JPH0235205A - Fluid controller - Google Patents

Fluid controller

Info

Publication number
JPH0235205A
JPH0235205A JP18423588A JP18423588A JPH0235205A JP H0235205 A JPH0235205 A JP H0235205A JP 18423588 A JP18423588 A JP 18423588A JP 18423588 A JP18423588 A JP 18423588A JP H0235205 A JPH0235205 A JP H0235205A
Authority
JP
Japan
Prior art keywords
valve
flow path
oil chamber
diameter hole
small diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18423588A
Other languages
Japanese (ja)
Inventor
Masaru Sugiyama
優 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyooki Kogyo Co Ltd
Original Assignee
Toyooki Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyooki Kogyo Co Ltd filed Critical Toyooki Kogyo Co Ltd
Priority to JP18423588A priority Critical patent/JPH0235205A/en
Publication of JPH0235205A publication Critical patent/JPH0235205A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To simplify a circuit constitution by balancing the pressure of valve bodies of respective main valves and constituting a pilot valve of a proportional control valve for proportionally controlling a pilot pressure. CONSTITUTION:The valve bodies 12 to 42 of respective main valves 10 to 40 are slidably inserted into respective valve holes with a pressure balanced. A pilot valve for controlling the operation of the respective main valves 10 to 40 is constituted of a pressure reducing valve 51 and first to fourth current control relief valves 52 to 55. Thereby, a change over valve for communicating and disconnecting a part between the fourth oil chambers R14 to R44 of the respective main valves 10 to 40 and a return oil passage P5 is not required, so that a circuit constitution can be simplified.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は4個のポペソl型主弁をパイロット操作して流
体アクチュエータ(シリンダ)の作動を制御する流体制
御装置に係り、特に、供給流路と一方の負荷流路間の連
通を制御するボペソl−型第1主弁と、供給流路と他方
の負荷流路間の連通を制御するボペソ1型第2主弁と、
排出流路と一方の負荷流路間の連通を制御するポペット
型第3主弁と、排出流路と他方の負荷流路間の連通を制
御するボペソl−型第4主弁と、前記第1〜第4主弁の
作動を制御するパイロ、1、弁とを備えてなる流体制御
装置に関する。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a fluid control device that controls the operation of a fluid actuator (cylinder) by pilot operating four Popes L-type main valves. a Bopeso L-type first main valve that controls communication between the supply channel and the other load channel; a Bopeso 1-type second main valve that controls communication between the supply channel and the other load channel;
a poppet type third main valve that controls communication between the discharge flow path and one load flow path; a poppet L-type fourth main valve that controls communication between the discharge flow path and the other load flow path; The present invention relates to a fluid control device including a pyro, 1, and a valve that controls the operation of the 1st to 4th main valves.

〔従来技術〕[Prior art]

この種の流体制御装置は、例えば特開昭62194、0
07号公報にて提案されている。しかして、同公報にて
提案されている流体制御装置においては、各主弁が、大
径孔の両端に同一径の小径孔をそれぞれ設けてなり一方
の段部に弁座を形成してなる弁本体と、前記大径孔内に
嵌挿されて一方の流路に常時連通する第1油室を形成し
前記弁座に着座したり離脱して同弁座を開閉するボペ、
7I弁部と同ボペソ1、弁部の一側に設けられて前記一
方の小径孔内に延び同小径孔との間に前記弁座を通して
前記第1油室に連通しかつ他方の流路に連通ずる第2油
室を形成する連結部と同連結部の一側に設けられて前記
一方の小径孔に摺動自在に嵌挿され同小径孔端に第3油
室を形成するピストン部を一体的に備えるとともに前記
ポペット弁部の他側に設けられて前記他方の小径孔に摺
動自在に嵌挿され同小径孔端に前記流路のいずれか一方
に絞りを介して接続される第4油室を形成する小1条部
を一体的に備えろ弁体と、同弁体を前記第3油室に向げ
て付勢するばねを具備し、また前記パフイロソ1、弁が
、前記各主弁の第3油室に付与されるパイロット操作を
電流付与値に応じて比例制御する比例制御弁と、前記パ
・イロソト圧が設定値未満であるとき前記第4油室と戻
り流路の連通を遮断しまた前記パ・イロソト圧が設定値
以」二であるとき前記第4油室と戻り流路を連通させる
切換弁とを具備している。
This type of fluid control device is known, for example, from Japanese Patent Application Laid-Open No. 62194, 0
This is proposed in Publication No. 07. However, in the fluid control device proposed in the same publication, each main valve has small diameter holes of the same diameter at both ends of a large diameter hole, and a valve seat is formed in one step. a valve body, and a valve that is inserted into the large diameter hole to form a first oil chamber that constantly communicates with one flow path, and that opens and closes the valve seat by seating on and leaving the valve seat;
7I valve part and the same valve part 1 are provided on one side of the valve part, extend into the small diameter hole of the one, and communicate with the first oil chamber through the valve seat between the small diameter hole and the other flow path. A connecting portion that forms a second oil chamber that communicates with the connecting portion; and a piston portion that is provided on one side of the connecting portion and is slidably inserted into the one small diameter hole and forms a third oil chamber at the end of the small diameter hole. A second hole is integrally provided and is provided on the other side of the poppet valve part, is slidably inserted into the other small diameter hole, and is connected to one end of the small diameter hole via a throttle. 4. The valve body is integrally provided with a small thread portion forming an oil chamber, and a spring that urges the valve body toward the third oil chamber. A proportional control valve that proportionally controls the pilot operation applied to the third oil chamber of each main valve according to the current applied value, and the fourth oil chamber and return flow path when the pressure is less than a set value. The fourth oil chamber is provided with a switching valve that cuts off communication between the fourth oil chamber and the return flow path when the pressure is equal to or higher than a set value.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところで、上記した従来の流体制御装置のパイ旧ソ1−
弁における切換弁は、各主弁の第4油室が絞りを介して
第1又は第2油室に連通している流路に連通している構
成との関連において、パイ日ノ1−圧が設定値未満であ
るとき、第1又は第2油室に連通している流路の圧力が
絞りを介して第4油室に付与されるようにして弁体のポ
ペット弁部が弁座に強く圧接し同部分での洩れを防止す
るとともに、第4油室から戻り流路−・の洩れを防止し
て、各主弁における洩れを確実に防止する機能を備えて
いる。
By the way, the pie of the conventional fluid control device described above is
The switching valve in the valve is configured such that the fourth oil chamber of each main valve communicates with a flow path that communicates with the first or second oil chamber via a throttle. is less than the set value, the poppet valve portion of the valve body is pressed against the valve seat so that the pressure in the flow path communicating with the first or second oil chamber is applied to the fourth oil chamber via the restriction. It has a function of strongly pressurizing and preventing leakage at the same portion, and also preventing leakage from the fourth oil chamber to the return flow path, thereby reliably preventing leakage at each main valve.

しかしながら、当該流体制御装置の採用される各種の回
路には、上記した確実な洩れ防止機能(保圧機能)を必
要としない回路も多くあり、かかる回路においては上記
切換弁の機能が過剰品質となる。
However, among the various circuits used in the fluid control device, there are many circuits that do not require the reliable leak prevention function (pressure holding function) described above, and in such circuits, the function of the switching valve described above may be of excessive quality. Become.

本発明は、上記した観点に着目してなされたものであり
、確実な保圧機能を必要としない回路に適した安価な第
1の流体制御装置、及び確実な保圧機能を必要としない
回路に通しかつカウンタバランス機能を備えた安価な第
2の流体制御装置を提供することを目的としている。
The present invention has been made with attention to the above-mentioned viewpoints, and provides an inexpensive first fluid control device suitable for a circuit that does not require a reliable pressure holding function, and a circuit that does not require a reliable pressure holding function. It is an object of the present invention to provide a second fluid control device which is inexpensive and has a counterbalance function.

