JPS6323829B2 - - Google Patents

Info

Publication number
JPS6323829B2
JPS6323829B2 JP55078540A JP7854080A JPS6323829B2 JP S6323829 B2 JPS6323829 B2 JP S6323829B2 JP 55078540 A JP55078540 A JP 55078540A JP 7854080 A JP7854080 A JP 7854080A JP S6323829 B2 JPS6323829 B2 JP S6323829B2
Authority
JP
Japan
Prior art keywords
protein
adsorbent
acrylonitrile
adsorption
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55078540A
Other languages
Japanese (ja)
Other versions
JPS574229A (en
Inventor
Zenjiro Momyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP7854080A priority Critical patent/JPS574229A/en
Publication of JPS574229A publication Critical patent/JPS574229A/en
Publication of JPS6323829B2 publication Critical patent/JPS6323829B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Treatment Of Liquids With Adsorbents In General (AREA)
  • Water Treatment By Sorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、水性液体中からCrイオン、Uイオ
ンのような金属イオンを選択的に、かつ効率よく
吸着する金属イオン吸着材に関する。 工業廃水、鉱山廃水等の廃水中にはCrイオン、
Mnイオン、のような有毒な重金属イオンを含有
する場合が多く、その処理には非常な苦心を要す
る。これらの重金属イオンを吸着する材料として
はイオン交換樹脂、低分子キレート剤、キレート
性交換樹脂、珪藻土、ゼオライト、クラウンエー
テルなど種々のものが開発されているが、製造コ
ストが高価であつたり、性能が劣つていたりして
充分な効果を発揮する吸着材は見出せなかつた。 また近年、海水中に微量含まれるウラン、希土
類元素等の貴重な資源を吸着、濃縮しようとする
試みがなされ、これについても幾多の吸着材が提
案されている。しかし、多量の海水から微量の金
属を回収するのであるから吸着材が選択吸着能に
きわめてすぐれていること、特に低濃度における
吸着力にすぐれていることが要求されるが、まだ
充分な効果は挙げられていない。 従来から金属イオンの吸着材として羊毛、毛
髪、羽毛のような蛋白系繊維又はその加工物を使
用することが試みられている。例えば特開昭48−
7891公報には毛髪、羽毛等を塩素化したものを水
銀除去用マスクの充填吸着材として用いて、水銀
蒸気を吸着する提案がなされている。また特開昭
49−16693号公報には、羊毛、絹のような動物繊
維を還元処理したものを重金属捕集材として使用
する試みがなされている。更に特開昭52−63190、
特開昭52−64151公報には、羊毛類を機械的に加
工して不織布としたものを水銀吸着用シートとし
て使用する試みが開示されており、また特開昭54
−89987公報には羽毛のようなケラチン含有成分
を砒素捕集材として使用することが試みられてい
る。 これらの先行技術は、それぞれ金属イオン吸着
の効果を発揮するのであるが、次のような欠点が
ある。すなわち羊毛、絹、羽毛のような天然蛋白
繊維をそのまま水性液体中に収めて金属イオンの
吸着をさせる場合には、繊維表面の緻密組織によ
るものか明らかでないが充分な吸着効果を挙げる
ことができない。一方、上記蛋白繊維を化学処理
したものは、水性媒体との接触は良好であるが、
膨潤が甚しく大きくなつて、究極的に水性媒体と
の接触が悪くなり、充分な吸着効果を挙げること
ができない。 本発明は、従来のこのような生体の生産した組
織化された蛋白繊維を使用するという考え方から
発想転換して非繊維蛋白を使用して金属イオンを
吸着するものである。すなわち、本発明は蛋白と
ビニル系単量体との混成重合体、特に蛋白−アク
リロニトリル混成重合体からなる金属イオン吸着
材である。 本発明の吸着材は、従来の吸着材に比してすぐ
れた吸着能を示す。 本発明の蛋白−ビニル系単量体との混成重合体
は、一部が蛋白とグラフト重合し、他は蛋白とビ
ニル系重合体とが均一に混合しあつている重合体
であつて、繊維状、膜状、粉末状、類粒状等、任
意の形状で水性媒体中で使用される。該金属イオ
ン吸着材は媒体中に分散させたり、固定床の状態
で適用される。 本発明の吸着材に使用する蛋白には、大豆蛋
白、牛乳蛋白、ゼラチン、コラーゲン、卵白、羽
毛蛋白、絹フイブロイン、絹セリシン、羊毛分解
物等の各種の蛋白が含まれる。またビニル系単量
体としては、アクリロニトリル、アクリルアミ
ド、アクリル酸、塩化ビニル等の1種または2種
以上が用いられる。特にアクリロニトリル又はア
クリロニトリルと少量の他のビニル系単量体との
混合物が好ましい。蛋白とビニル系単量体との混
合比率は重量比で10:1〜1:50が適当である。 混成重合体の製造法を蛋白−アクリロニトリル
混成重合体に例をとつて説明すると、50%〜70%
の塩化亜鉛水溶液に蛋白とアクリロニトリルとの
比が好ましくは3:1〜1:20になるように混合
して、これに過流酸塩、クメンパーオキサイド等
の過酸化物を少量加えて、重合反応させる。重合
後、この重合液を繊維、フイルム、顆粒等に成形
して使用する。 上記吸着材は、他の金属イオン吸着材を併用し
てもよい。また本発明の吸着材の担体を使用する
手段もある。例えば水不溶性の繊維、フイルム等
の表面に上記吸着材を接着させて使用する手段も
あり、多孔質体の内部に保持させて使用する手段
もある。 本発明の吸着材を適用しうる金属イオンには、
周期律表でIa族を除く全金属元素が含まれる。特
に水銀、カドミウム、クロム金、コバルト、ニツ
ケル、マンガン、砒素のような重金属、イツトリ
ウムを初め、サマリウム、ランタン、スカンジウ
ム等の希土類金属、ウラン、ラジウム、プルトニ
ウム等の放射性金属に有効である。 また吸着処理媒体として使用する水性媒体とし
ては、水100%の媒体、他の有機溶剤との混合物
(水溶液、水性エマルジヨン等)等があるが、水
は全体の5%以上、好ましくは10%以上含まれる
ものである。 通常、吸着処理においては、処理液のPHが大き
な影響を与えることが多いが、本発明の吸着材
は、特に強い酸性又はアルカリ性でない限り使用
可能である。本発明の対象となる金属は、中性又
は酸性側で存在することが多いが、本発明の吸着
材は、処理条件が酸性側であつても充分にその能
力を発揮する。 次に実施例について本発明を説明する。 実施例 1 ミルクカゼイン2.2重量部とアクリロニトリル
5重量部とを60%塩化亜鉛水溶液43重量部に溶解
し、これに過硫酸アンモニウム0.06重量部を添加
して20℃で2時間重合を行つた。アクリロニトリ
ルの重合体転化率は99.5%であつた。かくして得
られた重合体溶液を脱泡したのち、紡糸口金を通
して0℃の30重量%塩化亜鉛凝固浴中に紡糸し、
形成された凝固系条を水洗し、次いで該系条を
120℃の加熱蒸気中で7倍に延伸したのち、16%
の収縮を与えつつ乾燥し、単糸2デニールの糸と
して巻き取つた。また別に、水洗直後の糸を未延
伸糸としてサンプリングし、流水中で充分洗浄し
たのち、風乾した。 一方、鉄イオンを含む溶液のモデルとして、塩
化第2鉄の水溶液を0.1〜0.00001モルの各濃度に
調製し、これらの溶液各100c.c.中に、上記蛋白−
アクリロニトリル混成重合体の延伸糸及び未延伸
糸を各1g(絶乾重量)を添加し、室温で60分間
放置したあと、フイルターによつて別し、その
液について鉄イオン濃度を分析した。結果は第
1表のとおりである。また比較のため、市販のア
クリル繊維を精練処理したものと市販の羊毛繊維
を精練処理したものとを用いて同様に吸着処理を
施した。結果は第1表に合わせて記入した。
The present invention relates to a metal ion adsorbent that selectively and efficiently adsorbs metal ions such as Cr ions and U ions from an aqueous liquid. Wastewater such as industrial wastewater and mine wastewater contains Cr ions,
They often contain toxic heavy metal ions such as Mn ions, and their treatment requires great effort. Various materials have been developed to adsorb these heavy metal ions, such as ion exchange resins, low-molecular chelating agents, chelating exchange resins, diatomaceous earth, zeolites, and crown ethers, but they are expensive to manufacture and have poor performance. However, it was not possible to find an adsorbent that exhibited sufficient effectiveness. Furthermore, in recent years, attempts have been made to adsorb and concentrate valuable resources such as uranium and rare earth elements contained in trace amounts in seawater, and a number of adsorbents have been proposed for this purpose as well. However, since trace amounts of metals are recovered from large amounts of seawater, the adsorbent must have extremely high selective adsorption ability, especially at low concentrations, but it is still not sufficiently effective. Not mentioned. Conventionally, attempts have been made to use protein fibers such as wool, hair, and feathers, or processed products thereof, as adsorbents for metal ions. For example, JP-A-48-
Publication No. 7891 proposes to adsorb mercury vapor by using chlorinated hair, feathers, etc. as an adsorbent filling material for mercury removal masks. Also Tokkai Akira
No. 49-16693 attempts to use reduced animal fibers such as wool and silk as a heavy metal trapping material. Furthermore, JP-A-52-63190,
Japanese Unexamined Patent Publication No. 52-64151 discloses an attempt to use a non-woven fabric made by mechanically processing wool as a mercury adsorption sheet;
