US3236584A - Graft polymerization on a paper base by ionizing radiation - Google Patents
Graft polymerization on a paper base by ionizing radiation Download PDFInfo
- Publication number
- US3236584A US3236584A US242343A US24234362A US3236584A US 3236584 A US3236584 A US 3236584A US 242343 A US242343 A US 242343A US 24234362 A US24234362 A US 24234362A US 3236584 A US3236584 A US 3236584A
- Authority
- US
- United States
- Prior art keywords
- ionizing radiation
- paper
- dosage
- monomer
- base
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 230000005865 ionizing radiation Effects 0.000 title claims description 22
- 238000010559 graft polymerization reaction Methods 0.000 title description 7
- 238000000576 coating method Methods 0.000 claims description 17
- 239000011248 coating agent Substances 0.000 claims description 12
- 239000000178 monomer Substances 0.000 claims description 10
- 238000000034 method Methods 0.000 claims description 7
- -1 VINYL GROUP Chemical group 0.000 claims description 3
- 229920002678 cellulose Polymers 0.000 claims description 3
- 239000001913 cellulose Substances 0.000 claims description 3
- 230000000379 polymerizing effect Effects 0.000 claims description 2
- 239000010985 leather Substances 0.000 description 9
- 239000000123 paper Substances 0.000 description 9
- 229920000742 Cotton Polymers 0.000 description 8
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 8
- 229920000578 graft copolymer Polymers 0.000 description 6
- 239000004677 Nylon Substances 0.000 description 5
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 229920001778 nylon Polymers 0.000 description 5
- 229920003023 plastic Polymers 0.000 description 5
- 239000004033 plastic Substances 0.000 description 5
- 229920002554 vinyl polymer Polymers 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 4
- CQEYYJKEWSMYFG-UHFFFAOYSA-N butyl acrylate Chemical compound CCCCOC(=O)C=C CQEYYJKEWSMYFG-UHFFFAOYSA-N 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000004744 fabric Substances 0.000 description 4
- 229920000642 polymer Polymers 0.000 description 4
- 231100000812 repeated exposure Toxicity 0.000 description 4
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 3
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 230000000266 injurious effect Effects 0.000 description 3
- 229920001296 polysiloxane Polymers 0.000 description 3
- 229920000260 silastic Polymers 0.000 description 3
- 239000004447 silicone coating Substances 0.000 description 3
- 241000272525 Anas platyrhynchos Species 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- RRHGJUQNOFWUDK-UHFFFAOYSA-N Isoprene Chemical compound CC(=C)C=C RRHGJUQNOFWUDK-UHFFFAOYSA-N 0.000 description 2
- BAPJBEWLBFYGME-UHFFFAOYSA-N Methyl acrylate Chemical compound COC(=O)C=C BAPJBEWLBFYGME-UHFFFAOYSA-N 0.000 description 2
- KKEYFWRCBNTPAC-UHFFFAOYSA-N Terephthalic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-N 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 230000001464 adherent effect Effects 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- UUAGAQFQZIEFAH-UHFFFAOYSA-N chlorotrifluoroethylene Chemical compound FC(F)=C(F)Cl UUAGAQFQZIEFAH-UHFFFAOYSA-N 0.000 description 2
- 230000001186 cumulative effect Effects 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- KPUWHANPEXNPJT-UHFFFAOYSA-N disiloxane Chemical class [SiH3]O[SiH3] KPUWHANPEXNPJT-UHFFFAOYSA-N 0.000 description 2
- BLCTWBJQROOONQ-UHFFFAOYSA-N ethenyl prop-2-enoate Chemical compound C=COC(=O)C=C BLCTWBJQROOONQ-UHFFFAOYSA-N 0.000 description 2
- SCFQUKBBGYTJNC-UHFFFAOYSA-N heptyl prop-2-enoate Chemical compound CCCCCCCOC(=O)C=C SCFQUKBBGYTJNC-UHFFFAOYSA-N 0.000 description 2
- 239000002655 kraft paper Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000005020 polyethylene terephthalate Substances 0.000 description 2
- 238000006116 polymerization reaction Methods 0.000 description 2
- PNXMTCDJUBJHQJ-UHFFFAOYSA-N propyl prop-2-enoate Chemical compound CCCOC(=O)C=C PNXMTCDJUBJHQJ-UHFFFAOYSA-N 0.000 description 2
- 210000002268 wool Anatomy 0.000 description 2
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 229920002972 Acrylic fiber Polymers 0.000 description 1
- 229920002799 BoPET Polymers 0.000 description 1
- 229920004934 Dacron® Polymers 0.000 description 1
- 229920002466 Dynel Polymers 0.000 description 1