〔課題を解決するための手段〕[Means to solve the problem]

」二記した第1の流体制御装置は、その各主弁を、大径
孔の両端に同一径の小径孔をそれぞれ設けてなり一方の
段部に弁座を形成してなる弁本体と、前記大径孔内に嵌
挿されて一方の流路に常時連通ずる第1油室を形成し前
記弁座に着座したり離脱して同弁座を開閉するポペット
弁部と同ポペット弁部の一側に設けられて前記一方の小
径孔内に延び同小径孔との間に前記弁座を通して前記第
1油室に連通しかつ他方の流路に連通ずる第2油室を形
成する連結部と同連結部の一側に設けられて前記一方の
小径孔に摺動自在に嵌挿され同小径孔端に第3浦室を形
成するピストン部を−・体内に備えるとともに前記ポペ
ット弁部の他側に設けられて前記他方の小径孔に摺動自
在に嵌挿され同小径孔端に戻り流路に連通ずる第4油室
を形成する小径部を一体的に備える弁体と、同弁体を前
記第3油室に向けて付勢するばねを備える構成とし、ま
た前記パイロット弁を、電流付与値に応じて前記各主弁
の第3油室に付与されるバ・イロン)・圧を比例制御す
る比例制御弁を備える構成とすることにより得られる。
The first fluid control device described in ``2'' has a valve body in which each main valve has a large diameter hole, and small diameter holes of the same diameter are provided at both ends of the valve body, and a valve seat is formed in one step. A poppet valve part that is fitted into the large diameter hole to form a first oil chamber that is always in communication with one of the flow paths, and that opens and closes the valve seat by seating on and leaving the valve seat; A connecting portion provided on one side, extending into the one small diameter hole, and forming a second oil chamber communicating with the first oil chamber through the valve seat and communicating with the other flow path between the small diameter hole and the first small diameter hole. and a piston part provided on one side of the connecting part and slidably inserted into the one small diameter hole to form a third chamber at the end of the small diameter hole. a valve body integrally provided with a small diameter portion provided on the other side and forming a fourth oil chamber that is slidably inserted into the other small diameter hole and returns to the end of the small diameter hole and communicates with the flow path; The pilot valve is configured to include a spring that biases the body toward the third oil chamber, and the pilot valve is configured to apply pressure to the third oil chamber of each of the main valves according to the current applied value. This can be achieved by having a configuration that includes a proportional control valve that proportionally controls.

また、上記した第2の流体制御装置は、前記第3主弁又
は前記第4主弁を、大径孔の両端に同一径の小径孔をそ
れぞれ設けてなり一方の段部に弁座を形成してなる弁本
体と、前記大径孔内に嵌挿されて負荷流路に常時連通ず
る第1油室を形成し前記弁座に着座したり離脱して同弁
座を開閉するボペソl−弁部と同ポペット弁部の一側に
設りられて前記一方の小径孔内に延び同小径孔との間に
前記弁座を通して前記第1油室に連通しかつ排出流路に
連通ずる第2油室を形成する連結部と同連結部の一側に
設げられて前記一方の小径孔に摺動自在に嵌挿され同小
径孔端に戻り流路に連通ずる第3油室を形成するビスl
−7部を一体的に備えるとともに前記ポペット弁部の他
側に設けられて前記他方の小径孔に摺動自在に嵌挿され
同小径孔端に戻り流路に連通ずる第4油室を形成すると
ともに前記大径孔端に絞りを介して前記負荷流路に連通
ずる第5油室を形成する小径部を一体的に備え乙弁体と
、同弁体を前記第3油室に向けて付勢するばねを備える
構成とし、また同第3主弁又は第4主弁の作動を制御す
るパ、イロ・7)・弁を、前記第5油室に接続されて前
記絞りを介して付与され乙負荷流路の圧力によって作動
するリリーフ弁、このリリーフ弁と戻り流路を接続する
流路中に介装されて同リリーフ弁と戻り流路の連通を開
閉する開閉弁及びこの開閉弁を開作動させるパイロット
圧を同開閉弁に供給するパイロット圧供給弁を備える構
成とすることにより得られる。
Further, in the above-mentioned second fluid control device, the third main valve or the fourth main valve is provided with a small diameter hole having the same diameter at both ends of a large diameter hole, and a valve seat is formed in one stepped portion. a valve body which is fitted into the large-diameter hole to form a first oil chamber that is always in communication with the load flow path, and which opens and closes the valve seat by seating on and leaving the valve seat. A first oil chamber is provided on one side of the valve portion and the poppet valve portion, extends into the one small diameter hole, and communicates with the first oil chamber through the valve seat between the small diameter hole and the first oil chamber and the discharge flow path. A connecting portion that forms two oil chambers and a third oil chamber that is provided on one side of the connecting portion and is slidably inserted into the one small diameter hole and returns to the end of the small diameter hole and communicates with the flow path. Screws to do
- A fourth oil chamber is integrally provided with a seventh part and is provided on the other side of the poppet valve part and is slidably inserted into the other small diameter hole and returns to the end of the small diameter hole and communicates with the flow path. At the same time, a small diameter portion is integrally provided at the end of the large diameter hole to form a fifth oil chamber that communicates with the load flow path via a throttle, and the valve body is directed toward the third oil chamber. The configuration includes a biasing spring, and a valve that controls the operation of the third main valve or the fourth main valve is connected to the fifth oil chamber and provided through the throttle. A relief valve that is operated by the pressure of the load flow path, an on-off valve that is interposed in the flow path that connects this relief valve and the return flow path and opens and closes communication between the relief valve and the return flow path, and this on-off valve. This can be obtained by having a configuration including a pilot pressure supply valve that supplies pilot pressure for opening the opening/closing valve to the opening/closing valve.

〔発明の作用〕[Action of the invention]

本発明による第1の流体制御装置においては、各主弁の
弁体が第1油室及び第2油室内油圧の変動によって押動
されないように圧力バランスされており、パイ日ノ1−
弁における比例制御弁−・の電流イ」与値を適宜に変え
て各主弁の第3油室に付与される各パイロット圧を適宜
に変えることにより、以下の各作動が得られる。
In the first fluid control device according to the present invention, the pressure is balanced so that the valve body of each main valve is not pushed by fluctuations in the oil pressure in the first oil chamber and the second oil chamber.
By appropriately changing the current value of the proportional control valve in the valve and appropriately changing each pilot pressure applied to the third oil chamber of each main valve, the following operations can be obtained.

(al  パ・イロソト弁における比例制御弁−・の電
流付与値を設定値未満(零の場合もある)として各パイ
ロット圧を設定値未満とした場合。
(al) When the current applied value of the proportional control valve in the P-Irosoto valve is less than the set value (sometimes zero) and each pilot pressure is less than the set value.

このときには、各主弁の第3油室にパイロット圧が付与
されるものの、各パイロット圧が設定値未満であるため
、各パイロット圧により各主弁の弁体をばねの作用に抗
して押動することはできず、ボペソ1〜弁部は弁座に着
座している。したがって、各主弁の第1油室に連通ずる
流路と第2油室に連通ずる流路との連通が遮断された状
態に保持されて、各負荷流路の圧力は保持され、負荷流
路に接続されている流体アクチュエータは負荷が作用し
ても停止状態に保持される。
At this time, pilot pressure is applied to the third oil chamber of each main valve, but since each pilot pressure is less than the set value, each pilot pressure pushes the valve body of each main valve against the action of the spring. It cannot move, and the valve parts 1 to 1 are seated on the valve seat. Therefore, communication between the flow path communicating with the first oil chamber and the flow path communicating with the second oil chamber of each main valve is maintained in a state of being cut off, the pressure in each load flow path is maintained, and the load flow A fluid actuator connected to the channel is held stationary under load.

(b)  上記した(a)の状態からパイ1:2ット弁
における比例制御弁−・の電流付与値を設定値以上とし
て第1及び第4 (又は第2及び第3)主弁の第3油室
に付与される各パイ日ソ1−圧を設定値以上とじた場合
(b) From the state of (a) above, set the current applied value of the proportional control valve in the pie 1:2 valve to the set value or more to the first and fourth (or second and third) main valves. 3. When each pressure applied to the oil chamber exceeds the set value.

