JPH0246801B2 - SHOKOSHIRINDANOSEIGYOKAIROSOCHI - Google Patents

SHOKOSHIRINDANOSEIGYOKAIROSOCHI

Info

Publication number
JPH0246801B2
JPH0246801B2 JP56099608A JP9960881A JPH0246801B2 JP H0246801 B2 JPH0246801 B2 JP H0246801B2 JP 56099608 A JP56099608 A JP 56099608A JP 9960881 A JP9960881 A JP 9960881A JP H0246801 B2 JPH0246801 B2 JP H0246801B2
Authority
JP
Japan
Prior art keywords
circuit
pressure
valve
tank
pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56099608A
Other languages
Japanese (ja)
Other versions
JPS585502A (en
Inventor
Seiichi Hoshino
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Uchida Oil Hydraulics Mfg Co Ltd
Original Assignee
Uchida Oil Hydraulics Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Uchida Oil Hydraulics Mfg Co Ltd filed Critical Uchida Oil Hydraulics Mfg Co Ltd
Priority to JP56099608A priority Critical patent/JPH0246801B2/en
Publication of JPS585502A publication Critical patent/JPS585502A/en
Publication of JPH0246801B2 publication Critical patent/JPH0246801B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B13/00Details of servomotor systems ; Valves for servomotor systems
    • F15B13/02Fluid distribution or supply devices characterised by their adaptation to the control of servomotors
    • F15B13/04Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with a single servomotor
    • F15B13/0401Valve members; Fluid interconnections therefor
    • F15B13/0405Valve members; Fluid interconnections therefor for seat valves, i.e. poppet valves

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fluid-Pressure Circuits (AREA)

Description

【発明の詳細な説明】 本発明は、スクラツプ切断機、粗大ゴミ破砕機
その他の機械に使用される昇降シリンダの制御回
路装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a control circuit device for a lifting cylinder used in a scrap cutting machine, a bulky waste crusher, and other machines.

従来のこの種制御回路装置は、例えば第1図に
示すように、昇降シリンダaのロツド側回路bと
ヘツド側回路cを、昇降切換用の切換弁dを介し
てポンプ回路eとタンク回路fとに接続し、該切
換弁dの操作で該昇降シリンダaに昇降作動を行
なわせ、該ロツド側回路bと該ポンプ回路eとを
切換弁gを介して接続し、該切換弁gを切換えて
該ロツド側回路bの圧力流体をヘツド側回路cに
循環させる差動圧回路を構成するようにし、更に
該ヘツド側回路cの高圧を任意排除する圧抜き回
路として切換弁hを設けるを一般とする。しか
し、該昇降シリンダaが大型であると、口径の大
きい切換弁dを使用しなければならず、その切換
時に油圧系に比較的大きな衝撃を生ずる不都合が
あり、また各切換弁を小さく集約することが難し
い不都合がある。
A conventional control circuit device of this kind, for example, as shown in FIG. , and by operating the switching valve d, the lifting cylinder a is moved up and down, and the rod side circuit b and the pump circuit e are connected via the switching valve g, and the switching valve g is switched. Generally, a differential pressure circuit is configured to circulate the pressure fluid from the rod side circuit b to the head side circuit c, and a switching valve h is provided as a pressure relief circuit for arbitrarily removing high pressure from the head side circuit c. shall be. However, if the lifting cylinder a is large, a switching valve d with a large diameter must be used, which causes a relatively large shock to the hydraulic system during switching, and it is also necessary to consolidate each switching valve into a small size. There are disadvantages that make it difficult to do so.

こうした不都合は、切換弁に代え圧力室の圧力
で開閉作動が制御される2方向シート形弁の構成
を有するロジツク弁の複数個を使用することで解
決は出来るが、複数のロジツク弁にシリンダの昇
降のみでなく、差動圧駆動の制御や圧抜きの制御
を行わせることは困難である。
These inconveniences can be solved by using multiple logic valves with a two-way seat type valve configuration whose opening and closing operations are controlled by the pressure in the pressure chamber instead of the switching valve, but if the multiple logic valves have a cylinder It is difficult to control not only lifting and lowering but also differential pressure drive and pressure relief.