- JIGUQPWFLRLWPJ-UHFFFAOYSA-N Ethyl acrylate Chemical compound CCOC(=O)C=C JIGUQPWFLRLWPJ-UHFFFAOYSA-N 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 229920004459 Kel-F® PCTFE Polymers 0.000 description 1
- 102000011782 Keratins Human genes 0.000 description 1
- 108010076876 Keratins Proteins 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 1
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 1
- 239000005041 Mylar™ Substances 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004809 Teflon Substances 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 1
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 1
- 208000027418 Wounds and injury Diseases 0.000 description 1
- 150000001252 acrylic acid derivatives Chemical class 0.000 description 1
- 150000001413 amino acids Chemical class 0.000 description 1
- 150000008064 anhydrides Chemical class 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 229920002301 cellulose acetate Polymers 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000002939 deleterious effect Effects 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 239000008121 dextrose Substances 0.000 description 1
- SUPCQIBBMFXVTL-UHFFFAOYSA-N ethyl 2-methylprop-2-enoate Chemical compound CCOC(=O)C(C)=C SUPCQIBBMFXVTL-UHFFFAOYSA-N 0.000 description 1
- 230000007717 exclusion Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 210000003746 feather Anatomy 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 208000014674 injury Diseases 0.000 description 1
- 150000002734 metacrylic acid derivatives Chemical class 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 150000007530 organic bases Chemical class 0.000 description 1
- 125000005375 organosiloxane group Chemical group 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- PNJWIWWMYCMZRO-UHFFFAOYSA-N pent‐4‐en‐2‐one Natural products CC(=O)CC=C PNJWIWWMYCMZRO-UHFFFAOYSA-N 0.000 description 1
- 229920002239 polyacrylonitrile Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- QTECDUFMBMSHKR-UHFFFAOYSA-N prop-2-enyl prop-2-enoate Chemical compound C=CCOC(=O)C=C QTECDUFMBMSHKR-UHFFFAOYSA-N 0.000 description 1
- HJWLCRVIBGQPNF-UHFFFAOYSA-N prop-2-enylbenzene Chemical compound C=CCC1=CC=CC=C1 HJWLCRVIBGQPNF-UHFFFAOYSA-N 0.000 description 1
- 229920002050 silicone resin Polymers 0.000 description 1
- 125000003011 styrenyl group Chemical group [H]\C(*)=C(/[H])C1=C([H])C([H])=C([H])C([H])=C1[H] 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- BFKJFAAPBSQJPD-UHFFFAOYSA-N tetrafluoroethene Chemical group FC(F)=C(F)F BFKJFAAPBSQJPD-UHFFFAOYSA-N 0.000 description 1
- 239000004753 textile Substances 0.000 description 1
- XHGIFBQQEGRTPB-UHFFFAOYSA-N tris(prop-2-enyl) phosphate Chemical compound C=CCOP(=O)(OCC=C)OCC=C XHGIFBQQEGRTPB-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F251/00—Macromolecular compounds obtained by polymerising monomers on to polysaccharides or derivatives thereof
- C08F251/02—Macromolecular compounds obtained by polymerising monomers on to polysaccharides or derivatives thereof on to cellulose or derivatives thereof
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21H—PULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
- D21H17/00—Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
- D21H17/03—Non-macromolecular organic compounds
- D21H17/05—Non-macromolecular organic compounds containing elements other than carbon and hydrogen only
- D21H17/18—Non-macromolecular organic compounds containing elements other than carbon and hydrogen only forming new compounds in situ, e.g. within the pulp or paper, by chemical reaction with itself, or other added substances, e.g. by grafting on the fibres
- D21H17/19—Non-macromolecular organic compounds containing elements other than carbon and hydrogen only forming new compounds in situ, e.g. within the pulp or paper, by chemical reaction with itself, or other added substances, e.g. by grafting on the fibres by reactions only involving carbon-to-carbon unsaturated bonds
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S8/00—Bleaching and dyeing; fluid treatment and chemical modification of textiles and fibers
- Y10S8/18—Grafting textile fibers
Definitions
- This invention relates to grafting of polymers on flexible organic base by low dosage ionizing irradiation, and more particularly to the production of polymeric coatings of the vinyl or silicone type on flexible cellulosic, keratinous, or plastics base by exposure to ionizing radiation at controlled low dosages of ionizing irradiation.