このときには、第1及び第4 (又は第2及び第3)主
弁の弁体が各第3油室内のパイロット圧による押圧力と
ばねの作用力がバランスする位置まで移動してその位置
にて保持される。したがって、供給流路及び一方の負荷
流路(又は他方の負荷流路)を通して流体アクチュエー
タに、かつ同流体アクチュエータから他方の負荷流路(
又は一方の負荷流路)及び排出流路を通して流体が流れ
る駆動回路が形成され、流体アクチュエータが作動する
At this time, the valve bodies of the first and fourth (or second and third) main valves move to a position where the pressing force due to the pilot pressure in each third oil chamber and the acting force of the spring are balanced, and at that position. Retained. Therefore, the supply flow path and one load flow path (or the other load flow path) to the fluid actuator, and from the same fluid actuator to the other load flow path (or
A drive circuit is formed in which fluid flows through the load flow path (or one of the load flow paths) and the discharge flow path, and the fluid actuator is actuated.

しかして、この状態にて、パ・イロ・ノド弁における比
例制御弁−・の電流付与値を変えて第1 (又は第2)
主弁へのパイロ・71−圧と第4 (又は第3)主弁へ
のパイロット圧に差を与え、第1 (又は第2)主弁と
第4(又は第3)主弁のいずれか一方を全開状態としか
つ他方を適宜な絞り状態とすれば、当該流体アクチュエ
ータの作動をメータイン又はメータアウト制御すること
ができる。なお、かかる流体アクチュエータの作動中に
て第1 (又は第2)主弁−・のパイロ・/1・圧と第
4(又は第3)主弁−・のパ・イロソト圧を変えること
によりメータイン制御からメータアウト制御(或いはそ
の逆)に変えることができる。また、かかる流体アクチ
ュエータの作動中にて第3 (又は第4)主弁へのパイ
ロット圧を設定値以上の成る値にすると、第1 (又は
第2)主弁を通して流体アクチュエータに供給されてい
る圧力流体の一部又は全部が第3(又は第4)主弁を通
して排出流路に排出され、当該流体アクチュエータの作
動が減圧制御又はブリードオフ制御される。
Therefore, in this state, by changing the current applied value of the proportional control valve in the pa, iro, and throat valves, the first (or second)
Give a difference between the pyro-71-pressure to the main valve and the pilot pressure to the fourth (or third) main valve, and either the first (or second) main valve or the fourth (or third) main valve If one is fully open and the other is appropriately throttled, the operation of the fluid actuator can be controlled by meter-in or meter-out. Note that during the operation of such a fluid actuator, the meter input can be achieved by changing the pyro-/1-pressure of the first (or second) main valve and the pyro-somatic pressure of the fourth (or third) main valve. It is possible to change from control to meter-out control (or vice versa). Additionally, when the pilot pressure to the third (or fourth) main valve is set to a value higher than the set value while the fluid actuator is in operation, the pressure is supplied to the fluid actuator through the first (or second) main valve. Part or all of the pressure fluid is discharged to the discharge passage through the third (or fourth) main valve, and the operation of the fluid actuator is controlled to reduce the pressure or control the bleed-off.

一方、本発明による第2の流体制御装置においては、」
二記(blの作動に変えて下記(C1の作動が得られる
On the other hand, in the second fluid control device according to the present invention,
In place of the operation of 2 (bl), the following (C1 operation) can be obtained.

(C)  第1 (又は第2)主弁−・のパ・イロソト
圧を設定値以上とし、かつ第4 (又は第3)主弁の作
動を制御するパイロット圧におけるパイロット圧供給弁
を作動させて開閉弁を開作動させた場合。
(C) Increase the pressure of the first (or second) main valve to a set value or higher, and operate the pilot pressure supply valve at the pilot pressure that controls the operation of the fourth (or third) main valve. When the on-off valve is opened.

このときには、第1 (又は第2)主弁の弁体が第3油
室内のパー(1コツ1−正による押圧力とばねの作用力
がバランスする位置まで移動してその位置にて保持され
るものの、第4 (又は第3)主弁に付設したパイロッ
ト弁におけるリリーフ弁が開作動しないかぎり、同主弁
における弁体のポペット弁部に作用している第1油室内
油圧と第5油室内油圧が相殺されているため、第4 (
又は第3)主弁の弁体ばばねの作用に抗して移動しない
。しかして、上記リリーフ弁は同リリーフ弁に絞りを介
して付与される負荷流路内圧力がリリーフ設定圧以上に
なることにより開作動し、かかる場合には第4(又は第
3)主弁の第1油室と第5油室間に差圧が生じ、同差圧
に応じて弁体がばねの作用に抗して移動する。したがっ
て、当該流体アクチュエータがカウンクハランス制御さ
れながら作動する。
At this time, the valve body of the first (or second) main valve moves to a position where the pressing force due to the spring in the third oil chamber is balanced and is held at that position. However, unless the relief valve in the pilot valve attached to the fourth (or third) main valve is opened, the hydraulic pressure in the first oil chamber and the fifth oil acting on the poppet valve part of the valve body in the main valve will be affected. Since the indoor oil pressure is offset, the fourth (
or 3) it does not move against the action of the valve body spring of the main valve. Therefore, the relief valve opens when the pressure inside the load flow path applied to the relief valve through the throttle exceeds the relief set pressure, and in such a case, the fourth (or third) main valve opens. A pressure difference is generated between the first oil chamber and the fifth oil chamber, and the valve body moves against the action of the spring in response to the pressure difference. Therefore, the fluid actuator operates under counter-harass control.

〔発明の効果〕〔Effect of the invention〕

本発明による第1の流体制御装置は、上記した従来の装
置と同等に多種の制御機能を備えながら、各主弁の第4
油室が戻り流路に連通しているだけであって回路構成が
上記した従来の装置に比して簡略化されており、しかも
バイリソ1−弁が電流付与値に応じて各主弁の第3油室
に付与されるパイロン)・圧を比例制御する比例制御弁
により構成されていて、上記した従来の装置において各
主弁の第4油室と戻り流路間を連通遮断させるために採
用されている切換弁が採用されていないため、当該流体
制御装置を上記した従来の装置に比して極めて安価に構
成することができる。
The first fluid control device according to the present invention has a variety of control functions equivalent to those of the conventional device described above, and has a fourth fluid control device for each main valve.
The oil chamber is only connected to the return flow path, and the circuit configuration is simplified compared to the conventional device described above.Moreover, the bilithoscopic 1-valve is connected to the main valve's main valve according to the current applied value. It is composed of a proportional control valve that proportionally controls the pressure (pylon attached to the 3rd oil chamber), and is used in the conventional device described above to disconnect communication between the 4th oil chamber of each main valve and the return flow path. Since the conventional switching valve is not employed, the fluid control device can be constructed at an extremely low cost compared to the conventional device described above.

また、本発明による第2の流体制御装置においては、各
主弁の第4油室が戻り流路に連通しているだけであって
回路構成が従来の装置に比して簡略化されており、しか
もバイロン[−弁が第1及び第2主弁と第3又は第4主
弁のいずれか一方の三つの主弁の第3油室に付与される
パイロット圧を電流付与値に応じて比例制御する比例制
御弁と、第4又は第3主弁の作動を制御するリリーフ弁
開閉弁及びパイロット圧供給弁により構成されていて、
上記した従来の装置において各主弁の第4油室と戻り流
路間を連通遮断させるために採用されている切換弁が採
用されていないため、当該流体制御装置をカウンタバラ
ンス制御機能を付加したにも拘わらす上記した従来の装
置に比して安価に構成することができる。
Furthermore, in the second fluid control device according to the present invention, the fourth oil chamber of each main valve only communicates with the return flow path, and the circuit configuration is simplified compared to the conventional device. , Moreover, the Byron [- valve proportionally controls the pilot pressure applied to the third oil chamber of the three main valves, the first and second main valves and either the third or fourth main valve, according to the current applied value. It is composed of a proportional control valve to control, a relief valve opening/closing valve and a pilot pressure supply valve to control the operation of the fourth or third main valve,
Since the conventional device described above does not use the switching valve that is used to cut off communication between the fourth oil chamber of each main valve and the return flow path, the fluid control device is equipped with a counterbalance control function. Nevertheless, it can be constructed at a lower cost than the above-mentioned conventional devices.

〔実施例〕〔Example〕

以下に本発明の各実施例を図面に基づいて説明する。 Embodiments of the present invention will be described below based on the drawings.