本発明は、昇降シリンダの制御をロジツク弁で
行ない前記不都合を解決すると同時にそのロジツ
ク弁で昇降シリンダの作動圧駆動と圧抜きの制御
を行なうことを目的とするもので、昇降シリンダ
のロツド側回路とヘツド側回路を2本の接続回路
により互いに接続すると共に各接続回路をポンプ
回路とタンク回路とに夫々接続し、圧力室の圧力
により作動制御される2方向シート形弁の構成を
有するロジツク弁を、該ポンプ回路と該ロツド側
回路との間の接続回路、該タンク回路と該ヘツド
側回路との間の接続回路、該ポンプ回路とヘツド
側回路との間の接続回路及び該タンク回路と該ロ
ツド側回路との間の接続回路に夫々介在させ、該
ポンプ回路と該ロツド側回路との間の接続回路に
介在される第1ロジツク弁の圧力室に、パイロツ
ト弁の操作により該ロツド側回路の圧力又はタン
ク圧若しくは該ポンプ回路の圧力を選択的に導入
するパイロツト回路を接続し、該タンク回路と該
ヘツド側回路との間の接続回路に介在される第2
ロジツク弁の圧力室に、絞り弁と逆止弁と流量制
御弁を順次に設けた該ヘツド側回路からタンク又
はポンプ回路へ選択的に連なる圧抜き制御回路の
該逆止弁と流量制御弁の中間部を接続し、該ポン
プ回路とロツド側回路との間の接続回路に介在さ
れる第3ロジツク弁の圧力室に、該ポンプ回路と
該ヘツド側回路の圧力のうちの高い方の圧力を選
択的に導入するパイロツト回路を接続し、更に該
タンク回路と該ロツド側回路との間の接続回路に
介在される第4ロジツク弁の圧力室に、リリーフ
弁を介して該ポンプ回路又はタンクに選択的に連
なるパイロツト圧力回路を接続して成る。
The object of the present invention is to solve the above-mentioned problems by controlling the lifting cylinder with a logic valve, and at the same time to use the logic valve to control the operating pressure drive and pressure release of the lifting cylinder. A logic valve having a structure of a two-way seat valve whose operation is controlled by the pressure of a pressure chamber, in which the head side circuit and the head side circuit are connected to each other by two connection circuits, and each connection circuit is connected to a pump circuit and a tank circuit, respectively. a connection circuit between the pump circuit and the rod side circuit, a connection circuit between the tank circuit and the head side circuit, a connection circuit between the pump circuit and the head side circuit, and the tank circuit. The pressure chambers of the first logic valves, which are interposed in the connection circuits between the pump circuit and the rod side circuit, are connected to the rod side by operating the pilot valve. A pilot circuit for selectively introducing circuit pressure, tank pressure, or pump circuit pressure is connected to the second pilot circuit, which is interposed in the connection circuit between the tank circuit and the head side circuit.
The check valve and flow control valve of the pressure relief control circuit selectively connects the head side circuit to the tank or pump circuit, in which the pressure chamber of the logic valve is sequentially provided with a throttle valve, a check valve, and a flow control valve. The middle part is connected, and the higher pressure of the pressure of the pump circuit and the head side circuit is applied to the pressure chamber of the third logic valve interposed in the connection circuit between the pump circuit and the rod side circuit. A pilot circuit to be selectively introduced is connected, and a pressure chamber of a fourth logic valve interposed in a connection circuit between the tank circuit and the rod-side circuit is connected to the pump circuit or tank via a relief valve. Consists of selectively connected pilot pressure circuits.

そして、かかる構成を採ることにより、該第1
ロジツク弁の圧力室にロツド側回路の圧力又はタ
ンク圧を導入すると共に該圧抜き制御回路をタン
クに接続すれば、ポンプ回路の圧力流体が該第1
ロジツク弁を介してロツド側回路に流入すると共
にヘツド側回路の流体が第2ロジツク弁を介して
タンク回路に流出し、昇降シリンダを上昇作動さ
せることが出来、この時該ヘツド側回路の高い圧
力の流体は該圧抜き制御回路の絞り弁と流量制御
弁によつてその徐々に排出され、該ヘツド側回路
の圧力が低下すると該第2ロジツク弁が開いて圧
力流体を急速に排除するので、衝撃を伴なわずに
該昇降シリンダの上昇させ得る。
By adopting such a configuration, the first
If the pressure of the rod side circuit or tank pressure is introduced into the pressure chamber of the logic valve and the pressure relief control circuit is connected to the tank, the pressure fluid of the pump circuit will be transferred to the pressure chamber of the logic valve.
The fluid in the head side circuit flows into the rod side circuit through the logic valve, and the fluid in the head side circuit flows out into the tank circuit through the second logic valve, and the lifting cylinder can be operated upward, and at this time, the high pressure in the head side circuit is increased. The fluid is gradually discharged by the throttle valve and flow control valve of the pressure relief control circuit, and when the pressure in the head side circuit decreases, the second logic valve opens to rapidly discharge the pressure fluid. The lifting cylinder can be raised without impact.

また、該第1ロジツク弁の圧力室にパイロツト
弁を操作してポンプ回路の圧力を導入すると共に
該第3ロジツク弁の圧力室にヘツド側回路の圧力
を導入すると、ポンプ回路の圧力よりも高いロツ
ド側回路の圧力流体を接続回路及び第3ロジツク
弁を介してヘツド側回路に流入させることが出
来、ポンプ回路からの流量を多く必要とせずに昇
降シリンダを下降駆動する差動駆動が行える。
In addition, when the pressure of the pump circuit is introduced into the pressure chamber of the first logic valve by operating the pilot valve, and the pressure of the head side circuit is introduced into the pressure chamber of the third logic valve, the pressure becomes higher than the pressure of the pump circuit. Pressure fluid from the rod side circuit can be flowed into the head side circuit via the connection circuit and the third logic valve, and differential drive for driving the lifting cylinder downward can be performed without requiring a large flow rate from the pump circuit.