- megarad refers to a dose of ionizing radiation which produces an energy absorption of 100x10 ergs per gram of irradiated substance.
- oellulosic bases such as cotton or paper
- keratinous bases such as leather, wool, or feathers
- plastics bases in the form of woven textiles or self-supporting film sheets, e.g., nylon, cellulose acetate, Acrilan (a mixed polymer of about acrylonitrile and 15% vinyl (derivatives), Dacron (ethylene glycol and terephthalic acid polyester), Dynel (vinyl chloride and acrylonitrile copolymer), Mylar (polyethylene terephthalate), Orlon (polyacrylonitrile), polyethylene, Teflon (polymerized perfluoroethylene, Kel-F (polymeric chlorotrifluoroethylene).
- the foregoing bases are of a polymeric nature, i,e., cellulose can be represented as a polymeric anhydride of dextrose; a keratin is a natural amino acid polymer, and a plastics surface of the nylon type is a synthetic polyamide polymer.
- a keratin is a natural amino acid polymer
- a plastics surface of the nylon type is a synthetic polyamide polymer.
- suitable polymerizable vinyl type compounds for the practice of my invention are, e.g., acrylonitrile, methyl acrylate, ethyl acrylate, propyl acrylate, butyl acrylate, heptyl acrylate, fluorinated propyl acrylate, fiuorinated heptyl acrylate, allyl acrylate, vinyl acrylate, methyl methacrylate, ethyl methacrylate, styrene, vinyl toluene, vinyl acetate, isoprene, triallyl phosphate, vinyl triethoxy siloxane.
- Moderate heating to a point non-injurious to the base assists in the formation of the graft polymer and enables a reduction of the total dosage of ionizing radiation.
- Exclusion of atmospheric oxygen during and between exposures to ionizing radiation either by means of a vacuum, or by substitution of an inert atmosphere, e.g., CO nitrogen, argon or helium has a very beneficial effect on the graft polymer formation, and may be combined with the moderate heating.
- Polymerization promoters such as acrylic acid or methacrylic acid, are useful in assisting the formation of a vinyl-type graft polymer by low dosage ionizing irradiation in accordance with the present invention.
- the interval between successive exposures to ionizing radiation may be as short as /2 minute, and is preferably between about 15 minutes and about 1 hour. Generally, the longer the interval, the greater is the amount of graft polymerization obtained per unit of irradiation energy. However, if the intervals are too long, the manufacturing time of the coating process tends to become more expensive, unless a continuous cycle of the material being processed is maintained.
- the individual passes (exposures) are rather short, e.g., /2 to about 4 seconds, preferably about 4 seconds per pass.
- An effective source of ionizing radiation is a high energy electron accelerator of the Van de Graaff type.
- a commercially available model has a 2,000,000 electron volt (2 mev.) capacity; smaller competing electron accelerators now on the market have about 100,000 electron volt capacity.
- Another suitable source of ionizing radiation for the purposes of the present invention is gamma irradiation, e.g., from C Example I
- Cotton duck was coated with a 1:1 mixture of monomeric acrylonitrile and butyl acrylate, and subjected to ionizing irradiation at a dosage of .1 megarad per pass, with intervals of 1 hour between passes. During each interval, a 75 C. controlled temperature was applied.
- the amount of graft polymer deposited on the cotton base was measured in percentage of added weight (add- All samples were post-heated after each pass under the beam. The tensile strength of the treated coated cotton was in each case about the same as the untreated coated cotton.
- Example ll Example I was repeated on cotton duck with monomeric vinyl acrylate and a C0 inert atmosphere. The following results were obtained:
- Example III Kraft paper was coated with monomeric butyl acrylate and subjected to 6 passes at .06 megarad each under the same temperature conditions and with the same intervals between exposures to ionizing radiation as in Example I. An add-on of was obtained. With styrene, the add-on on the kraft paper was 39%. The amount of add-on was determined by repeated extractions with methyl ethyl ketone which removed all coating that was not chemically bound to the paper base by graft polymerization.
- Example IV 40 parts of ground chrome-tanned leather were impregnated by milling with 60 parts of Dow-Corning Silastic organosiloxane (Silastic 5303), pressed into sheets at 1000 p.s.i., and irradiated at room temperature at 1.66 megarads (2 megareps) per pass, with 15 minute intervals between passes.
- the sheet material becomes increasingly stronger after the 4th pass, and tensile strength is at an optimum after 7 to 8 passes. No further improvement was noted after the 9th and 10th pass.
- the coatings can be formed on one or both sides of the flexible sheet base (cotton, paper, fabric, etc.).
