionally, when processing with beta rays such as electron beams, it is continuous radiation processing in which the radiation source is fixed and the irradiated object is moved, so nitrogen gas is continuously flowed into the irradiated area and air is This method requires a large amount of inert gas, which makes it difficult to adjust the operation and is a major factor in increasing processing costs.

また、コバルト60のようなガンマ線による加工
の場合は、ロツト加工方式を行なわざるを得ない
ために、密閉容器中の被照射体に対し不活性ガス
を流入させて酸素と置換させる操作が、煩雑かつ
非能率であり、加工する繊維の形態、大きさにも
制約が多く加工コストも高価となつた。
Furthermore, in the case of machining with gamma rays such as cobalt 60, a rotary machining method is required, which requires a complicated operation to flow inert gas into the irradiated object in a closed container and replace it with oxygen. Moreover, it is inefficient, and there are many restrictions on the shape and size of the fibers to be processed, resulting in high processing costs.

本発明では、上記のように不活性ガスと置換す
る操作を全部省略し、酸素吸収剤を使用すること
によつて脱酸素化を急速、簡易かつ廉価に行ない
得ることが大きな特長である。
A major feature of the present invention is that deoxygenation can be carried out quickly, easily, and inexpensively by omitting the above-mentioned operation of replacing the gas with an inert gas and by using an oxygen absorbent.

この方法による場合は、空気を遮断する容器と
適量の酸素吸収剤を準備するだけで、重合反応に
とりかかることができるので操作が極めて簡便と
なる。そして、酸素吸収剤により酸素量を極力低
減化することが出来るために、従来の不活性ガス
を空気と置換する方法と比較して、繊維とビニル
系化合物とのグラフト重合が効率よく行なわれる
ので、グラフト効率も著しく高くなり、加工剤量
の節約、照射線量の節減も可能となつた。
In this method, the polymerization reaction can be started by simply preparing an air-blocking container and an appropriate amount of oxygen absorbent, making the operation extremely simple. In addition, since the amount of oxygen can be reduced as much as possible using an oxygen absorber, the graft polymerization between the fiber and the vinyl compound can be carried out more efficiently compared to the conventional method of replacing inert gas with air. Grafting efficiency has also been significantly increased, making it possible to save on processing agents and irradiation doses.

この方法は、繊維以外に紙、木材及び皮革など
の天然の高分子に対しても各種の高分子化合物の
グラフト重合反応を行なうことにより、同様の効
果を得ることができる。
In this method, similar effects can be obtained by performing graft polymerization reactions of various polymer compounds on natural polymers such as paper, wood, and leather in addition to fibers.

以下、ガンマ線によるロツト加工のいくつかの
実施例で内容を説明する。
The contents will be explained below using several examples of rot processing using gamma rays.

実施例 1 木綿およびポリエステル繊維の難燃加工ビニル
ホスホネートオリゴマの30%水溶液を木綿および
ポリエステル繊維に含浸し、脱液、乾燥したの
ち、塩化ビニルおよびポリアミドをラミネートし
た空気透過能の極めて少ないフイルム製の袋に入
れ、適量の酸素吸収剤を封入して密閉しそのまま
の状態で24時間経過後、内部酸素量を100ppm以
下とし、ガンマ線を木綿に対しては1Mrad、ポ
リエステル繊維に対しては2Mrad照射し、繊維
重量に対して17%以上のグラフト重合を行なうこ
とができた。その結果、難燃性評価指標である限
界酸素指数27%の難燃効果を認めることができ
た。これは、実際上接炎時に炭化するが、離炎時
には処理布が全く自燃性を示さない優れた難燃性
を示している。
Example 1 Flame-retardant processing of cotton and polyester fibers Cotton and polyester fibers were impregnated with a 30% aqueous solution of vinyl phosphonate oligomer, dehydrated, dried, and then laminated with vinyl chloride and polyamide to produce a film with extremely low air permeability. Place it in a bag, seal it with an appropriate amount of oxygen absorber, and after 24 hours have elapsed, the internal oxygen content will be reduced to 100 ppm or less, and gamma rays will be irradiated at 1 Mrad for cotton and 2 Mrad for polyester fiber. , it was possible to perform graft polymerization of 17% or more based on the weight of the fiber. As a result, we were able to confirm the flame retardant effect with a limit oxygen index of 27%, which is a flame retardant evaluation index. This shows excellent flame retardancy, with the treated fabric showing no self-combustibility at all when it is separated from the flame, although it actually carbonizes when exposed to the flame.