更に、第3ロジツク弁の圧力室にヘツド側回路
の圧力を導入すると共に第4ロジツク弁の圧力室
をタンクに接続し、第1及び第2ロジツク弁の各
圧力室をポンプ回路に接続すれば、該昇降シリン
ダの背圧を制御しながら下降させるカウンタバラ
ンス制御を行える。
Furthermore, if the pressure of the head side circuit is introduced into the pressure chamber of the third logic valve, the pressure chamber of the fourth logic valve is connected to the tank, and each pressure chamber of the first and second logic valves is connected to the pump circuit. , counterbalance control can be performed to lower the lift cylinder while controlling its back pressure.

本発明装置の1例を図面第2図について説明す
るに、同図に於て符号1は昇降シリンダ、2は該
シリンダ1のロツド側回路、3はそのヘツド側回
路、4,5は両回路2,3を互いに接続する接続
回路を示し、各回路2,3は該接続回路4を介し
てポンプ回路6と接続回路5を介してタンク回路
7とに接続されるようにした。
An example of the device of the present invention will be explained with reference to FIG. 2, in which reference numeral 1 is an elevating cylinder, 2 is a rod side circuit of the cylinder 1, 3 is a head side circuit thereof, and 4 and 5 are both circuits. 2 and 3 are shown, and each circuit 2 and 3 is connected to a pump circuit 6 via the connection circuit 4 and to a tank circuit 7 via the connection circuit 5.

8,12,21,22は圧力室の圧力により作
動制御される2方向シート形弁の構成を有する4
個の第1乃至第4ロジツク弁を示し、第1ロジツ
ク弁8は該ポンプ回路6と該ロツド側回路2との
間の接続回路4に介在され、第2ロジツク弁12
は該タンク回路7と該ヘツド側回路3との間の接
続回路5に介在され、また第3ロジツク弁21は
該ポンプ回路6とヘツド側回路3との間の接続回
路4に介在され、更に第4ロジツク弁22は該タ
ンク回路7と該ロツド側回路2との間の接続回路
5に介在される。
8, 12, 21, and 22 are two-way seat valves whose operation is controlled by the pressure in the pressure chamber.
The first logic valve 8 is interposed in the connection circuit 4 between the pump circuit 6 and the rod side circuit 2, and the second logic valve 12 is interposed in the connection circuit 4 between the pump circuit 6 and the rod side circuit 2.
is interposed in the connection circuit 5 between the tank circuit 7 and the head side circuit 3, and the third logic valve 21 is interposed in the connection circuit 4 between the pump circuit 6 and the head side circuit 3. The fourth logic valve 22 is interposed in the connection circuit 5 between the tank circuit 7 and the rod side circuit 2.

該第1ロジツク弁8の圧力室8aには、その開
閉を制御するために、パイロツト弁9の切換によ
りシヤトル弁10又は接続回路4を介してポンプ
回路6へ連通するパイロツト回路11を接続し、
該パイロツト弁9が位置9aに存するときは該圧
力室8aにポンプ回路6の圧力が導入され、位置
9bに存するときはシヤトル弁10で比較された
ロツド側回路2又はヘツド側回路3のいずれか一
方の圧力もしくはタンク圧が該圧力室8aに導入
されるようにした。このシヤトル弁10に導かれ
るヘツド側回路3の圧力もしくはタンク圧は、後
述のパイロツト切換弁18の操作で圧抜き制御回
路13に選択された圧力が利用される。
A pilot circuit 11 is connected to the pressure chamber 8a of the first logic valve 8, which communicates with the pump circuit 6 via the shuttle valve 10 or the connection circuit 4 by switching the pilot valve 9, in order to control its opening and closing.
When the pilot valve 9 is in the position 9a, the pressure of the pump circuit 6 is introduced into the pressure chamber 8a, and when the pilot valve 9 is in the position 9b, either the rod side circuit 2 or the head side circuit 3 compared with the shuttle valve 10 is introduced. One pressure or tank pressure was introduced into the pressure chamber 8a. As the pressure in the head side circuit 3 or the tank pressure led to the shuttle valve 10, the pressure selected in the pressure relief control circuit 13 by operating a pilot switching valve 18, which will be described later, is used.