- Method of grafting a polymeric coating on the cellulose molecules of paper comprising coating a surface of said paper with a monomer having a polymerizable vinyl group,
- said dosage being less than the dosage needed for completely polymerizing said monomer
- intervals between successive exposures being at least about 15 minutes each
- said paper being at an elevated temperature of about 40-85 C. during said intervals.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
- Graft Or Block Polymers (AREA)
- Treatments Of Macromolecular Shaped Articles (AREA)
Description
United States Patent 3,236,584 GRAFT POLYMERIZATION ON A PAPER BASE BY IONIZING RADIATION Edward F. Degering, Natick, Mass., assignor to the United States of America as represented by the Secretary of the Army No Drawing. Original application Mar. 23, 1960, Ser. No. 17,228. Divided and this application Nov. 8, 1962, Ser. No. 242,343
5 Claims. (Cl. 8-116) (Granted under Title 35, US. Code (1952), sec. 266) This application is a division of my copending application Serial No. 17,228, filed March 23, 1960, for Graft Polymerization by Ionizing Radiation now abandoned.
The invention described herein, if patented, may be manufactured and used by or for the Government for governmental purposes, without the payment to me of any royalty thereon.
This invention relates to grafting of polymers on flexible organic base by low dosage ionizing irradiation, and more particularly to the production of polymeric coatings of the vinyl or silicone type on flexible cellulosic, keratinous, or plastics base by exposure to ionizing radiation at controlled low dosages of ionizing irradiation.
In accordance with the instant invention, it is possible to effect graft polymerization by repeated exposures to controlled small doses of ionizing radiation, at a substantially lower total dose than would be needed to effect the same degree of graft polymerization by continuous exposure to ionizing radiation, at the same or higher dose rates. That is, I have found quite unexpectedly that 20 exposures at 0.001 megarad per second, with a time-heating interval of /2 minute to about 1 hour between exposures, depending on the monomer system, yields much more polymerization, and consequently less degradation, than does a continuous exposure at 0.001 megarad per second for 20 seconds.
It has been found in the course of research on the effects of ionizing radiation that exposure to ionizing radiation of cellulosic, keratinous and plastics bases above certain dose rates causes them to deteriorate, with resultant loss in strength. The limit of permissible single dose rates varies depending on the material; thus, I have found that cellulos-ic material such as dry cotton and dry paper can withstand a single dose of about .1 megarad of ionizing irradiation without apparent deteriorative effect; leather can similarly Withstand a single dose of about 2 megarads of ionizing irradiation without suffering detectable degradation. The term megarad as used herein, refers to a dose of ionizing radiation which produces an energy absorption of 100x10 ergs per gram of irradiated substance. The term megarad has now replaced the term megarep which latter term represents the quantity of ionizing radiation which produces energy absorption of 83x10 ergs per gram of tissue; thus, 1 megarep=.83 megarad, or 1 megarad=1.2 megareps (approx).
It is not possible to polymerize most monomeric vinyl compounds by ionizing irradiation at a single dosage of .1 megarad, which is the approximate limit to which a cellulosic base can be safely exposed at a single exposure. In the case of leather, no satisfactory bonding between silicone resin coating and leather base can be effected by exposure to a single dosage of about 2 megarads, which is the safe dosage limit for a leather base.
Analogous observations were made in the course of attempts to apply a coating to a synthetic plastics base, such as nylon, by ionizing irradiation of the coating.
I have now discovered that the foregoing disadvantages can be overcome by exposure of the coated base to a Patented Feb. 22, 1966 plurality of dosages below the safe limit for the particular base, provided that the successive exposures are separated by intervals permitting at least partial completion of the chain reactions initiated by the ionizing irradiation. In the case of a cotton base, from 5 to 40 individual exposures at 0.001 to .1 megarad each, have enabled me to produce a highly satisfactory vinyl-type coating, without detectable injury to the base. Evidently, the effects of the repeated exposures to ionizing radiation are cumulalive or nearly cumulative upon the vinyl coating, While the deleterious effects on the base are either obscured by the grafting process and/or essentially non-cumulative.
Similarly, I have produced strongly adherent silicone coatings on leather by repeated exposure of the coated leather to dosages of ionizing radiation at a dosage rate of not more than 2 megarads per exposure, preferably about 1.66 megarads per exposure. At predetermined intervals between successive exposures even as many as 10 passes were found to be substantially non-injurious to the leather, and strongly adherent silicone coatings were formed after 4 or more passes, the optimum being about 7 to 8 passes.