Publication No. 89987 attempts to use a keratin-containing component such as feathers as an arsenic trapping material. Although each of these prior art techniques exhibits the effect of adsorbing metal ions, they have the following drawbacks. In other words, when natural protein fibers such as wool, silk, and feathers are immersed in an aqueous liquid and allowed to adsorb metal ions, a sufficient adsorption effect cannot be achieved, although it is unclear whether this is due to the dense structure of the fiber surface. . On the other hand, the chemically treated protein fibers have good contact with aqueous media, but
The swelling becomes extremely large, ultimately resulting in poor contact with the aqueous medium, and a sufficient adsorption effect cannot be achieved. The present invention changes from the conventional concept of using organized protein fibers produced by living organisms to adsorb metal ions using non-fibrous proteins. That is, the present invention is a metal ion adsorbent made of a hybrid polymer of protein and a vinyl monomer, particularly a protein-acrylonitrile hybrid polymer. The adsorbent of the present invention exhibits superior adsorption capacity compared to conventional adsorbents. The protein-vinyl monomer hybrid polymer of the present invention is a polymer in which a part of the protein is graft-polymerized with the protein, and the other part is a homogeneous mixture of the protein and the vinyl monomer. It can be used in an aqueous medium in any form such as solid, film, powder, or similar granules. The metal ion adsorbent may be dispersed in a medium or applied in a fixed bed. Proteins used in the adsorbent of the present invention include various proteins such as soybean protein, milk protein, gelatin, collagen, egg white, feather protein, silk fibroin, silk sericin, and wool decomposition products. As the vinyl monomer, one or more of acrylonitrile, acrylamide, acrylic acid, vinyl chloride, etc. can be used. Particularly preferred is acrylonitrile or a mixture of acrylonitrile and a small amount of other vinyl monomer. A suitable mixing ratio of protein and vinyl monomer is 10:1 to 1:50 by weight. To explain the method for producing a hybrid polymer using a protein-acrylonitrile hybrid polymer as an example, 50% to 70%
Mix protein and acrylonitrile in an aqueous solution of zinc chloride so that the ratio is preferably 3:1 to 1:20, add a small amount of peroxide such as persulfate or cumene peroxide, and polymerize. Make it react. After polymerization, this polymerization solution is used by forming into fibers, films, granules, etc. The above adsorbent may be used in combination with other metal ion adsorbents. There is also a means of using the adsorbent carrier of the present invention. For example, there is a method of adhering the adsorbent to the surface of water-insoluble fibers, films, etc., and there is also a method of using the adsorbent by holding it inside a porous body. Metal ions to which the adsorbent of the present invention can be applied include:
Contains all metal elements in the periodic table except group Ia. It is particularly effective against heavy metals such as mercury, cadmium, chromium gold, cobalt, nickel, manganese, and arsenic, yttrium, rare earth metals such as samarium, lanthanum, and scandium, and radioactive metals such as uranium, radium, and plutonium. The aqueous medium used as the adsorption treatment medium includes 100% water and mixtures with other organic solvents (aqueous solutions, aqueous emulsions, etc.), but water accounts for at least 5% of the total, preferably at least 10%. It is included. Normally, in adsorption treatment, the pH of the treatment liquid often has a large effect, but the adsorbent of the present invention can be used as long as it is not particularly strongly acidic or alkaline. The metals targeted by the present invention often exist in neutral or acidic conditions, but the adsorbent of the present invention sufficiently exhibits its ability even under acidic treatment conditions. Next, the present invention will be explained with reference to examples. Example 1 2.2 parts by weight of milk casein and 5 parts by weight of acrylonitrile were dissolved in 43 parts by weight of a 60% zinc chloride aqueous solution, 0.06 parts by weight of ammonium persulfate was added thereto, and polymerization was carried out at 20°C for 2 hours. The polymer conversion rate of acrylonitrile was 99.5%. After degassing the polymer solution thus obtained, it was spun through a spinneret into a 30% by weight zinc chloride coagulation bath at 0°C.
The formed coagulation system is washed with water, and then the system is
16% after stretching 7 times in heated steam at 120℃
It was dried while giving the same shrinkage and was wound up as a single yarn of 2 denier. Separately, the yarn immediately after washing with water was sampled as an undrawn yarn, thoroughly washed under running water, and then air-dried. On the other hand, as a model for a solution containing iron ions, aqueous solutions of ferric chloride were prepared at concentrations of 0.1 to 0.00001 mol, and in 100 c.c. of each of these solutions, the above protein-
1 g each (absolute dry weight) of drawn yarn and undrawn yarn of an acrylonitrile hybrid polymer were added, and after being left at room temperature for 60 minutes, the mixture was separated using a filter, and the resulting liquid was analyzed for iron ion concentration. The results are shown in Table 1. For comparison, commercially available acrylic fibers subjected to scouring treatment and commercially available wool fibers subjected to scouring treatment were similarly subjected to adsorption treatment. The results were entered according to Table 1.