該第2ロジツク弁12の圧力室12aには、ヘ
ツド側回路3から絞り弁15、逆止弁16、流量
制御弁17及び小型のパイロツト切換弁18を順
次に介在してタンク14に連なるように設けた圧
抜き制御回路13の該逆止弁16と流量制御弁1
7の間から圧力を導入するようにした。これによ
り、該パイロツト切換弁18の操作で該ヘツド側
回路3がタンク14に接続されると、第2ロジツ
ク弁12の圧力室12aの圧力は、該絞り弁15
と流量制御弁17とにより急激な圧力低下を生ず
ることなく緩慢に低下するので、該第2ロジツク
弁12はヘツド側回路3の高圧時は開弁速度が遅
く、低圧となつてから早く開弁し、該ヘツド側回
路3の閉じ込み圧を衝撃なくタンクへ排除出来
る。該パイロツト切換弁18にはポンプ回路6の
圧力を導入すべく圧力導入回路19が接続され、
該パイロツト切換弁18が切換操作されると、ポ
ンプ回路6の圧力が前記流量制御弁17に併設し
たチエツク弁20を介して第2ロジツク弁12の
圧力室12aに作用し、該第2ロジツク弁12が
ヘツド側回路3とタンク回路7との連通を断つ。
In the pressure chamber 12a of the second logic valve 12, a throttle valve 15, a check valve 16, a flow control valve 17, and a small pilot switching valve 18 are sequentially interposed from the head side circuit 3 so as to be connected to the tank 14. The check valve 16 and the flow control valve 1 of the pressure relief control circuit 13 provided
The pressure was introduced from between 7 and 7. As a result, when the head side circuit 3 is connected to the tank 14 by operating the pilot switching valve 18, the pressure in the pressure chamber 12a of the second logic valve 12 changes from the pressure in the throttle valve 15.
Since the pressure decreases slowly without causing a sudden pressure drop due to the flow control valve 17 and the flow rate control valve 17, the second logic valve 12 opens slowly when the pressure in the head side circuit 3 is high, and opens quickly when the pressure becomes low. Therefore, the confinement pressure of the head side circuit 3 can be discharged to the tank without impact. A pressure introduction circuit 19 is connected to the pilot switching valve 18 to introduce the pressure of the pump circuit 6.
When the pilot switching valve 18 is switched, the pressure of the pump circuit 6 acts on the pressure chamber 12a of the second logic valve 12 via the check valve 20 attached to the flow rate control valve 17, and the second logic valve 12 cuts off the communication between the head side circuit 3 and the tank circuit 7.

尚、図示のものでは、前記したように第1ロジ
ツク弁8のパイロツト回路11がシヤトル弁10
を介して圧抜き制御回路13に接続されているの
で、該シヤトル弁10には第2ロジツク弁12の
圧力室12aに作用する圧力と等しい圧力が同時
に導入される。
In the illustrated example, the pilot circuit 11 of the first logic valve 8 is connected to the shuttle valve 10 as described above.
Since the pressure relief control circuit 13 is connected to the pressure relief control circuit 13 via the pressure relief control circuit 13, a pressure equal to the pressure acting on the pressure chamber 12a of the second logic valve 12 is simultaneously introduced into the shuttle valve 10.

第3ロジツク弁21の圧力室21aには、シヤ
トル弁23によりヘツド側回路3又はポンプ回路
6或いはタンク14の圧力のうちの最も高い圧力
を導入するパイロツト回路31を接続し、該ポン
プ回路6或いはタンク14の圧力は、流量制御弁
24とチエツク弁25とから成るスロツトルチエ
ツク弁を介して前記パイロツト切換弁18に接続
したパイロツト圧力回路26から導入されるよう
にした。
The pressure chamber 21a of the third logic valve 21 is connected to a pilot circuit 31 which introduces the highest pressure of the pressure of the head side circuit 3, the pump circuit 6, or the tank 14 through the shuttle valve 23. The pressure in the tank 14 is introduced from a pilot pressure circuit 26 connected to the pilot switching valve 18 through a throttle check valve consisting of a flow control valve 24 and a check valve 25.

また、第4ロジツク弁22の圧力室22aに
は、リリーフ弁27を介してポンプ回路6或いは
タンク14へ選択的に接続されるパイロツト圧力
回路26を接続し、更に該圧力室22aを絞り弁
28を介してロツド側回路2へ接続した。該パイ
ロツト圧力回路26は、前記パイロツト切換弁1
8の操作でタンク14又はポンプ回路6に接続さ
れるが、該タンク14にパイロツト圧力回路26
が接続されると、該第4ロジツク弁22の圧力室
22aの圧力はリリーフ弁27により制御される
ために、該第4ロジツク弁22は全開することが
なく、従つてロツド側回路2で圧力を発生させな
がら昇降シリンダ1からタンク回路7へ流体を排
出する制御即ちカウンタバランス制御を行なつて
該昇降シリンダ1の下降を制御できる。
A pilot pressure circuit 26 selectively connected to the pump circuit 6 or tank 14 via a relief valve 27 is connected to the pressure chamber 22a of the fourth logic valve 22, and the pressure chamber 22a is connected to a throttle valve 28. It was connected to the rod side circuit 2 via. The pilot pressure circuit 26 is connected to the pilot switching valve 1.
8, it is connected to the tank 14 or the pump circuit 6, and the pilot pressure circuit 26 is connected to the tank 14.
When the pressure chamber 22a of the fourth logic valve 22 is connected, the pressure in the pressure chamber 22a of the fourth logic valve 22 is controlled by the relief valve 27. The lowering of the lifting cylinder 1 can be controlled by performing control to discharge the fluid from the lifting cylinder 1 to the tank circuit 7 while generating .

29はロツド側回路2の安全弁、30はパイロ
ツト弁9とパイロツト切換弁18の作動指令を行
なうスイツチ群である。
29 is a safety valve of the rod side circuit 2, and 30 is a group of switches for instructing the pilot valve 9 and the pilot switching valve 18 to operate.

