JP3634412B2 - Fluid control device - Google Patents

Fluid control device Download PDF

Info

Publication number
JP3634412B2
JP3634412B2 JP26169094A JP26169094A JP3634412B2 JP 3634412 B2 JP3634412 B2 JP 3634412B2 JP 26169094 A JP26169094 A JP 26169094A JP 26169094 A JP26169094 A JP 26169094A JP 3634412 B2 JP3634412 B2 JP 3634412B2
Authority
JP
Japan
Prior art keywords
valve
diameter hole
fluid
pilot
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26169094A
Other languages
Japanese (ja)
Other versions
JPH08105406A (en
Inventor
教正 小椋
徳和 杉浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyooki Kogyo Co Ltd
Original Assignee
Toyooki Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyooki Kogyo Co Ltd filed Critical Toyooki Kogyo Co Ltd
Priority to JP26169094A priority Critical patent/JP3634412B2/en
Publication of JPH08105406A publication Critical patent/JPH08105406A/en
Application granted granted Critical
Publication of JP3634412B2 publication Critical patent/JP3634412B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Fluid-Pressure Circuits (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、流体の一方向への流れを自由流れとすると共に他方向への流れを絞り制御する一方向絞り弁と、パイロツト操作により開閉作動するパイロツト操作逆止め弁とを直列に配設した機能を備えた流体制御装置に関する。
【0002】
【従来の技術】
従来、この種の流体制御装置として図5に示す如きものがある。このものは、マニホールド1上にパイロツト操作逆止め弁24と電磁切換弁3とを積層配設し、電磁切換弁3はシリンダ4に接続した2個の負荷流路A、Bを圧力源Pに接続した供給流路P1と低圧側Tに接続した排出流路Rとに切換連通して設け、パイロツト操作逆止め弁24は各負荷流路A、Bに弁体24A、24Bを配設し、各弁体24A、24Bはシリンダ4側から電磁切換弁3側への流体の流れを、他方の負荷流路B若しくはAに接続するパイロツト流路25A、25Bを流れるパイロツト流体の圧力が作用すると開作動して許容すると共にパイロツト流体の圧力が作用しないと閉作動して阻止し、逆に電磁切換弁3側からシリンダ4側への流れを自由流れとして設けている。また、各負荷流路A、Bにはそれぞれパイロツト操作逆止め弁24の弁体24A、24Bと直列に一方向絞り弁26A、26Bを配設し、各一方向絞り弁26A、26Bは流体のシリンダ4側への流れを自由流れとすると共にシリンダ4側からの流れを絞り制御してシリンダ4をメータアウト回路で速度制御して設けている。
【0003】
作動は、図5の状態では、電磁切換弁3が中立位置に位置し、パイロツト操作逆止め弁24は各弁体24A、24Bが閉作動してシリンダ4側からの流体の流れを阻止し、シリンダ4は停止している。そして、電磁切換弁3を図5の左位置に切換操作すると、負荷流路Aを供給流路P1に切換連通し負荷流路Bを排出流路Rに切換連通し、圧力源Pから供給流路P1に供給した流体は負荷流路Aよりパイロツト操作逆止め弁24の弁体24A、一方向絞り弁26Aを自由流れで流れてシリンダ4のヘツド室4Aに導入し、シリンダ4のロツド室4Bから導出した流体は一方向絞り弁26Bで絞り制御されパイロツト操作逆止め弁24のパイロツト流路25Bを流れるパイロツト流体の圧力の作用で開作動した弁体24Bを介し排出流路Rより低圧側Tに排出され、シリンダ4は図5の右方向へメータアウト回路で速度制御して作動する。また、電磁切換弁3を図5の右位置に切換操作すると、シリンダ4は図5の左方向へメータアウト回路で速度制御して作動する。
【0004】
【発明が解決しようとする課題】
ところが、かかる従来の構成では、一方向絞り弁26A、26Bとパイロツト操作逆止め弁24とをそれぞれ格別に設けなければならず装置全体が大型化する問題点があった。
本発明は、かかる問題点を解決するもので、流体の一方向への流れを自由流れとすると共に他方向への流れを絞り制御する一方向絞り弁とパイロツト操作により開閉作動するパイロツト操作逆止め弁とを直列に配設した場合と同等の機能を単一の弁で得られて、装置全体の小型化を図った流体制御装置を提供するものである。
【0005】
【課題を解決するための手段】