【表】 第1表から明らかなように、本発明の吸着剤は
Feに対して強い吸着力を示し、市販アクリル
繊維、市販羊毛繊維よりも格段とすぐれているこ
とが分かる。また特に、低濃度における吸着力が
すぐれていることが分かる。 実施例 2 実施例1と同様にして作成した蛋白−アクリロ
ニトリル混成重合体繊維を用いてクロムイオンの
吸着試験を行つた。 クロムイオンの原子吸光分析用標準試薬
(1000ppm)を用いて水で希釈し、所定濃度の水
溶液を調製した。この液100c.c.に上記蛋白−アク
リロニトリル混成重合体繊維を1g(絶乾重量)
添加し、室温で60分間放置したのち、フイルター
を用いて濾別し、その濾液について金属イオン濃
度を原子吸光法により分析した。結果はまとめて
第2表に示した。
[Table] As is clear from Table 1, the adsorbent of the present invention
It shows strong adsorption power for Fe, which is far superior to commercially available acrylic fibers and commercially available wool fibers. It is also clear that the adsorption power is especially excellent at low concentrations. Example 2 A chromium ion adsorption test was conducted using a protein-acrylonitrile hybrid polymer fiber prepared in the same manner as in Example 1. A standard reagent for chromium ion atomic absorption spectrometry analysis (1000 ppm) was diluted with water to prepare an aqueous solution with a predetermined concentration. Add 1 g (absolute dry weight) of the above protein-acrylonitrile hybrid polymer fiber to 100 c.c. of this liquid.
After the mixture was added and left at room temperature for 60 minutes, it was filtered using a filter, and the filtrate was analyzed for metal ion concentration by atomic absorption spectrometry. The results are summarized in Table 2.