その作動を説明するに、昇降シリンダ1を上昇
させる場合、パイロツト弁9を図示の位置9bと
したまま、先ずパイロツト切換弁18を操作して
位置18aに入れる。これにより、圧抜き制御回
路13がタンク14に連なり、しかもシヤトル弁
10を介して第1ロジツク弁8の圧力室8aに作
用するパイロツト回路11の圧力は、タンク14
の圧力又はロツド側回路2の圧力で低い圧力とな
るので、ポンプ回路6の圧力流体が該第1ロジツ
ク弁8を押し開いてロツド側回路2に流入するこ
とが許容されると共にヘツド側回路3の流体が第
2ロジツク弁12を押し開いてタンク回路7へと
流出することが許容され、かくて昇降シリンダ1
は、そのロツド側の室への流体の流入とそのヘツ
ド側の室の流体の排出で上昇作動を行なう。この
場合、ヘツド側回路3の圧力流体は、絞り弁15
と流量制御弁17を介在させた圧抜き制御回路1
3によつて、その高圧時は徐々に排出され、低圧
化すると前記の如く該第2ロジツク弁12が開い
て急速に排出するので、衝撃を伴なうことなく該
ヘツド側回路3の圧力を排出して昇降シリンダ1
の上昇を行なえる。
To explain its operation, when raising the lifting cylinder 1, the pilot valve 9 is left in the illustrated position 9b and the pilot switching valve 18 is first operated to move it to the position 18a. As a result, the pressure release control circuit 13 is connected to the tank 14, and the pressure of the pilot circuit 11 acting on the pressure chamber 8a of the first logic valve 8 via the shuttle valve 10 is connected to the tank 14.
or the pressure in the rod side circuit 2, the pressure fluid in the pump circuit 6 is allowed to push open the first logic valve 8 and flow into the rod side circuit 2, and the pressure in the head side circuit 3 is allowed to push open the second logic valve 12 and flow out into the tank circuit 7, thus causing the lift cylinder 1
The lifting operation is performed by the inflow of fluid into the chamber on the rod side and the discharge of fluid from the chamber on the head side. In this case, the pressure fluid in the head side circuit 3 is
and a pressure relief control circuit 1 with a flow control valve 17 interposed therebetween.
3, when the pressure is high, it is gradually discharged, and when the pressure becomes low, the second logic valve 12 opens as described above and rapidly discharges it, so that the pressure in the head side circuit 3 can be reduced without causing any shock. Discharge and lift cylinder 1
can perform the ascent.

該昇降シリンダ1を下降させる場合、該パイロ
ツト弁9を位置9aに切換えると共にパイロツト
切換弁18を位置18bに切換えする。これによ
り、第3ロジツク弁21の圧力室21aは、タン
ク14の圧力或いは通常低圧のヘツド側回路3の
圧力となるため、ポンプ回路6の流体が該第3ロ
ジツク弁21の弁体を押し開いてヘツド側回路3
に流入し、該昇降シリンダ1はそのロツド側の室
から流体を排除しながら下降することになるが、
この場合、該第1ロジツク弁8は次のように作動
して該ロツド側回路2からの流量をヘツド側回路
3に循環させ、ポンプ回路6に接続されたポンプ
の流量の多くを消費せずに昇降シリンダ1を下降
させる差動圧駆動を行ない、ポンプ動力の節減を
計ることが出来る。即ち、該第1ロジツク弁8
は、その圧力室8aにパイロツト回路11を介し
てポンプ回路6の圧力(ポンプ吐出圧)が該第1
ロジツク弁8のばねと共にその弁体を閉じる方向
に作用しており、また、該第1ロジツク弁8の弁
体の前面の一部分にはポンプ回路6の圧力が接続
回路4を介して作用した状態にあり、この状態で
は該第1ロジツク弁8は開弁しないが、該弁体の
他の部分に作用する該ロツド側回路2の圧力が高
まると、該弁体は開弁方向へ移動して該第1ロジ
ツク弁8が開弁するようになる。そのため、ポン
プ回路6の圧力よりも高い圧力の流体がロツド側
回路2から接続回路4及び第3ロジツク弁21を
介してヘツド側回路3に流入するようになり、ポ
ンプ回路6からの流量の多くを必要とせずに昇降
シリンダ1を下降駆動することができる。
When lowering the lifting cylinder 1, the pilot valve 9 is switched to position 9a and the pilot switching valve 18 is switched to position 18b. As a result, the pressure chamber 21a of the third logic valve 21 reaches the pressure of the tank 14 or the pressure of the normally low pressure head side circuit 3, so the fluid of the pump circuit 6 pushes the valve body of the third logic valve 21 open. Head side circuit 3
, and the lifting cylinder 1 descends while expelling fluid from the chamber on its rod side.
In this case, the first logic valve 8 operates as follows to circulate the flow rate from the rod side circuit 2 to the head side circuit 3 without consuming much of the flow rate of the pump connected to the pump circuit 6. The pump power can be saved by performing differential pressure driving to lower the elevating cylinder 1. That is, the first logic valve 8
The pressure of the pump circuit 6 (pump discharge pressure) is supplied to the first pressure chamber 8a via the pilot circuit 11.
The spring of the logic valve 8 acts in a direction to close the valve body, and the pressure of the pump circuit 6 acts on a part of the front surface of the valve body of the first logic valve 8 via the connection circuit 4. In this state, the first logic valve 8 does not open, but when the pressure in the rod-side circuit 2 that acts on other parts of the valve body increases, the valve body moves in the opening direction. The first logic valve 8 becomes open. Therefore, fluid with a pressure higher than the pressure in the pump circuit 6 flows from the rod side circuit 2 into the head side circuit 3 via the connection circuit 4 and the third logic valve 21, and a large amount of the flow rate from the pump circuit 6 flows into the head side circuit 3. The lifting cylinder 1 can be driven downward without the need for a.