Among bases that can be coated in accordance with my invention are oellulosic bases such as cotton or paper; keratinous bases, such as leather, wool, or feathers, and plastics bases in the form of woven textiles or self-supporting film sheets, e.g., nylon, cellulose acetate, Acrilan (a mixed polymer of about acrylonitrile and 15% vinyl (derivatives), Dacron (ethylene glycol and terephthalic acid polyester), Dynel (vinyl chloride and acrylonitrile copolymer), Mylar (polyethylene terephthalate), Orlon (polyacrylonitrile), polyethylene, Teflon (polymerized perfluoroethylene, Kel-F (polymeric chlorotrifluoroethylene).
The foregoing bases are of a polymeric nature, i,e., cellulose can be represented as a polymeric anhydride of dextrose; a keratin is a natural amino acid polymer, and a plastics surface of the nylon type is a synthetic polyamide polymer. My studies have shown that the ionizing radiation of such a base, coated with polymerizable vinyltype or silicone coating, produces a grafting of the coating material onto the polymeric base, which accounts for the strength of the adhesion of the irradiated polymerized coating.
Among other suitable polymerizable vinyl type compounds for the practice of my invention are, e.g., acrylonitrile, methyl acrylate, ethyl acrylate, propyl acrylate, butyl acrylate, heptyl acrylate, fluorinated propyl acrylate, fiuorinated heptyl acrylate, allyl acrylate, vinyl acrylate, methyl methacrylate, ethyl methacrylate, styrene, vinyl toluene, vinyl acetate, isoprene, triallyl phosphate, vinyl triethoxy siloxane.
Other suitable silicones beside vinyl triethoxy siloxane are those disclosed in Patents Nos. 2,258,218 to 2,258,222, Rochow, assigned to General Electric Co.; still other suitable silicones characterized by organo-substituted polyfunctional repeating SiO units are produced by Dow- Corning Corp., e.g., the Silastic series.
Moderate heating to a point non-injurious to the base, say to about 40-85 C. assists in the formation of the graft polymer and enables a reduction of the total dosage of ionizing radiation. Exclusion of atmospheric oxygen during and between exposures to ionizing radiation, either by means of a vacuum, or by substitution of an inert atmosphere, e.g., CO nitrogen, argon or helium has a very beneficial effect on the graft polymer formation, and may be combined with the moderate heating.
Polymerization promoters, such as acrylic acid or methacrylic acid, are useful in assisting the formation of a vinyl-type graft polymer by low dosage ionizing irradiation in accordance with the present invention.
The interval between successive exposures to ionizing radiation may be as short as /2 minute, and is preferably between about 15 minutes and about 1 hour. Generally, the longer the interval, the greater is the amount of graft polymerization obtained per unit of irradiation energy. However, if the intervals are too long, the manufacturing time of the coating process tends to become more expensive, unless a continuous cycle of the material being processed is maintained.
The individual passes (exposures) are rather short, e.g., /2 to about 4 seconds, preferably about 4 seconds per pass.
An effective source of ionizing radiation is a high energy electron accelerator of the Van de Graaff type. A commercially available model has a 2,000,000 electron volt (2 mev.) capacity; smaller competing electron accelerators now on the market have about 100,000 electron volt capacity. Another suitable source of ionizing radiation for the purposes of the present invention is gamma irradiation, e.g., from C Example I Cotton duck was coated with a 1:1 mixture of monomeric acrylonitrile and butyl acrylate, and subjected to ionizing irradiation at a dosage of .1 megarad per pass, with intervals of 1 hour between passes. During each interval, a 75 C. controlled temperature was applied. The amount of graft polymer deposited on the cotton base was measured in percentage of added weight (add- All samples were post-heated after each pass under the beam. The tensile strength of the treated coated cotton was in each case about the same as the untreated coated cotton.
Example ll Example I was repeated on cotton duck with monomeric vinyl acrylate and a C0 inert atmosphere. The following results were obtained:
percent add-on passes at- .001 megarad 1.6 .005 megarad *7.3 .025 megarad 21.8 .05 megarad 25.6
.1 megarad 26.8
Similar coatings were formed on nylon cloth, wool cloth, and mixed wool-nylon fabric.
Example III Kraft paper was coated with monomeric butyl acrylate and subjected to 6 passes at .06 megarad each under the same temperature conditions and with the same intervals between exposures to ionizing radiation as in Example I. An add-on of was obtained. With styrene, the add-on on the kraft paper was 39%. The amount of add-on Was determined by repeated extractions with methyl ethyl ketone which removed all coating that was not chemically bound to the paper base by graft polymerization.