【表】 第2表から明らかなように、本発明の吸着材は
Cr6+に対してきわめてすぐれた吸着能力を有する
ことが分かる。 実施例 3 実施例1におけるミルクカゼインの代わりに大
豆蛋白を用い、実施例1の処方で重合した。アク
リロニトリルの重合体転化率は99.0%であつた。
得られた重合体溶液を実施例1と同様の方法で脱
泡したのち、紡糸した。 得られた未延伸糸及び延伸糸についてFe+++
Cr6+,Cd++の各10ppmを含む混合液を室温で60分
間処理した結果は、第3表のとおりであり、各イ
オンに対し有効な吸着挙動を示している。
[Table] As is clear from Table 2, the adsorbent of the present invention
It can be seen that it has an extremely excellent adsorption ability for Cr 6+ . Example 3 Soybean protein was used instead of milk casein in Example 1, and polymerization was carried out according to the recipe of Example 1. The polymer conversion rate of acrylonitrile was 99.0%.
The obtained polymer solution was defoamed in the same manner as in Example 1, and then spun. Fe +++ for the obtained undrawn yarn and drawn yarn,
Table 3 shows the results of treating a mixed solution containing 10 ppm each of Cr 6+ and Cd ++ for 60 minutes at room temperature, showing effective adsorption behavior for each ion.