第1図は本発明による第1の流体制御装置の一実施例を
示していて、同装置は供給流路P1と一方の負荷流路R
2間の連通を制御するポペット型第1主弁10と、供給
流路P1と他方の負荷流路23間の連通を制御するポペ
ット型第2主弁20と、排出流路P4と一方の負荷流路
R2間の連通を制御するボペソ[・型第3主弁30と、
排出流路P4と他方の負荷流路23間の連通を制御する
ボペ・ノド型第4主弁40と、各主弁10,20,30
.40の作動をそれぞれ制御するバーイロンl−弁とし
て機能する減圧弁51及び第1〜第4電流制御リリーフ
弁52〜55を備えている。
FIG. 1 shows an embodiment of a first fluid control device according to the present invention, which includes a supply flow path P1 and one load flow path R.
a poppet-type first main valve 10 that controls communication between the two, a poppet-type second main valve 20 that controls communication between the supply flow path P1 and the other load flow path 23, and a poppet-type second main valve 20 that controls communication between the supply path P1 and the other load flow path 23; A Bopeso type third main valve 30 that controls communication between the flow path R2;
A fourth main valve 40 of a bope throat type that controls communication between the discharge flow path P4 and the other load flow path 23, and each of the main valves 10, 20, 30.
.. The pressure reducing valve 51 and the first to fourth current control relief valves 52 to 55 each function as a virion L-valve to control the operation of the valves 40 and 40, respectively.

各主弁10.20,30.4.0は、基本構成を同一と
するものであり、第1主弁10を例にして第1図及び第
2図にて示したように、第1部材IIA、第2部材11
B及び第3部材11Cからなる弁本体11と、この弁本
体11内に左右方向−・摺動可能に嵌挿した弁体12と
、この弁体12を左方−付勢するばね13によって構成
されている。
Each main valve 10.20, 30.4.0 has the same basic configuration, and as shown in FIGS. 1 and 2 using the first main valve 10 as an example, the first member IIA, second member 11
The valve body 11 is composed of a valve body 11 made up of a third member 11C, a valve body 12 that is slidably inserted in the valve body 11 in the left-right direction, and a spring 13 that biases the valve body 12 leftward. has been done.

弁本体11は、大径孔11aの左右両側に同一径の小径
孔11b、llcをそれぞれ設けてなり、左方の段部に
弁座1.1. dを形成してなる段付内孔を有するとと
もに、弁座lidに近接する側の大径孔端に形成されて
負荷流路P2が連通ずる環状溝1.1 eと、左方の小
径孔11bの中間部に形成されて供給流路P1が連通ず
る環状溝11fを有している。
The valve body 11 has small diameter holes 11b and llc of the same diameter on both left and right sides of a large diameter hole 11a, and valve seats 1.1. an annular groove 1.1e formed at the end of the large-diameter hole on the side close to the valve seat lid and through which the load flow path P2 communicates, and a small-diameter hole on the left side. It has an annular groove 11f formed in the middle part of the groove 11b and communicating with the supply flow path P1.

弁体12は、大径孔11a内に圧力バランスされた状態
にて摺動自在に嵌挿されて第1油室R11を形成しテー
パ面12a1にて弁座lidに着座したり離脱して両流
路PI、P2間を連通遮断するポベッ1弁部12aと、
同ボベント弁部12aの左側に設けられて小径孔11b
内に延び同小径孔との間に弁座lidを通して第1油室
RI Lに連通する第2油室R12を形成する連結部1
2bと、同連結部12bの左側に設けられて小径孔11
b内に摺動可能に嵌挿され同小径孔11b端にパイロッ
ト圧力が付与される第3油室R13を形成するピストン
部12cを一体的に備えるとともに、ポペット弁部12
aの右側に設けられて小径孔11cに摺動自在に嵌挿さ
れ同小径孔11b端に常に戻り流路P5に連通ずる第4
油室R14を形成するとともに大径孔11a端に絞り1
4を介して負荷流路P2に連通ずる第5油室R15を形
成する小径筒部12dを一体的に備えている。
The valve body 12 is slidably inserted into the large diameter hole 11a in a pressure-balanced state to form a first oil chamber R11. a Pobe 1 valve portion 12a that disconnects communication between the flow paths PI and P2;
A small diameter hole 11b is provided on the left side of the bovent valve part 12a.
A connecting portion 1 that extends inward and forms a second oil chamber R12 that communicates with the first oil chamber RI L through the valve seat lid between the small diameter hole and the small diameter hole.
2b, and a small diameter hole 11 provided on the left side of the connecting portion 12b.
The poppet valve portion 12 is integrally provided with a piston portion 12c that is slidably inserted into the small diameter hole 11b and forms a third oil chamber R13 to which pilot pressure is applied to the end of the small diameter hole 11b.
A fourth hole is provided on the right side of a, is slidably inserted into the small diameter hole 11c, and always returns to the end of the small diameter hole 11b and communicates with the flow path P5.
An oil chamber R14 is formed and a throttle 1 is provided at the end of the large diameter hole 11a.
It is integrally provided with a small diameter cylindrical portion 12d forming a fifth oil chamber R15 communicating with the load flow path P2 via a small diameter cylinder portion 12d.

しかして、上記したビスl−7部12cの中間部には、
ピストン部12c及び連結部12bの軸心に軸方向に設
けた内孔(プラグ12eによって閉塞されている)と連
結部12bに設けた径方向の孔からなる連通路を通して
第2油室R12に連通する開口12c1が形成されてい
て、同開口12c1と小径孔内壁11b1及び環状溝1
1fとにより、弁体12が右動することによってボペノ
I。
Therefore, in the middle part of the above-mentioned screw l-7 part 12c,
It communicates with the second oil chamber R12 through a communication path consisting of an inner hole (closed by a plug 12e) provided in the axial direction at the axes of the piston portion 12c and the connecting portion 12b, and a radial hole provided in the connecting portion 12b. An opening 12c1 is formed to connect the opening 12c1, the small diameter hole inner wall 11b1, and the annular groove 1.
1f, the valve body 12 moves to the right, resulting in Bopeno I.

弁部12aのテーパ面12a1と弁座lid間に形成さ
れる流路面積より流路面積が常に小さい可変絞り部Sが
構成されている。なお、開口12c1の形状は第3図に
て例示したものの一つが採用されている。
A variable throttle portion S is configured, the flow path area of which is always smaller than the flow path area formed between the tapered surface 12a1 of the valve portion 12a and the valve seat lid. Note that one of the shapes illustrated in FIG. 3 is adopted as the shape of the opening 12c1.

なお、第2〜第4主弁20,30.4.0の対応する部
材には類似符号を付してその説明は省略する。(第1図
参照) 上記のように構成した各主弁1o〜4oにおいては、弁
体12〜42のボペソ)弁部12a〜42aに作用する
第1及び第5油室R11〜R4,lR15〜R45内油
圧による押圧力が相殺され、またポペ・71・弁部12
a〜42 aとピストン部12c〜42cに作用する第
2油室R12〜R4−2内油圧による押圧力が相殺され
ているため、弁体12〜42は第1.第2.第5油室R
11〜R41、R12〜R42,R15〜R45内油圧
の変動によって押動されることばない(圧力バランスさ
れている)。また各主弁1o〜4oにおいてば、ポペッ
ト弁部12a〜4.2 aのテーパ面12a1〜42a
と弁座lid〜41d間に形成される流路が単なる通路
として機能し、かつ可変絞り部Sにて流体が絞られるよ
うにしたため、弁体12〜42に作用するフローフォー
ス(弁体12〜42を軸方向−・移動させようとする力
)を小さくすることができ、所望の値に設定した可変絞
り部Sの開口面積がフローフォースの影響をさほど受げ
ないといった利点を有している。
Note that corresponding members of the second to fourth main valves 20, 30.4.0 are given similar symbols and their explanations are omitted. (See Fig. 1) In each of the main valves 1o to 4o configured as described above, the first and fifth oil chambers R11 to R4, lR15 to The pressing force due to the hydraulic pressure inside R45 is canceled out, and the pope・71・valve part 12
a to 42 a and the pressing forces acting on the piston portions 12 c to 42 c due to the hydraulic pressure in the second oil chambers R12 to R4-2 are offset, so the valve bodies 12 to 42 are in the same position as the first. Second. 5th oil chamber R
No. 11 to R41, R12 to R42, and R15 to R45 are not pushed or moved by fluctuations in oil pressure (pressure is balanced). In addition, in each of the main valves 1o to 4o, the tapered surfaces 12a1 to 42a of the poppet valve portions 12a to 4.2a
The flow path formed between the valve seats lid and 41d functions as a mere passage, and the fluid is throttled by the variable throttle section S, so that the flow force acting on the valve bodies 12 to 42 (valve bodies 12 to 42 in the axial direction (the force that tries to move it) can be reduced, and the opening area of the variable aperture section S, which is set to a desired value, has the advantage that it is not so affected by the flow force. .