実施例 2 羊毛の難燃加工 ビニルホスホネートオリゴマの10%水溶液を羊
毛に含浸し脱液、乾燥したのち、例1と同様の方
法でガンマ線を1Mrad照射した。その結果、酸
素指数28%以上の難燃効果が認められた。
Example 2 Flame retardant treatment of wool Wool was impregnated with a 10% aqueous solution of vinylphosphonate oligomer, dehydrated and dried, and then irradiated with 1 Mrad of gamma rays in the same manner as in Example 1. As a result, a flame retardant effect with an oxygen index of 28% or more was observed.

実施例 3 ポリエステル繊維の親水化加工 ポリエステル繊維にアクリルアマイドを含浸
し、脱液、乾燥したのち、例1と同様の方法でガ
ンマ線を2Mrad照射した。その結果、吸湿率7
%の結果が得られた。これは未加工の木綿と同程
度の吸湿率であつた。
Example 3 Hydrophilic processing of polyester fibers Polyester fibers were impregnated with acrylamide, dehydrated, dried, and then irradiated with 2 Mrad gamma rays in the same manner as in Example 1. As a result, the moisture absorption rate was 7
% results were obtained. This had a moisture absorption rate comparable to that of unprocessed cotton.

実施例 4 ポリエステル繊維の帯電防止加工 ポリエステル繊維にポリエチレングリコールジ
アクリレートの5%水溶液を含浸し、脱液、乾燥
したのち、例1と同様の方法でガンマ線を
2Mrad照射した。その結果、繊維重量に対しグ
ラフト率約2%の加工量で、摩擦帯電電圧600ボ
ルトの結果が得られた。なおこれは摩擦帯電電圧
650ボルトの未加工木綿に相当するものでポリエ
ステル繊維は6000ボルトであつた。
Example 4 Antistatic processing of polyester fibers Polyester fibers were impregnated with a 5% aqueous solution of polyethylene glycol diacrylate, drained, dried, and then exposed to gamma rays in the same manner as in Example 1.
It was irradiated with 2 Mrad. As a result, a triboelectrostatic voltage of 600 volts was obtained with a processing amount of about 2% grafting rate based on the fiber weight. Note that this is the triboelectric voltage
The equivalent of raw cotton was 650 volts, while polyester fiber was 6000 volts.

実施例 5 ポリエステル繊維およびナイロン繊維の防融加
工 ポリエステル繊維およびナイロン繊維にアクリ
ル酸を含浸し、脱液、乾燥したのち、例1と同様
の方法でガンマ線を2Mrad照射した。照射後ソ
ーピング処理し未固着分を除去したのち、重炭酸
ナトリウムの水溶液で処理し、繊維上のビニル酸
ポリマーをNa塩に転換した。その結果、未加工
繊維に対して優れた防融効果をみとめた。
Example 5 Meltproof processing of polyester fibers and nylon fibers Polyester fibers and nylon fibers were impregnated with acrylic acid, dehydrated and dried, and then irradiated with 2 Mrad gamma rays in the same manner as in Example 1. After irradiation, the fibers were soaped to remove unfixed materials, and then treated with an aqueous solution of sodium bicarbonate to convert the vinyl acid polymer on the fibers into Na salt. As a result, an excellent anti-melting effect was found on unprocessed fibers.

実施例 6 絹の増量加工 絹にメタアクリルアミドの40%水溶液を含浸
し、脱液、乾燥したのち、例1と同様の方法でガ
ンマ線を1Mrad照射した。照射後ソーピング処
理を行ない未反応物を除去した。その結果、繊維
重量に対しグラフト率30%の増量結果が得られ
た。
Example 6 Silk bulking process Silk was impregnated with a 40% aqueous solution of methacrylamide, dehydrated and dried, and then irradiated with gamma rays at 1 Mrad in the same manner as in Example 1. After irradiation, a soaping treatment was performed to remove unreacted substances. As a result, a graft ratio of 30% was obtained relative to the fiber weight.