【表】 実施例 4 酢酸ウラニルをウラニウム換算で10ppm含む水
溶液を純水、又は海水を用いて2種類の溶液を調
整し、その各溶液500c.c.中に実施例1と同様な方
法で作製したミルクカゼイン−ポリアクリロニト
リル重合体の延伸糸及び未延伸糸を各1g(絶乾
重量)を添加し、30℃で3日間放置した。その後
フイルターによつて別し、その液についてオ
キシクロロフオルム抽出法により分析した。その
結果は第4表のとおりである。
[Table] Example 4 Two types of aqueous solutions containing 10 ppm of uranyl acetate in terms of uranium were prepared using pure water or seawater, and each solution was prepared in the same manner as in Example 1 in 500 c.c. 1 g each (absolute dry weight) of drawn and undrawn milk casein-polyacrylonitrile polymer yarns were added thereto, and the mixture was left at 30° C. for 3 days. Thereafter, the mixture was separated using a filter, and the resulting liquid was analyzed by oxychloroform extraction. The results are shown in Table 4.

【表】【table】

Claims (1)

【特許請求の範囲】 1 蛋白とビニル系単量体との混成重合体からな
る金属イオン吸着材。 2 蛋白とビニル系単量体との混合比率が重量比
で10:1〜1:50である特許請求の範囲第1項記
載の金属イオン吸着材。 3 ビニル系単量体がアクリロニトリルである特
許請求の範囲第1項又は第2項記載の金属イオン
吸着材。
[Claims] 1. A metal ion adsorbent comprising a hybrid polymer of protein and vinyl monomer. 2. The metal ion adsorbent according to claim 1, wherein the mixing ratio of protein and vinyl monomer is 10:1 to 1:50 by weight. 3. The metal ion adsorbent according to claim 1 or 2, wherein the vinyl monomer is acrylonitrile.
JP7854080A 1980-06-10 1980-06-10 Metallic ion adsorbent Granted JPS574229A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7854080A JPS574229A (en) 1980-06-10 1980-06-10 Metallic ion adsorbent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7854080A JPS574229A (en) 1980-06-10 1980-06-10 Metallic ion adsorbent