減圧弁51は、供給流路P1に接続されていて、同流路
P1から供給される油圧を所定値の基準バー1’ロフト
正に減圧制御する。各電流制御リリーフ弁52〜55は
、各絞り56〜59を介して減圧弁51に接続されてい
て、各主弁1o〜4oの第3油室R13〜R43に付与
されるパイロット圧を電流付与値に応じてそれぞれ比例
制御する。
The pressure reducing valve 51 is connected to the supply flow path P1, and controls the pressure reduction of the oil pressure supplied from the flow path P1 to a predetermined value of the reference bar 1' loft. Each of the current control relief valves 52 to 55 is connected to the pressure reducing valve 51 via each of the throttles 56 to 59, and applies current to the pilot pressure applied to the third oil chambers R13 to R43 of each of the main valves 1o to 4o. Proportional control is performed according to each value.

上記のように構成した本実施例においては、各主弁の弁
体12〜42が第1.第2及び第5油室内油圧の変動に
より押動されないように圧力バランスされており、パイ
ロット弁における各電流制御リリーフ弁52〜55−・
の電流付与値を適宜に変えて各主弁10〜4oの第3油
室R13〜R43に付与される各パイロット圧を適宜に
変えることにより、以下の各作動が得られる。
In this embodiment configured as described above, the valve bodies 12 to 42 of each main valve are the first. The pressure is balanced so as not to be pushed by fluctuations in the oil pressure in the second and fifth oil chambers, and the current control relief valves 52 to 55 in the pilot valves are
The following operations can be obtained by appropriately changing the current application value and appropriately changing each pilot pressure applied to the third oil chambers R13 to R43 of each main valve 10 to 4o.

(])各雷電流制御リーフ弁52〜55−・の電流付与
値を設定値未満(零の場合もある)として各パイロット
圧を設定値未満とした場合。
(]) When the current application value of each lightning current control leaf valve 52 to 55- is less than the set value (sometimes zero) and each pilot pressure is less than the set value.

このときにば、各主弁10〜40の第3油室R13〜R
43にパイロット圧が付与されるものの、各パイロット
圧が設定値未満であるため、各バイ日ソ1−圧により各
主弁の弁体12〜42をばね13〜43の作用に抗して
押動することはできず、ボベソ)・弁部12a 〜42
aは弁座11d〜41dに着座している。したがって、
各主弁10〜40の第1油室R11〜R41に連通ずる
流路と第2油室R12〜R4,2に連通ずる流路との連
通が遮断された状態に保持されて、各負荷流路P2゜R
3の圧力は保持され、負荷流路P2.P3に接続されて
いる流体アクチュエータAは負荷が作用しても停止状態
に保持される。
At this time, the third oil chambers R13 to R of each main valve 10 to 40
43, but since each pilot pressure is less than the set value, the valve bodies 12 to 42 of each main valve are pushed by the respective bipolar pressures against the action of the springs 13 to 43. Valve parts 12a to 42
A is seated on the valve seats 11d to 41d. therefore,
Communication between the passages communicating with the first oil chambers R11 to R41 and the passages communicating with the second oil chambers R12 to R4, 2 of each main valve 10 to 40 is maintained in a state of being cut off, and each load flow Road P2゜R
The pressure of P2.3 is maintained, and the pressure of P2.3 is maintained. The fluid actuator A connected to P3 is held in a stopped state even when a load is applied.

(2)上記した(1)の状態から電流制御リリーフ弁5
2.55(又は53.54)−・の電流付与値を設定値
以上として第1及び第4(又は第2及び第3)主弁10
,40 (又は20.30)の第3油室R13、R43
(又はR23,R33)に付与される各パイロット圧を
設定値以上とした場合。
(2) From the state of (1) above, the current control relief valve 5
The first and fourth (or second and third) main valves 10 are set so that the current applied value of 2.55 (or 53.54) is equal to or higher than the set value.
, 40 (or 20.30) third oil chamber R13, R43
(or R23, R33) when each pilot pressure applied to the set value or more.

このときには、第1及び第4 (又は第2及び第3)主
弁の弁体12,42(又は22.32)が各第3油室R
13,R43(又はR23,R33)内のパイロット圧
による押圧力とばね13.43(又は23.33)の作
用力がバランスする位置まで移動してその位置にて保持
される。したがって、供給流路P1及び一方の負荷流路
P2(又は他方の負荷流路P3)を通して流体アクチュ
エータAに、かつ同流体アクチュエータ八から他方の負
荷流路P3(又は一方の負荷流路P2)及び排出流路P
4を通して流体が流れる駆動回路が形成され、流体アク
チュエータAが作動する。
At this time, the valve bodies 12, 42 (or 22, 32) of the first and fourth (or second and third) main valves are connected to each third oil chamber R.
13, R43 (or R23, R33) to a position where the pressing force due to the pilot pressure and the acting force of the spring 13.43 (or 23.33) are balanced and held at that position. Therefore, the supply flow path P1 and one load flow path P2 (or the other load flow path P3) are passed to the fluid actuator A, and from the same fluid actuator A, the other load flow path P3 (or one load flow path P2) and Discharge channel P
A drive circuit is formed through which fluid flows, and fluid actuator A is actuated.

しかして、この状態にて、電流制御リリーフ弁52.5
5  (又は53.54)−・の電流付与値を変えて第
1 (又は第2)主弁10(又は20)へのパイロット
圧と第4(又は第3)主弁40 (又は30)=のパイ
ロット圧に差を与え、第1 (又は第2)主弁10 (
又は20)と第4(又は第3)主弁40 (又は30)
のいずれか一方を全開状態としかつ他方を適宜な絞り状
態とすれば、当該流体アクチュエータへの作動をメーク
イン又はメータアウト制御することができる。なお、か
かる流体アクチュエータAの作動中にて第1 (又は第
2)主弁10(又は20)−・のパイロット圧と第4(
又は第3)主弁40(又は30)−・のパイロット圧を
変えることによりメータ・イン制御からメータアウト制
御(或いはその逆)に変えることができる。また、かか
る流体アクチュエータへの作動中にて第3 (又は第4
)主弁30 (又は40)へのパイロット圧を設定値以
上の成る値にすると、第1 (又は第2)主弁10 (
又は20)を通して流体アクチュエータAに供給されて
いる圧力流体の一部又は全部が第3 (又は第4)主弁
30(又は40)を通して排出流路P4に排出され、当
該流体アクチュエータへの作動が減圧制御又はブリード
オフ制御される。
Therefore, in this state, the current control relief valve 52.5
5 (or 53,54)-- by changing the current applied value to the pilot pressure to the first (or second) main valve 10 (or 20) and the fourth (or third) main valve 40 (or 30) = The first (or second) main valve 10 (
or 20) and the fourth (or third) main valve 40 (or 30)
By setting either one of the two to a fully open state and the other to an appropriate throttle state, the operation of the fluid actuator can be controlled to be make-in or meter-out. Note that during the operation of the fluid actuator A, the pilot pressure of the first (or second) main valve 10 (or 20) and the fourth (or
Alternatively, by changing the pilot pressure of the third) main valve 40 (or 30), it is possible to change from meter-in control to meter-out control (or vice versa). Also, during actuation to such a fluid actuator, the third (or fourth)
) When the pilot pressure to the main valve 30 (or 40) is set to a value higher than the set value, the first (or second) main valve 10 (
or 20), part or all of the pressure fluid supplied to the fluid actuator A is discharged to the discharge passage P4 through the third (or fourth) main valve 30 (or 40), and the operation to the fluid actuator is Controlled by pressure reduction or bleed-off.

(3)電流制御IJ リーフ弁52.53−・の電流付
与値を設定値以上として第1及び第2主弁1o、20の
第3油室R13,R23に付与される各パ・イロソト圧
を設定値以上とした場合。
(3) Current control IJ The current applied value of the leaf valves 52, 53-. If the value is greater than or equal to the set value.