該昇降シリンダ1の背圧を制御しながら下降さ
せるカウンタバランス制御を行なう場合、パイロ
ツト弁9を位置9bとすると共にパイロツト切換
弁18を位置18bに入れる。かくすることによ
り、第3ロジツク弁21の圧力室21aはシヤト
ル弁23及びパイロツト圧力回路26を介してタ
ンク14に連なり、また第4ロジツク弁22の圧
力室22aはリリーフ弁27及び該パイロツト圧
力回路26を介してタンク14へと連なり、更に
第1及び第2ロジツク弁8,12の各圧力室8
a,12aは圧抜き制御回路13及び圧力導入回
路19を介してポンプ回路6に連なる。そのた
め、第1及び第2ロジツク弁8,12は閉じ、ポ
ンプ回路6からの圧力流体は第3ロジツク弁21
を押し開いてヘツド側回路3に流入し、ロツド側
回路2の流体は第4ロジツク弁22を押し開いて
タンク回路7に流出し、昇降シリンダ1が下降す
る。この場合、第4ロジツク弁22の圧力室22
aの圧力は、パイロツト圧力回路26に設けられ
たリリーフ弁27のために、該リリーフ弁27の
設定圧力に制御され、従つて該第4ロジツク弁2
2は、ロツド側回路2の圧力が該圧力室22aの
圧力による力に打勝つような力を発生する圧力に
ならないと開弁せず、該ロツド側回路2に圧力を
保有した状態で昇降シリンダ1を下降させるカウ
ンタバランス制御を行なうことが出来る。
When carrying out counterbalance control in which the back pressure of the lifting cylinder 1 is controlled and lowered, the pilot valve 9 is set to position 9b, and the pilot switching valve 18 is set to position 18b. Thus, the pressure chamber 21a of the third logic valve 21 is connected to the tank 14 via the shuttle valve 23 and the pilot pressure circuit 26, and the pressure chamber 22a of the fourth logic valve 22 is connected to the relief valve 27 and the pilot pressure circuit. 26 to the tank 14, and each pressure chamber 8 of the first and second logic valves 8, 12.
a, 12a are connected to the pump circuit 6 via a pressure relief control circuit 13 and a pressure introduction circuit 19. Therefore, the first and second logic valves 8 and 12 are closed, and the pressure fluid from the pump circuit 6 is transferred to the third logic valve 21.
The fluid in the rod side circuit 2 pushes open the fourth logic valve 22 and flows into the tank circuit 7, and the lifting cylinder 1 descends. In this case, the pressure chamber 22 of the fourth logic valve 22
The pressure of a is controlled by the relief valve 27 provided in the pilot pressure circuit 26 to the set pressure of the relief valve 27, and therefore the pressure of the fourth logic valve 2
2, the valve will not open unless the pressure in the rod side circuit 2 reaches a pressure that generates a force that overcomes the force due to the pressure in the pressure chamber 22a, and the lifting cylinder will not open while the rod side circuit 2 retains pressure. It is possible to carry out counterbalance control to lower the value of 1.