以上、実施例で示したようにビニル系化合物の
水溶液を各種繊維に含浸させ、脱液、乾燥したの
ち、空気透過能の極めて少ない容器あるいは空気
透過能のまつたくない容器中に酸素吸収剤と共に
封入することにより、空気を窒素のような不活性
ガスと置換することなく容器中の酸素量を極度に
減少させた状態で放射線を照射することによつ
て、各種繊維に対して耐久性のある各種の改質加
工を行なう方法を発明した。
As shown in the examples above, various fibers are impregnated with an aqueous solution of a vinyl compound, dehydrated and dried, and then placed in a container with extremely low air permeability or a container with low air permeability along with an oxygen absorber. By enclosing the container, the amount of oxygen in the container is extremely reduced without replacing the air with an inert gas such as nitrogen, and the amount of oxygen in the container is irradiated, making it durable for various fibers. We have invented a method for carrying out various modification processes.

Claims (1)

【特許請求の範囲】[Claims] 1 各種繊維にビニル系化合物を含浸させたの
ち、空気透過能のきわめて少ない、あるいは空気
透過能がまつたくない容器に酸素吸収剤と共に封
入し、脱酸素の状態で放射線によるグラフト重合
を行ない、耐久性に富む各種の改質加工を行なう
方法。
1. After impregnating various types of fibers with vinyl compounds, they are sealed together with oxygen absorbers in containers with extremely low or poor air permeability, and graft polymerization is carried out using radiation in deoxidized conditions to ensure durability. A method of performing various modification processes that are rich in properties.
JP2404187A 1987-02-04 1987-02-04 Fiber processing method by various radioactive rays using oxygen absorber Granted JPS63196775A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2404187A JPS63196775A (en) 1987-02-04 1987-02-04 Fiber processing method by various radioactive rays using oxygen absorber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2404187A JPS63196775A (en) 1987-02-04 1987-02-04 Fiber processing method by various radioactive rays using oxygen absorber

Publications (2)

Publication Number Publication Date
JPS63196775A JPS63196775A (en) 1988-08-15
JPH024711B2 true JPH024711B2 (en) 1990-01-30

Family

ID=12127404

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2404187A Granted JPS63196775A (en) 1987-02-04 1987-02-04 Fiber processing method by various radioactive rays using oxygen absorber

Country Status (1)

Country Link
JP (1) JPS63196775A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0586410U (en) * 1992-04-24 1993-11-22 ユニバーサル交易株式会社 Ceiling punch holder

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101831803B (en) * 2010-04-28 2011-11-16 北京化工大学 After-finishing flame resistant method for nylon fabric

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0586410U (en) * 1992-04-24 1993-11-22 ユニバーサル交易株式会社 Ceiling punch holder

Also Published As

Publication number Publication date
JPS63196775A (en) 1988-08-15

Similar Documents

Publication Publication Date Title
US5743940A (en) Process for producing gas adsorbent
EP0713933B1 (en) Process for producing separation functional fibers and ion-exchange fibers produced therefrom
EP0616845B1 (en) Adsorptive materials and process for producing them
US3088791A (en) Graft polymerization of a vinyl monomer to a polymeric substrate by low temperature irradiation
JPH02187136A (en) Production of iminodiacetyl-containing filtration membrane with composite function
JP2011523965A (en) Ligand functionalized substrate
KR102058374B1 (en) Radioactive cesium absorbent and method of the same
CN109967049A (en) A kind of uranium absorption agent and preparation method thereof
US4622366A (en) Uranium adsorbing material and process for preparing the same
JPH02187143A (en) Production of chelate resin adsorbent having iminodiacetate group
EP1251144A1 (en) Organic polymeric material, process for producing the same, and heavy-metal ion remover comprising the same
JPH024711B2 (en)
US3236584A (en) Graft polymerization on a paper base by ionizing radiation
JPH01258740A (en) Production of adsorbent for gas
US6844371B1 (en) Material having separating function
JP2504885B2 (en) Ion exchanger manufacturing method
JPH01228541A (en) Manufacture of fixed tannin adsorbent
JPH0710925A (en) Chelating resin and its production
JPS6258775B2 (en)
KR0154419B1 (en) Manufacturing method of polyolefin
JP2001113117A (en) Moisture adsorptive/desorptive material
CN115738598B (en) Method for treating organic waste gas generated in shoemaking and gluing
US3236923A (en) Graft polymerization of an organosiloxane coating on leather by ionizing radiation
JPS6323829B2 (en)
JPH06128877A (en) Antimicrobial deodorizing synthetic yarn