このときには、第1及び第2主弁の弁体1222が各第
3油室R13,F!23内のパイロット圧による押圧力
とばね13.23の作用力がバランスする位置まで移動
してその位置にて保持される。したがって、供給流路P
1が再負荷流路P2P3に連通して差動回路が形成され
流体アクチュエータAが高速作動する。なお、この状態
にて、第1及び第2主弁10.20へのパイロット圧に
差を与えて供給流路P1といずれか一方の負荷流路P2
又は23間を絞れば、流体アクチュエータAの作動をメ
ータ・イン又はメータアウト制御することができる。
At this time, the valve bodies 1222 of the first and second main valves are in the respective third oil chambers R13, F! It moves to a position where the pressing force due to the pilot pressure in 23 and the acting force of the spring 13.23 are balanced, and is held at that position. Therefore, the supply flow path P
1 communicates with the reload flow path P2P3, a differential circuit is formed, and the fluid actuator A operates at high speed. In addition, in this state, a difference is given to the pilot pressures to the first and second main valves 10.20, so that the supply flow path P1 and one of the load flow paths P2
Alternatively, by narrowing the range between 23 and 23, the operation of the fluid actuator A can be controlled in a meter-in or meter-out manner.

以上の説明から明らかなように、本実施例の流体制御装
置は、それ自体の構成部材であるパイロ・7F・弁にお
ける各電流制御リリーフ弁52〜55−・の電流付与値
を設定値用」二とすることによって、他の部)Aや制御
弁を付加することなく、当該流体アクチュエータへの作
動をメーターイン又はメータアウト制御することができ
、当該装置をコンパクトかつ安価に構成することができ
る。
As is clear from the above description, the fluid control device of this embodiment uses the current applied value of each current control relief valve 52 to 55 in the pyro 7F valve, which is a component of the fluid control device, as a set value. 2, it is possible to perform meter-in or meter-out control of the operation of the fluid actuator without adding other parts (A) or control valves, and the device can be configured compactly and inexpensively. .

また、各電流制御リリーフ弁52〜55−・の電流付与
値を適宜に変えて各パイロット圧を設定値以上の適宜な
値とすることにより、上記したメータイン又はメータア
ウト制御特性を適宜に変更することができ、特性の変更
を極めて容易に行うことができる。
In addition, the above-mentioned meter-in or meter-out control characteristics can be changed as appropriate by appropriately changing the current application value of each current control relief valve 52 to 55-, and setting each pilot pressure to an appropriate value higher than the set value. It is possible to change the characteristics very easily.

更に、パイロット弁における各電流制御リリーフ弁52
〜55の作動を時定数制御することにより各主弁10〜
40の開閉作動速度を制御できるため、流体アクチュエ
ータAの作動開始或いは停止時におけるシゴノクを軽減
することができるといった効果も期待できる。
Furthermore, each current control relief valve 52 in the pilot valve
By controlling the operation of ~55 with a time constant, each main valve 10~
Since the opening/closing operation speed of the fluid actuator 40 can be controlled, it is also possible to expect the effect of reducing the strain caused when the fluid actuator A starts or stops operating.

また、本実施例の流体制御装置においては、各主弁10
〜40の第4油室R14〜R44が戻り流路P5に連通
しているだりであって回路構成が例えば特開昭62−1
94.007号公報にて提案された従来の装置に比して
簡略化されており、しかもパ・イロソト弁が減圧弁51
と電流制御リリーフ弁52〜55等により構成されてい
て、上記した従来の装置において各主弁の第4油室と戻
り流路間を連通遮断させるために採用されている切換弁
が採用されていないため、当該流体制御装置を上記した
従来の装置に比して極めて安価に構成することができる
In addition, in the fluid control device of this embodiment, each main valve 10
The fourth oil chambers R14 to R44 of 40 are connected to the return passage P5, and the circuit configuration is, for example, according to JP-A-62-1.
It is simplified compared to the conventional device proposed in Publication No. 94.007, and moreover, the pressure reducing valve 51 is replaced by the pressure reducing valve 51.
and current control relief valves 52 to 55, etc., and employs a switching valve that is used in the conventional device described above to cut off communication between the fourth oil chamber of each main valve and the return flow path. Therefore, the fluid control device can be constructed at a much lower cost than the conventional devices described above.

第4図は本発明による第2の流体制御装置の一実施例を
示していて、同装置は第4主弁40の第3油室R43が
戻り流路P5に連通していること、電流制御リリーフ弁
55がパイロット圧供給弁として機能している(このた
め、この弁55は電磁切換弁であってもよく、この場合
には絞り59を省略できる)こと、第4主弁40の第5
油室R45にリリーフ弁V1が接続されていること、及
びこのリリーフ弁■1と戻り流路P5を接続する流路P
6中にリリーフV1と戻り流路P5の連通を開閉する開
閉弁■2が介装されていることを除いて、上記実施例の
流体制御装置と同じ構成となっており、同一構成部分は
同一符号を付してその説明は省略する。
FIG. 4 shows an embodiment of the second fluid control device according to the present invention, in which the third oil chamber R43 of the fourth main valve 40 communicates with the return passage P5, and the current control device The relief valve 55 functions as a pilot pressure supply valve (therefore, the valve 55 may be an electromagnetic switching valve, in which case the throttle 59 can be omitted), and the fifth valve of the fourth main valve 40
A relief valve V1 is connected to the oil chamber R45, and a flow path P that connects this relief valve ■1 and the return flow path P5.
The structure is the same as that of the fluid control device of the above embodiment, except that an on-off valve 2 for opening and closing communication between the relief V1 and the return flow path P5 is installed in the 6, and the same components are the same. Reference numerals are given and explanations thereof are omitted.

IJ IJ−フ弁V1は、第4主弁40の第5油室R4
5に接続されていて、絞り44を介して付与される負荷
流路P3の圧力によって作動するように構成されている
。開閉弁■2は、常閉弁であり、電流制御IJ IJ−
フ弁55から設定値以上のパイロット圧が付与されたと
き開作動するように構成されている。
IJ IJ-F valve V1 is the fifth oil chamber R4 of the fourth main valve 40.
5, and is configured to be operated by the pressure of the load flow path P3 applied via the throttle 44. The on-off valve ■2 is a normally closed valve, and the current control IJ IJ-
The valve 55 is configured to open when a pilot pressure equal to or higher than a set value is applied from the valve 55.

上記のように構成した本実施例の流体制御装置において
は、第1図に示した流体制御装置において得られる上記
(2)の作動に代えて下記(4)の作動が得られること
、及び上記(3)の作動が得られないこと(流体アクチ
ュエータAの構成が異なるため)を除いて第1図に示し
た流体制御装置において得られる作動と同様の作動が得
られる。
In the fluid control device of this embodiment configured as described above, the following operation (4) can be obtained in place of the operation (2) above obtained in the fluid control device shown in FIG. The same operation as that obtained in the fluid control device shown in FIG. 1 can be obtained, except that the operation (3) cannot be obtained (because the configuration of the fluid actuator A is different).

(4)第1主弁10−・のパイロット圧を設定値以上と
し、かつ第4主弁40の作動を制御するパイロット弁に
おける電流制御リリーフ弁55を作動させて開閉弁V2
を開作動させた場合。
(4) Set the pilot pressure of the first main valve 10- to a set value or higher, and operate the current control relief valve 55 in the pilot valve that controls the operation of the fourth main valve 40 to open/close the valve V2.
When activated to open.