このように本発明によるときは、昇降シリンダ
のロツド側回路とヘツド側回路を互いに接続する
2本の接続回路に、第1乃至第4の4個のロジツ
ク弁を介在させ、該ポンプ回路と該ロツド側回路
との間に介在される第1ロジツク弁の圧力室に、
パイロツト弁の操作により該ロツド側回路の圧力
又はタンク圧若しくは該ポンプ回路の圧力を選択
的に導入するパイロツト回路を接続し、該タンク
回路と該ヘツド側回路との間に介在される第2ロ
ジツク弁の圧力室に、絞り弁と逆止弁と流量制御
弁を順次に設けた該ヘツド側回路からタンク又は
ポンプ回路へ選択的に連なる圧抜き制御回路の該
逆止弁と流量制御弁の中間部を接続し、該ポンプ
回路とヘツド側回路との間の接続回路に介在され
る第3ロジツク弁の圧力室に、該ポンプ回路と該
ヘツド側回路の圧力のうちの高い方の圧力を選択
的に導入するパイロツト回路を接続したので、第
1及び第2ロジツク弁の開弁で油圧回路に衝撃を
発生させずに昇降シリンダを上昇させることが出
来、第1及び第3ロジツク弁を開弁させて昇降シ
リンダを差動圧で下降駆動を行なえ、更に該タン
ク回路と該ロツド側回路との間の接続回路に介在
される第4ロジツク弁の圧力室に、リリーフ弁を
介して該ポンプ回路又はタンクに選択的に連なる
パイロツト圧力回路を接続したので、第1及び第
3ロジツク弁を開弁させて昇降シリンダをカウン
タバランス制御しながら下降させることが出来、
4個のロジツク弁で昇降シリンダの昇降だけでな
く、圧抜き制御、差動駆動及びカウンタバランス
制御を行なえて便利である等の効果がある。
In this way, according to the present invention, four logic valves, first to fourth, are interposed in the two connection circuits that connect the rod side circuit and the head side circuit of the lifting cylinder, and the pump circuit and the In the pressure chamber of the first logic valve interposed between the rod side circuit,
A second logic interposed between the tank circuit and the head circuit is connected to a pilot circuit that selectively introduces the pressure of the rod side circuit or the tank pressure or the pressure of the pump circuit by operating a pilot valve. An intermediate between the check valve and the flow control valve of a pressure relief control circuit that selectively connects the head side circuit to the tank or pump circuit, in which the pressure chamber of the valve is sequentially provided with a throttle valve, a check valve, and a flow control valve. and selecting the higher pressure between the pressures of the pump circuit and the head side circuit into the pressure chamber of the third logic valve interposed in the connection circuit between the pump circuit and the head side circuit. Since the pilot circuit that is introduced automatically is connected, opening the first and second logic valves allows the lifting cylinder to rise without causing a shock to the hydraulic circuit, and opening the first and third logic valves. The lift cylinder is driven downward by differential pressure, and the pump circuit is also connected to the pressure chamber of the fourth logic valve interposed in the connection circuit between the tank circuit and the rod side circuit via the relief valve. Alternatively, since a pilot pressure circuit is selectively connected to the tank, the first and third logic valves can be opened to lower the lifting cylinder while controlling the counterbalance.
The four logic valves not only raise and lower the lifting cylinder, but also perform pressure relief control, differential drive, and counterbalance control, which is convenient.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の回路装置の線図、第2図は本発
明の制御回路装置の1例の線図である。 1……昇降シリンダ、2……ロツド側回路、3
……ヘツド側回路、4,5……接続回路、6……
ポンプ回路、7……タンク回路、8……第1ロジ
ツク弁、8a……圧力室、9……パイロツト弁、
11……パイロツト回路、12……第2ロジツク
弁、12a……圧力室、13……圧抜き制御回
路、14……タンク、15……絞り弁、17……
流量制御弁、21……第3ロジツク弁、21a…
…圧力室、22……第4ロジツク弁、22a……
圧力室、26……パイロツト圧力回路、27……
リリーフ弁、31……パイロツト回路。
FIG. 1 is a diagram of a conventional circuit device, and FIG. 2 is a diagram of an example of a control circuit device of the present invention. 1... Lifting cylinder, 2... Rod side circuit, 3
...Head side circuit, 4, 5...Connection circuit, 6...
Pump circuit, 7... Tank circuit, 8... First logic valve, 8a... Pressure chamber, 9... Pilot valve,
11... Pilot circuit, 12... Second logic valve, 12a... Pressure chamber, 13... Pressure relief control circuit, 14... Tank, 15... Throttle valve, 17...
Flow rate control valve, 21...Third logic valve, 21a...
...Pressure chamber, 22...Fourth logic valve, 22a...
Pressure chamber, 26...Pilot pressure circuit, 27...
Relief valve, 31...Pilot circuit.

Claims (1)

【特許請求の範囲】[Claims] 1 昇降シリンダのロツド側回路とヘツド側回路
を2本の接続回路により互いに接続すると共に各
接続回路をポンプ回路とタンク回路とに夫々接続
し、圧力室の圧力により作動制御される2方向シ
ート形弁の構成を有するロジツク弁を、該ポンプ
回路と該ロツド側回路との間の接続回路、該タン
ク回路と該ヘツド側回路との間の接続回路、該ポ
ンプ回路とヘツド側回路との間の接続回路及び該
タンク回路と該ロツド側回路との間の接続回路に
夫々介在させ、該ポンプ回路と該ロツド側回路と
の間の接続回路に介在される第1ロジツク弁の圧
力室に、パイロツト弁の操作により該ロツド側回
路の圧力又はタンク圧若しくは該ポンプ回路の圧
力を選択的に導入するパイロツト回路を接続し、
該タンク回路と該ヘツド側回路との間の接続回路
に介在される第2ロジツク弁の圧力室に、絞り弁
と逆止弁と流量制御弁を順次に設けた該ヘツド側
回路からタンク又はポンプ回路へ選択的に連なる
圧抜き制御回路の該逆止弁と流量制御弁の中間部
を接続し、該ポンプ回路とヘツド側回路との間の
接続回路に介在される第3ロジツク弁の圧力室
に、該ポンプ回路と該ヘツド側回路の圧力のうち
の高い方の圧力を選択的に導入するパイロツト回
路を接続し、更に該タンク回路と該ロツド側回路
との間の接続回路に介在される第4ロジツク弁の
圧力室に、リリーフ弁を介して該ポンプ回路又は
タンクに選択的に連なるパイロツト圧力回路を接
続して成る昇降シリンダの制御回路装置。
1 A two-way seat type in which the rod side circuit and head side circuit of the lifting cylinder are connected to each other by two connection circuits, and each connection circuit is connected to a pump circuit and a tank circuit, respectively, and the operation is controlled by the pressure in the pressure chamber. A logic valve having a valve configuration is used in a connection circuit between the pump circuit and the rod side circuit, a connection circuit between the tank circuit and the head side circuit, and a connection circuit between the pump circuit and the head side circuit. A pilot valve is inserted into the pressure chamber of the first logic valve which is interposed in the connection circuit and the connection circuit between the tank circuit and the rod side circuit, and is interposed in the connection circuit between the pump circuit and the rod side circuit. Connecting a pilot circuit that selectively introduces the pressure of the rod side circuit, the tank pressure, or the pressure of the pump circuit by operating a valve,
A pressure chamber of a second logic valve interposed in a connection circuit between the tank circuit and the head side circuit is provided with a throttle valve, a check valve, and a flow rate control valve in sequence, and the tank or pump is connected to the head side circuit. A pressure chamber of a third logic valve that connects the intermediate portion of the check valve and the flow control valve of the pressure relief control circuit selectively connected to the circuit, and is interposed in the connection circuit between the pump circuit and the head side circuit. A pilot circuit that selectively introduces the higher pressure of the pump circuit and the head side circuit is connected to the pilot circuit, and is further interposed in a connecting circuit between the tank circuit and the rod side circuit. A control circuit device for a lifting cylinder comprising a pilot pressure circuit selectively connected to the pump circuit or tank via a relief valve and connected to the pressure chamber of the fourth logic valve.
JP56099608A 1981-06-29 1981-06-29 SHOKOSHIRINDANOSEIGYOKAIROSOCHI Expired - Lifetime JPH0246801B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56099608A JPH0246801B2 (en) 1981-06-29 1981-06-29 SHOKOSHIRINDANOSEIGYOKAIROSOCHI