Example IV 40 parts of ground chrome-tanned leather were impregnated by milling with 60 parts of Dow-Corning Silastic organosiloxane (Silastic 5303), pressed into sheets at 1000 p.s.i., and irradiated at room temperature at 1.66 megarads (2 megareps) per pass, with 15 minute intervals between passes. The sheet material becomes increasingly stronger after the 4th pass, and tensile strength is at an optimum after 7 to 8 passes. No further improvement was noted after the 9th and 10th pass.
The coatings can be formed on one or both sides of the flexible sheet base (cotton, paper, fabric, etc.).
Having thus described several examples of the formation of graft polymer coatings by repeated exposure to ionizing radiation at controlled low dosages which are individually non-injurious to the base but sufficient in the aggregate to form the desired graft polymers, I now define the scope of my invention by the appended claims.
I claim:
1. Method of grafting a polymeric coating on the cellulose molecules of paper, comprising coating a surface of said paper with a monomer having a polymerizable vinyl group,
exposing said coatedsurface to high energy ionizing radiation equivalent to at least about 100,000 electron volts at a dosage of not more than about 100,000 rads per pass,
said dosage being less than the dosage needed for completely polymerizing said monomer,
and repeating said exposure until said monomer has polymerized and is grafted on said paper,
the intervals between successive exposures being at least about 15 minutes each,
said paper being at an elevated temperature of about 40-85 C. during said intervals.
2. Method according to claim 1, wherein said monomer is a member of the group consisting of acrylates and methacrylates.
3. Method according to claim 1, wherein said monomer is butyl acrylate.
4. Method according to claim 1, wherein said monomer is styrene.
5. Method according to claim 1, wherein the interval between successive exposures is about 1 hour.
References Cited by the Examiner UNITED STATES PATENTS 2,983,657 5/1961 Gabilly etal 204154 2,999,056 9/1961 Tanner 204154 3,001,922 9/1961 Zimm 1 204'-154 3,101,276 8/1963 Hendricks I 204l54 MURRAY TILLMAN, Primary Examiner.
a WILBUR L. BASCOMB, Assistant Examiner.
Claims (1)
1. METHOD OF GRAFTING A POLYMERIC COATING ON THE CELLULOSE MOLECULES OF PAPER, COMPRISING COATING A SURFACE OF SAID PAPER WITH A MONOMER HAVING A POLYMERIZABLE VINYL GROUP, EXPOSING SAID COATED SURFACE TO HIGH ENERGY IONIZING RADIATION EQUIVALENT TO AT LEAST ABOUT 100,000 ELECTRON VOLTS AT A DOSAGE OF NOT MORE THAN ABOUT 100,000 RADS PER PASS, SAID DOSAGE BEING LESS THAN DOSAGE NEEDED FOR COMPLETELY POLYMERIZING SAID MONOMER, AND REPEATING SAID EXPOSURE UNTIL SAID MONOMER HAS POLYMERIZED AND IS GRAFTED ON SAID PAPER, THE INTERVALS BETWEEN SUCCESSIVE EXPOSURES BEING AT LEAST ABOUT 15 MINUTES EACH, SAID PAPER BEING AT AN ELEVATED TEMPERATURE OF ABOUT 40*-85*C. DURING SAID INTERVALS.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US242343A US3236584A (en) | 1960-03-23 | 1962-11-08 | Graft polymerization on a paper base by ionizing radiation |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US1722860A | 1960-03-23 | 1960-03-23 | |
US242343A US3236584A (en) | 1960-03-23 | 1962-11-08 | Graft polymerization on a paper base by ionizing radiation |
Publications (1)
Publication Number | Publication Date |
---|---|
US3236584A true US3236584A (en) | 1966-02-22 |
Family
ID=26689615
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US242343A Expired - Lifetime US3236584A (en) | 1960-03-23 | 1962-11-08 | Graft polymerization on a paper base by ionizing radiation |
Country Status (1)
Country | Link |
---|---|
US (1) | US3236584A (en) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3467488A (en) * | 1962-05-16 | 1969-09-16 | Radiation Processing Inc | Radiation grafting of mono- and diacrylates of lower polyhydric alcohols and polyhydric alcohol ethers to cotton and wool |