Publications (2)

Publication Number Publication Date
JPS574229A JPS574229A (en) 1982-01-09
JPS6323829B2 true JPS6323829B2 (en) 1988-05-18

Family

ID=13664738

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7854080A Granted JPS574229A (en) 1980-06-10 1980-06-10 Metallic ion adsorbent

Country Status (1)

Country Link
JP (1) JPS574229A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02113622A (en) * 1988-10-21 1990-04-25 Nec Corp Mosfet transistor driving circuit

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1096482C (en) * 1997-09-19 2002-12-18 南京大学 Sulfonated polyamide and its preparing method and use
JP5624735B2 (en) * 2009-07-22 2014-11-12 国立大学法人岡山大学 filter
CN105000620B (en) * 2015-08-13 2017-06-06 北京工业大学 A kind of method using triclosan in soya-bean cake removal waste water is protonated
JP7497725B2 (en) * 2019-05-08 2024-06-11 不二製油株式会社 Carrier for absorbing volatile components

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4916675A (en) * 1972-06-09 1974-02-14
JPS5029482A (en) * 1973-07-19 1975-03-25

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4916675A (en) * 1972-06-09 1974-02-14
JPS5029482A (en) * 1973-07-19 1975-03-25

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02113622A (en) * 1988-10-21 1990-04-25 Nec Corp Mosfet transistor driving circuit

Also Published As

Publication number Publication date
JPS574229A (en) 1982-01-09

Similar Documents

Publication Publication Date Title
JP3940236B2 (en) Metal chelate-forming fiber and production method thereof, metal ion trapping method and metal chelate fiber using the fiber
CN1176265C (en) Metal chelate-forming fiber, process for producing the same, method of trapping metal ion with the fiber, and metal chelate fiber
JP2001520312A (en) Fiber system with wicking fibers impregnated with extractant for continuous collection of metals from aqueous streams
JP2013011599A (en) Radioactive substance removing material and manufacturing method therefor
JP5999688B2 (en) Radioactive strontium adsorbing material, method for producing the same, and method for removing radioactive substances using the same
CN109012586A (en) Uranium absorption agent and preparation method thereof
EP0043759A1 (en) Hydrophilic substrate for sorbing heavy metals and method for making such substrate
CN1100911C (en) Metal chelate forming fiber, process for preparing the same, and method of metal ion sequestration using said fiber
JP2560253B2 (en) Method for producing and regenerating ion exchanger for cesium separation
JPS6323829B2 (en)
CN107159157A (en) Contain heavy metal ion blotting cross-linked chitosan nano fibrous membrane and preparation method thereof
KR102225373B1 (en) Method for preparing a composition for adsorbing cesium using chitin
JP3723225B2 (en) Chelate-forming fibers, their production and use
JP2015169633A (en) Cesium adsorbent formed of fiber on which prussian blue is supported, manufacturing method thereof, and method for adsorbing and removing radioactive cesium by using cesium adsorbent
JP3957899B2 (en) Regeneration method of arsenic adsorbent
JP3999596B2 (en) Arsenic-trapping fiber and arsenic-containing water treatment method using the same
JP2015087369A (en) Strontium removal method by fiber formed by introducing iminodiacetic group to graft chain
US3778498A (en) Process for recovering uranium
CN116585916B (en) Selective polymer filter material for copper removal of waste acid and preparation method thereof
JP3415222B2 (en) Polyethersulfone or sulfonated polyethersulfone microporous membrane with endotoxin adsorption ability
JPS6359741B2 (en)
RU2089281C1 (en) Method of preparing sorbent for cleaning drinking water
JPS6357054A (en) Deodorizing material
JP4209702B2 (en) Cleaning method for precious metal plating solution
JP2017164698A (en) Adsorbent with enhanced ratio of polymer brush and method for removing useful or harmful material using the adsorbent