このときには、第1主弁の弁体12が第3油室R13内
のバーイロソト圧による押圧力とばね13の作用力がバ
ランスする位置まで移動してその位置にて保持されるも
のの、第4主弁40に付設したリリーフ弁V1が開作動
しないかぎり、同主弁における弁体42のポペット弁部
42 aに作用している第1油室R41内油圧と第5油
室R45内油圧が相殺されているため、第4主弁の弁体
42ばばね43の作用に抗して移動しない。しかして、
上記リリーフ弁■1ば同リリーフ弁V1に絞り44を介
して付与される負荷流路R3内圧力がリリフ設定圧以上
になることにより開作動し、かかる場合には第4主弁4
0の第1油室R4,1と第5油室R45間に差圧が生じ
、同差圧に応じて弁体42がばね43の作用に抗して移
動する。したがって、当該流体アクチュエークへがカウ
ンタバランス制御されながら作動する。
At this time, the valve body 12 of the first main valve moves to a position where the pressing force due to the bar pressure in the third oil chamber R13 and the acting force of the spring 13 are balanced and is held at that position. Unless the relief valve V1 attached to the valve 40 is opened, the hydraulic pressure in the first oil chamber R41 and the hydraulic pressure in the fifth oil chamber R45 acting on the poppet valve portion 42a of the valve body 42 in the main valve are offset. Therefore, the valve body 42 of the fourth main valve does not move against the action of the spring 43. However,
The relief valve ■1 is opened when the pressure inside the load flow path R3 applied to the relief valve V1 through the throttle 44 exceeds the relief set pressure, and in such a case, the fourth main valve 4
A pressure difference is generated between the first oil chamber R4,1 and the fifth oil chamber R45, and the valve body 42 moves against the action of the spring 43 in response to the pressure difference. Therefore, the fluid actuator operates under counterbalance control.

ところで、本実施例の流体制御装置においては、各主弁
10〜40の第4油室R14〜R44が戻り流路P5に
連通しているだのであって回路構成が上記した従来の装
置に比して簡略化されており、しかもパイロット弁が第
1.第2及び第3主弁10.20.30の第3油室R1
3,R23,R33に付与されるパイロット圧を電流付
与値に応じて比例制御する電流制御IJ IJ−フ弁5
2.53゜54と、第4主弁40の作動を制御するリリ
ーフ弁Vl、開閉弁V2及びパイロット圧供給弁として
機能する電流制御リリーフ弁55により構成されていて
、上記した従来の装置において各主弁の第4油室と戻り
流路間を連通遮断させるために採用されている切換弁が
採用されていないため、当該流体制御装置をカウンタバ
ランス制御機能を付加したにも拘わらず上記した従来の
装置に比して安価に構成することができる。
By the way, in the fluid control device of this embodiment, the fourth oil chambers R14 to R44 of each of the main valves 10 to 40 communicate with the return passage P5, and the circuit configuration is different from that of the conventional device described above. It is simplified as follows, and the pilot valve is the first valve. 3rd oil chamber R1 of 2nd and 3rd main valve 10.20.30
3. Current control IJ IJ-F valve 5 that proportionally controls the pilot pressure applied to R23, R33 according to the current applied value
2.53° 54, a relief valve Vl that controls the operation of the fourth main valve 40, an on-off valve V2, and a current control relief valve 55 that functions as a pilot pressure supply valve. Because the switching valve that is used to cut off communication between the fourth oil chamber of the main valve and the return flow path is not adopted, the above-mentioned conventional fluid control device is equipped with a counterbalance control function. It can be constructed at a lower cost than the other devices.

(変形例〕 本発明による流体制御装置は上記各実施例に限定される
ものではなく、 ■各主弁として特開昭62−194007号公報の装置
において採用されている主弁を適宜変更して採用するこ
と。
(Modifications) The fluid control device according to the present invention is not limited to the above-mentioned embodiments, and the main valves used in the device disclosed in Japanese Patent Application Laid-Open No. 62-194007 may be modified as appropriate. To be adopted.

■パイロット弁として特開昭62−194.007号公
報の第7図に示されているバイ日ソ1−弁、特願昭61
−16614号出願の装置において採用されているパイ
日ソ1−弁等を採用すること。
■ Bi-Japanese-Soviet 1-valve as a pilot valve shown in Figure 7 of Japanese Patent Application Laid-Open No. 62-194.007, Patent Application No. 1988
- Adopt the Pi-Nippon-Soviet 1-valve, etc. used in the device of application No. 16614.

等の変形が可能である。Modifications such as the following are possible.

また、上記各実施例においては、各主弁として第1油室
に絞りを介して連通ずる第5油室が形成される主弁を採
用したが、第5油室と絞りばカウンタバランス制御機能
を得るための主弁(第4図の第4主弁)にのみ必要であ
って他の主弁には不要であるため、他の主弁においては
、特開昭62194、007号公報の第8図に示されて
いるように、絞りを無くして第1油室と第5油室を合体
させることも可能である。
In addition, in each of the above embodiments, a main valve in which a fifth oil chamber is formed which communicates with the first oil chamber via a throttle is used as each main valve, but if the fifth oil chamber and the throttle are connected, the counterbalance control function is achieved. It is necessary only for the main valve (the fourth main valve in Fig. 4) to obtain the above-mentioned characteristics, and is not necessary for other main valves. As shown in FIG. 8, it is also possible to eliminate the throttle and combine the first oil chamber and the fifth oil chamber.

更に、上記した第4図の装置においては、第4主弁の構
成を他の主弁とは異にし同第4主弁にリリーフ弁、開閉
弁等を付加してカウンタバランス制御機能が得られるよ
うにしたが、第3主弁を同第4主弁と同様に構成すると
ともにリリーフ弁開閉弁等を付加して同第3主弁により
カウンタバランス制御機能が得られるようにすることも
可能である。
Furthermore, in the device shown in FIG. 4 described above, the configuration of the fourth main valve is different from that of the other main valves, and a relief valve, an on-off valve, etc. are added to the fourth main valve to obtain a counterbalance control function. However, it is also possible to configure the third main valve in the same manner as the fourth main valve and add a relief valve, etc. so that the third main valve can provide a counterbalance control function. be.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による第1の流体制御装置の一実施例を
示す全体構成図、第2図は第1図に示した装置における
第1主弁部分の詳細な拡大断面図、第3図は第2図に示
した開口の形状を例示した図、第4図は本発明による第
2の流体制御装置の一実施例を示す全体構成図である。 符号の説明 10〜40・・・主弁、11・・・弁本体、11a・・
・大径孔、ttb、tic・・・小径孔、11d・・・
弁座、12・・・弁体、12a・・・ボペ・ノド弁部、
12b・・・連結部、12G・・・ピストン部、12d
・・・小径部、13〜43・・・ばね、14〜44・・
・絞り、51・・・減圧弁、52〜55・・・電流制御
リリーフ弁(比例制御弁)、Pl・・・供給流路、R2
・・・一方の負荷流路、R3・・・他方の負荷流路、R
4・・・排出流路、R5・・・戻り流路、R11〜R4
1・・・第1油室、R12〜R4,2・・・第2油室、
R13〜R4,3・・・第3油室、R14〜R4,4・
・・第4油室、R15〜R45・・・第5油室、Vl・
・・IJ IJ−フ弁、V2・・・開閉弁。
FIG. 1 is an overall configuration diagram showing an embodiment of a first fluid control device according to the present invention, FIG. 2 is a detailed enlarged sectional view of the first main valve portion of the device shown in FIG. 1, and FIG. 2 is a diagram illustrating the shape of the opening shown in FIG. 2, and FIG. 4 is an overall configuration diagram showing an embodiment of the second fluid control device according to the present invention. Explanation of symbols 10 to 40...Main valve, 11...Valve body, 11a...
・Large diameter hole, ttb, tic...small diameter hole, 11d...
Valve seat, 12...valve body, 12a...bope/throat valve part,
12b...Connection part, 12G...Piston part, 12d
...Small diameter part, 13-43...Spring, 14-44...
- Throttle, 51... Pressure reducing valve, 52-55... Current control relief valve (proportional control valve), Pl... Supply flow path, R2
...One load flow path, R3...The other load flow path, R
4...Discharge flow path, R5...Return flow path, R11 to R4
1... First oil chamber, R12 to R4, 2... Second oil chamber,
R13~R4,3...Third oil chamber, R14~R4,4.
...4th oil chamber, R15-R45...5th oil chamber, Vl.
...IJ IJ-F valve, V2...Opening/closing valve.