US3909195A (en) * | 1962-12-06 | 1975-09-30 | Deering Milliken Res Corp | Process of modifying textile materials with polymerizable monomers |
US4743267A (en) * | 1982-06-21 | 1988-05-10 | International Yarn Corporation Of Tennessee | Process for improving polymer fiber properties and fibers produced thereby |
US5407728A (en) * | 1992-01-30 | 1995-04-18 | Reeves Brothers, Inc. | Fabric containing graft polymer thereon |
US5486210A (en) * | 1992-01-30 | 1996-01-23 | Reeves Brothers, Inc. | Air bag fabric containing graft polymer thereon |
US20030004223A1 (en) * | 2001-05-16 | 2003-01-02 | Alcatel | UV-curable acrylate coatings for food packaging |
US6610810B2 (en) * | 2001-03-13 | 2003-08-26 | Glyn Owen Phillips | Biopolymers obtained by solid state irradiation in an unsaturated gaseous atmosphere |
US6638319B2 (en) | 2001-04-04 | 2003-10-28 | Healthtex Apparel Corp. | Polymer for printed cotton |
US6645256B2 (en) | 2001-04-04 | 2003-11-11 | Healthtex Apparel Corp. | Polymer grafted cotton |
US6645255B2 (en) | 2001-04-04 | 2003-11-11 | Healthtex Apparel Corp. | Polymer-grafted stretchable cotton |
US20040253196A1 (en) * | 2000-04-14 | 2004-12-16 | Cosmetica, Inc. | Nanoscopic hair care products |
US20070108418A1 (en) * | 2005-08-09 | 2007-05-17 | Soane Laboratories, Llc | Hair hold formulations |
US20100093241A1 (en) * | 2008-04-30 | 2010-04-15 | Xyleco, Inc. | Textiles and methods and systems for producing textiles |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2983657A (en) * | 1956-04-14 | 1961-05-09 | Saint Gobain | Manufacture of grafted polymers |
US2999056A (en) * | 1956-10-04 | 1961-09-05 | Du Pont | Irradiation bonding of acidic compounds to shaped polymeric structures |
US3001922A (en) * | 1955-12-19 | 1961-09-26 | Gen Electric | Polymers |
US3101276A (en) * | 1957-07-08 | 1963-08-20 | Du Pont | Process for grafting polymers to cellulose substrates |
-
1962
- 1962-11-08 US US242343A patent/US3236584A/en not_active Expired - Lifetime
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3001922A (en) * | 1955-12-19 | 1961-09-26 | Gen Electric | Polymers |
US2983657A (en) * | 1956-04-14 | 1961-05-09 | Saint Gobain | Manufacture of grafted polymers |
US2999056A (en) * | 1956-10-04 | 1961-09-05 | Du Pont | Irradiation bonding of acidic compounds to shaped polymeric structures |
US3101276A (en) * | 1957-07-08 | 1963-08-20 | Du Pont | Process for grafting polymers to cellulose substrates |
Cited By (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3467488A (en) * | 1962-05-16 | 1969-09-16 | Radiation Processing Inc | Radiation grafting of mono- and diacrylates of lower polyhydric alcohols and polyhydric alcohol ethers to cotton and wool |
US3909195A (en) * | 1962-12-06 | 1975-09-30 | Deering Milliken Res Corp | Process of modifying textile materials with polymerizable monomers |
US4743267A (en) * | 1982-06-21 | 1988-05-10 | International Yarn Corporation Of Tennessee | Process for improving polymer fiber properties and fibers produced thereby |
US5407728A (en) * | 1992-01-30 | 1995-04-18 | Reeves Brothers, Inc. | Fabric containing graft polymer thereon |
US5486210A (en) * | 1992-01-30 | 1996-01-23 | Reeves Brothers, Inc. | Air bag fabric containing graft polymer thereon |
US5552472A (en) * | 1992-01-30 | 1996-09-03 | Reeves Brothers, Inc. | Fabric containing graft polymer thereon |
US20040253196A1 (en) * | 2000-04-14 | 2004-12-16 | Cosmetica, Inc. | Nanoscopic hair care products |
US7968084B2 (en) * | 2000-04-14 | 2011-06-28 | Boston Cosmetics, Llc | Nanoscopic hair care products |
US6841644B2 (en) * | 2001-03-13 | 2005-01-11 | Phillips Hydrocolloids Research Limited | Biopolymers obtained by solid state irradiation in an unsaturated gaseous atmosphere |
US6610810B2 (en) * | 2001-03-13 | 2003-08-26 | Glyn Owen Phillips | Biopolymers obtained by solid state irradiation in an unsaturated gaseous atmosphere |
RU2280038C2 (en) * | 2001-03-13 | 2006-07-20 | Сан-ей Джен. Ф.Ф.И., Инк. | New biopolymers produced by irradiation in the solid phase in the atmosphere of the unsaturated gases |