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56099608A JPH0246801B2 (en) 1981-06-29 1981-06-29 SHOKOSHIRINDANOSEIGYOKAIROSOCHI

Publications (2)

Publication Number Publication Date
JPS585502A JPS585502A (en) 1983-01-12
JPH0246801B2 true JPH0246801B2 (en) 1990-10-17

Family

ID=14251803

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56099608A Expired - Lifetime JPH0246801B2 (en) 1981-06-29 1981-06-29 SHOKOSHIRINDANOSEIGYOKAIROSOCHI

Country Status (1)

Country Link
JP (1) JPH0246801B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62171501A (en) * 1986-01-25 1987-07-28 Tezuka Kosan Kk Hydraulic pressure circuit for double acting cylinder device
JPS62266204A (en) * 1986-05-13 1987-11-19 Kayaba Ind Co Ltd Controlling device using logic valve
JPH0520885Y2 (en) * 1987-08-03 1993-05-28
JPH01120401A (en) * 1987-10-30 1989-05-12 Toyooki Kogyo Co Ltd Fluid control device
JPH0235205A (en) * 1988-07-22 1990-02-05 Toyooki Kogyo Co Ltd Fluid controller
SE466712B (en) * 1990-07-24 1992-03-23 Bo Andersson HYDRAULIC ENGINE DEVICE CONTROLS THE SAME
DE19545657A1 (en) * 1995-12-07 1997-06-12 Rexroth Mannesmann Gmbh Hydraulic valve arrangement with a pressure-controlled directional valve
DE602006006676D1 (en) * 2006-09-01 2009-06-18 Parker Hannifin Ab valve assembly
DE102012101231A1 (en) * 2012-02-16 2013-08-22 Linde Material Handling Gmbh Hydrostatic drive system
CN105201934B (en) * 2015-10-26 2017-03-22 中国重型机械研究院股份公司 Novel hydraulic control system of transfer-machine

Also Published As

Publication number Publication date
JPS585502A (en) 1983-01-12

Similar Documents

Publication Publication Date Title
JP4276646B2 (en) Hydraulic control valve with regeneration function
KR100706594B1 (en) Hydraulic control
JPH081202B2 (en) Operating circuit of single-acting hydraulic cylinder
US6260355B1 (en) Hydraulic control system for a mobile work machine, especially a wheel loader
US6370874B1 (en) Hydraulic control device for a mobile machine, especially for a wheel loader
JPH0246801B2 (en) SHOKOSHIRINDANOSEIGYOKAIROSOCHI
JPH11247805A (en) Control device for quick drop valve
US4165675A (en) Load check valve cylinder mounted
KR20060061373A (en) Hydraulic control and adjustment system with volume equalization
US5136930A (en) Apparatus for supplying pressure oil to hydraulic cylinders employed in working machines
US2954052A (en) Pressure fluid control system and valve
US4220073A (en) Control valve for working machines
US3483890A (en) Multispool control valve with limited series operation
KR100592545B1 (en) An apparatus for controlling a boom down in an excavator
JPS6138204A (en) Multiple pilot valve for multiple hydraulic selector valve
US4033468A (en) Hydraulic boom-lift system with selective speeds
JPS5922322Y2 (en) Valve device for driving single-acting cylinder piston device for lifting heavy objects
JPH0714203U (en) Vibration suppressor for work equipment
JPH018084Y2 (en)
JP2009254269A (en) Lifting device for work vehicle
JPH04179698A (en) Hydraulic device in battery type industrial vehicle
JP2002061606A (en) Regenerating oil quantity control valve of hydraulic cylinder
JPH09296802A (en) Raising and lowering hydraulic circuit
JPH0747602Y2 (en) Directional switching valve drive hydraulic circuit
JP3096922B2 (en) Hydraulic device for parallel lifting operation of the agricultural front loader attachment