Claims (2)

【特許請求の範囲】[Claims]  (1)供給流路と一方の負荷流路間の連通を制御する
ポペット型第1主弁と、供給流路と他方の負荷流路間の
連通を制御するポペット型第2主弁と、排出流路と一方
の負荷流路間の連通を制御するポペット型第3主弁と、
排出流路と他方の負荷流路間の連通を制御するポペット
型第4主弁と、前記第1〜第4主弁の作動を制御するパ
イロット弁とを備えてなる流体制御装置において、 前記各主弁を、大径孔の両端に同一径の小径孔をそれぞ
れ設けてなり一方の段部に弁座を形成してなる弁本体と
、前記大径孔内に嵌挿されて一方の流路に常時連通する
第1油室を形成し前記弁座に着座したり離脱して同弁座
を開閉するポペット弁部と同ポペット弁部の一側に設け
られて前記一方の小径孔内に延び同小径孔との間に前記
弁座を通して前記第1油室に連通しかつ他方の流路に連
通する第2油室を形成する連結部と同連結部の一側に設
けられて前記一方の小径孔に摺動自在に嵌挿され同小径
孔端に第3油室を形成するピストン部を一体的に備える
とともに前記ポペット弁部の他側に設けられて前記他方
の小径孔に摺動自在に嵌挿され同小径孔端に戻り流路に
連通する第4油室を形成する小径部を一体的に備える弁
体と、同弁体を前記第3油室に向けて付勢するばねを備
える構成とし、 また前記パイロット弁を、電流付与値に応じて前記各主
弁の第3油室に付与されるパイロット圧を比例制御する
比例制御弁を備える構成としたことを特徴とする流体制
御装置。
(1) A poppet-type first main valve that controls communication between the supply flow path and one load flow path, a poppet-type second main valve that controls communication between the supply flow path and the other load flow path, and a discharge flow path. a poppet-type third main valve that controls communication between the flow path and one load flow path;
A fluid control device comprising: a poppet-type fourth main valve that controls communication between the discharge flow path and the other load flow path; and a pilot valve that controls the operation of the first to fourth main valves. The main valve includes a valve body having a large-diameter hole with small-diameter holes of the same diameter at both ends, and a valve seat formed in one step, and a flow path that is fitted into the large-diameter hole and has one flow path. A poppet valve portion is provided on one side of the poppet valve portion and extends into the one small diameter hole, and the poppet valve portion forms a first oil chamber in constant communication with the valve seat and opens and closes the valve seat by seating on or leaving the valve seat. A connecting portion is provided on one side of the connecting portion to form a second oil chamber that communicates with the first oil chamber through the valve seat and communicates with the other flow path between the small diameter hole and the first oil chamber through the valve seat. A piston part is integrally provided which is slidably inserted into the small diameter hole and forms a third oil chamber at the end of the small diameter hole, and is provided on the other side of the poppet valve part and is slidable into the other small diameter hole. a valve body integrally provided with a small diameter portion that is inserted into the small diameter hole and forms a fourth oil chamber that returns to the end of the small diameter hole and communicates with the flow path; and a spring that biases the valve body toward the third oil chamber. Further, the pilot valve is configured to include a proportional control valve that proportionally controls the pilot pressure applied to the third oil chamber of each of the main valves according to the current applied value. Device.
 (2)前記第3主弁又は前記第4主弁を、大径孔の両
端に同一径の小径孔をそれぞれ設けてなり一方の段部に
弁座を形成してなる弁本休と、前記大径孔内に嵌挿され
て負荷流路に常時連通する第1油室を形成し前記弁座に
着座したり離脱して同弁座を開閉するポペット弁部と同
ポペット弁部の一側に設けられて前記一方の小径孔内に
延び同小径孔との間に前記弁座を通して前記第1油室に
連通しかつ排出流路に連通する第2油室を形成する連結
部と同連結部の一側に設けられて前記一方の小径孔に摺
動自在に嵌挿され同小径孔端に戻り流路に連通する第3
油室を形成するピストン部を一体的に備えるとともに前
記ポペット弁部の他側に設けられて前記他方の小径孔に
摺動自在に嵌挿され同小径孔端に戻り流路に連通する第
4油室を形成するとともに前記大径孔端に絞りを介して
前記負荷流路に連通する第5油室を形成する小径部を一
体的に備える弁体と、同弁体を前記第3油室に向けて付
勢するばねを備える構成とし、 また同第3主弁又は第4主弁の作動を制御するパイロッ
ト弁を、前記第5油室に接続されて前記絞りを介して付
与される負荷流路の圧力によって作動するリリーフ弁,
このリリーフ弁と戻り流路を接続する流路中に介装され
て同リリーフ弁と戻り流路の連通を開閉する開閉弁及び
この開閉弁を開作動させるパイロット圧を同開閉弁に供
給するパイロット圧供給弁を備える構成としたことを特
徴とする請求項(1)記載の流体制御装置。
(2) A valve main valve in which the third main valve or the fourth main valve is formed by providing a small diameter hole of the same diameter at both ends of a large diameter hole, and forming a valve seat in one step; A poppet valve part that is inserted into a large diameter hole to form a first oil chamber that is constantly in communication with the load flow path, and opens and closes the valve seat by seating on and leaving the valve seat, and one side of the poppet valve part a connecting portion that is provided in the one small diameter hole and forms a second oil chamber that extends into the one small diameter hole and communicates with the first oil chamber through the valve seat and communicates with the discharge flow path; A third portion is provided on one side of the portion and is slidably inserted into the one small diameter hole and returns to the end of the small diameter hole and communicates with the flow path.
A fourth integrally provided with a piston portion forming an oil chamber, and provided on the other side of the poppet valve portion and slidably inserted into the other small diameter hole and returns to the end of the small diameter hole and communicates with the flow path. a valve body integrally provided with a small diameter portion forming an oil chamber and a fifth oil chamber communicating with the load flow path via a throttle at the end of the large diameter hole; A pilot valve for controlling the operation of the third main valve or the fourth main valve is connected to the fifth oil chamber and the load is applied through the throttle. Relief valve operated by pressure in flow path,
An on-off valve that is interposed in the flow path that connects this relief valve and the return flow path to open and close communication between the relief valve and the return flow path, and a pilot that supplies pilot pressure to open the on-off valve to operate the on-off valve. The fluid control device according to claim 1, characterized in that the fluid control device includes a pressure supply valve.
JP18423588A 1988-07-22 1988-07-22 Fluid controller Pending JPH0235205A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18423588A JPH0235205A (en) 1988-07-22 1988-07-22 Fluid controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18423588A JPH0235205A (en) 1988-07-22 1988-07-22 Fluid controller

Publications (1)

Publication Number Publication Date
JPH0235205A true JPH0235205A (en) 1990-02-05

Family

ID=16149742

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18423588A Pending JPH0235205A (en) 1988-07-22 1988-07-22 Fluid controller

Country Status (1)

Country Link
JP (1) JPH0235205A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS585502A (en) * 1981-06-29 1983-01-12 Uchida Yuatsu Kiki Kogyo Kk Control circuit of elevating cylinder
JPS62194008A (en) * 1986-02-15 1987-08-26 Toyooki Kogyo Co Ltd Fluid control device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS585502A (en) * 1981-06-29 1983-01-12 Uchida Yuatsu Kiki Kogyo Kk Control circuit of elevating cylinder
JPS62194008A (en) * 1986-02-15 1987-08-26 Toyooki Kogyo Co Ltd Fluid control device

Similar Documents

Publication Publication Date Title
JP3822156B2 (en) Oil quantity control device for heavy construction equipment
JPS63235774A (en) Directional control valve
JPS63225701A (en) Hydraulic pressure controller
JP2000516885A (en) Electro-hydraulic control device
JP3891738B2 (en) Proportional solenoid relief valve
WO1996000351A1 (en) Directional control valve device provided with a pressure compensating valve
JPH0235205A (en) Fluid controller
US7121187B2 (en) Fluid powered control system with a load pressure feedback
JP3673118B2 (en) Control device for fluid pressure actuator
JP3187155B2 (en) Control valve device
JPH043190Y2 (en)
TW200900613A (en) A softstart valve means
JPH0520602B2 (en)
JPH0520601B2 (en)
JP3634412B2 (en) Fluid control device
JPH0442563Y2 (en)
JPH06229402A (en) Flow rate direction control valve device
JPH0557446B2 (en)
JP2844504B2 (en) Electromagnetic proportional control valve
JPS6128529Y2 (en)
JPH0625682Y2 (en) Poppet type fluid control valve
JP4610116B2 (en) Valve device
JPH0375762B2 (en)
JP3298899B2 (en) Load-sensitive control device
JP3571076B2 (en) Brake valve device