WO2002072862A3 (en) * | 2001-03-13 | 2005-06-30 | Phillips Hydrocolloids Res Ltd | New biopolymers obtained by solid state irradiation in an unsaturated gaseous atmosphere |
US20040059097A1 (en) * | 2001-03-13 | 2004-03-25 | Phillips Glyn Owen | Biopolymers obtained by solid state irradiation in an unsaturated gaseous atmosphere |
US20040072948A1 (en) * | 2001-04-04 | 2004-04-15 | Sanduja Mohan L. | Polymer-grafted stretchable cotton |
US6638319B2 (en) | 2001-04-04 | 2003-10-28 | Healthtex Apparel Corp. | Polymer for printed cotton |
US6645256B2 (en) | 2001-04-04 | 2003-11-11 | Healthtex Apparel Corp. | Polymer grafted cotton |
US6908976B2 (en) | 2001-04-04 | 2005-06-21 | Healthtex Apparel Corp. | Polymer-grafted stretchable cotton |
US6645255B2 (en) | 2001-04-04 | 2003-11-11 | Healthtex Apparel Corp. | Polymer-grafted stretchable cotton |
US6900252B2 (en) | 2001-05-16 | 2005-05-31 | Alcatel | UV-curable acrylate coatings for food packaging |
EP1260557A3 (en) * | 2001-05-16 | 2003-12-03 | Alcatel | UV-curable acrylate coatings for food packaging |
US20030004223A1 (en) * | 2001-05-16 | 2003-01-02 | Alcatel | UV-curable acrylate coatings for food packaging |
US20070108418A1 (en) * | 2005-08-09 | 2007-05-17 | Soane Laboratories, Llc | Hair hold formulations |
US20100093241A1 (en) * | 2008-04-30 | 2010-04-15 | Xyleco, Inc. | Textiles and methods and systems for producing textiles |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3236584A (en) | Graft polymerization on a paper base by ionizing radiation | |
US3897295A (en) | Ionizing radiation method for forming acrylic pressure sensitive adhesives and coated substrates | |
US5232748A (en) | Method of grafting polymerizable monomers onto substrates | |
US3961379A (en) | Bioimplantable device from crosslinked, swollen, hydrophilic polymers | |
US5342659A (en) | Method of grafting polymerizable monomers onto substrates | |
US3111424A (en) | Process of coating irradiated polymer substrates | |
US2998329A (en) | Modification of cellulosic articles | |
US3522158A (en) | Production of graft polymers or copolymers by the use of radiation | |
US3137674A (en) | Polyethylene modified with a vinyl compound | |
US3236923A (en) | Graft polymerization of an organosiloxane coating on leather by ionizing radiation | |
US2983657A (en) | Manufacture of grafted polymers | |
Blouin et al. | Post-irradiation grafted vinyl-cellulose copolymers | |
US3338985A (en) | Graft copolymers of epoxyethylene groups of polyamide or polyester substrates | |
US3567606A (en) | Radiation induced graft copolymerization | |
US3201336A (en) | Graft polymerization utilizing ionizing radiation | |
Garnett et al. | Additive effects common to radiation grafting and wood plastic composite formation | |
US3606993A (en) | Durable press cotton textile products produced conducting graft copolymerization process followed by cross-linking with dmdheu | |
US3372100A (en) | Process for improving the properties of a polymer by cross-linking in the presence of radiation | |
DE2103996C3 (en) | Process for the production of moldings from an acrylic polymer / monomer mixture | |
Egboh et al. | The γ-radiation induced grafting of unsaturated segmented polyurethanes with N-vinyl pyrrolidone | |
US3325385A (en) | Preparation of a graft copolymer of acrylonitrile monomer onto a waterwet nitrocellulose polymer | |
US3310605A (en) | Two step grafting using trapper radical system | |
DE2255622A1 (en) | Surface-modification of polymer films, fibres, etc. - by formation of caten-ane - or rotaxane-like bonds by a grafting reaction | |
Horio et al. | Polymerization of Styrene, Methyl Methacrylate and Acrylonitrile onto Wool by Gamma Irradiation: Preliminary Report (Special Issue on Physical, Chemical and Biological Effects of Gamma Radiation, IV) | |
Walsh et al. | Electron-beam-initiated grafting of flame retardants to fabrics containing cellulose. I. Reaction rate studies |