このため本発明は、流体の一方向への流れを自由流れとすると共に他方向への流れを絞り制御する一方向絞り弁と、パイロツト操作により開閉作動するパイロツト操作逆止め弁とを直列に配設した機能を備えた流体制御装置において、弁本体内に小径孔と小径孔より大径の大径孔を連設し、小径孔には第1弁座を介して流体が流通する第1流通路を連通すると共に大径孔には流体が流通する第2流通路を連通して設け、小径孔と大径孔の連設段部に第2弁座を形成して設け、第2弁座に着座する弁体を大径孔へ移動自在に収装して設け、パイロツト流体の圧力の作用により弁体を第2弁座からの離座方向に押圧するパイロツトピストンを弁体と対向して移動自在に設け、パイロツトピストンは小径孔の内周面と径方向に間隙を有してロツド部を弁体と当接自在に端面より延在し、パイロツトピストンには弁体の離座方向への押圧により第1弁座に着座する弁部をロツド部の根元にテーパー形状に形成して設け、小径孔と第1流通路間を第1弁座を介する連通と並列に流体を絞り制御する絞り孔で連通し、絞り孔を弁本体に設けて成る。この場合、絞り孔を弁本体に代えてパイロツトピストンに設けても良い。
【0006】
【作用】
かかる本発明の構成において、パイロツトピストンにパイロツト流体の圧力が作用していない場合、第1流通路から流体が流入するとこの流体は第1弁座、小径孔を流れて弁体を第2弁座からの離座方向に押圧して開作動し大径孔より第2流通路へ自由流れで流れると共に、逆に第2流通路から流体が流入すると弁体が第2弁座に着座して第1流通路側への流れを阻止する。また、パイロツトピストンにパイロツト流体の圧力が作用した場合、パイロツトピストンはパイロツト流体の圧力の作用により弁体を押圧して第2弁座から離座させると共に弁部を第1弁座に着座し、第2流通路から流入した流体は大径孔より第2弁座、小径孔を流れ絞り孔で絞り制御されて第1流通路へ流れる。このため、パイロツトピストンにパイロツト流体の圧力が作用していないと第1流通路から第2流通路へ流体を自由流れで流すと共に第2流通路から第1流通路への流体の流れを阻止し、パイロツトピストンにパイロツト流体の圧力が作用すると第2流通路から第1流通路へ流体を絞り制御して流すことができるから、流体の一方向への流れを自由流れとすると共に他方向への流れを絞り制御する一方向絞り弁とパイロツト操作により開閉作動するパイロツト操作逆止め弁とを直列に配設した場合と同等の機能を単一の弁で得ることができて、装置全体の小型化を図ることができる。
【0007】
【実施例】
以下、本発明の一実施例を図面に基づいて説明する。尚、従来例と同一個所には同符号を付す。
図1および図2において、1はマニホールドで、弁2と電磁切換弁3とを積層配設している。電磁切換弁3はシリンダ4のヘツド室4Aとロツド室4Bとに接続した2個の負荷流路A、Bを圧力源Pに接続した供給流路P1と低圧側Tに接続した排出流路Rとに切換連通して設けている。
【0008】
5は弁2の弁本体で、マニホールド1上に電磁切換弁3との間に積層配設を自在に直方体形状に設け、供給流路P1と排出流路Rとを縦方向に貫通して上下端面5A、5Bに開口して設けると共に、上端面5Aには電磁切換弁3側の負荷流路A、Bに接続して流体が流通する第1流通路6A、6Bを開口し、下端面5Bにはマニホールド1側の負荷流路A、Bに接続して流体が流通する第2流通路7A、7Bを開口している。8は貫通孔で、弁本体5に貫通して上下端面5A、5Bと直交する両側面5C、5Dに開口して設け、貫通孔8には第1流通路6A、6Bと第2流通路7A、7Bとを軸方向に間隙を有して開口して設けている。
【0009】
9A、9Bは円筒形状のスリーブ部材で、貫通孔8に両側面5C、5Dの開口からそれぞれ挿入して設け、貫通孔8の両側面5C、5Dの開口を着脱自在に閉塞する蓋部材20A、20Bで軸方向へ位置決め固定して弁本体5の一部を構成している。スリーブ部材9A、9Bには小径孔10A、10Bと小径孔10A、10Bより大径の大径孔11A、11Bを連設して軸方向に貫通して両端面に開口して設けている。小径孔10A、10Bはスリーブ部材9A、9B一端面への開口より第1流通路6A、6Bに連通して設け、大径孔11A、11Bはスリーブ部材9A、9Bに径方向へ穿設の流路12A、12Bを介して第2流通路7A、7Bに連通している。
【0010】
13A、13Bは第1弁座で、小径孔10A、10Bのスリーブ部材9A、9B一端面への開口稜部に形成して設けている。14A、14Bは第2弁座で、小径孔10A、10Bと大径孔11A、11Bとの連設段部に形成して設けている。15A、15Bは弁体で、大径孔11A、11Bへ移動自在に収装し、第2弁座14A、14Bに着座して設けている。16A、16Bはばねで、弁体15A、15B背部に収装し、弁体15A、15Bを第2弁座14A、14Bへの着座方向に付勢して設けている。17はパイロツトピストンで、貫通孔8の軸方向中央へ移動自在に収装して設け、その両端面よりロツド部17A、17Bを突設し、ロツド部17A、17Bは小径孔10A、10Bをこの内周面と径方向に間隙を有して延在し、ロツド部17A、17Bの延在した端部を弁体15A、15B頭部と当接自在に対向して設けている。
【0011】
パイロツトピストン17はロツド部17A、17Bの根元にテーパー形状の弁部18A、18Bを形成して設け、第1流通路6A若しくは6Bを流通する流体がパイロツト流体としてこの圧力が端面に作用することで図2の右方向若しくは左方向へ移動して弁体15B若しくは15Aを第2弁座14B若しくは14Aからの離座方向に押圧すると共に、弁部18B若しくは18Aを第1弁座13B若しくは13Aに着座自在に設けている。19A、19Bは流体を絞り制御する絞り孔で、小径孔10A、10Bと第1流通路6A、6B間を第1弁座13A、13Bを介する連通と並列に連通するようスリーブ部材9A、9Bに径方向へ穿設している。
【0012】
次にかかる構成の作動を説明する。
図1および図2はシリンダ4の停止状態を示し、電磁切換弁3は中立位置に位置して負荷流路A、Bを排出流路Rに連通し供給流路P1を遮断し、弁2は弁体15A、15Bがばね16A、16B力により第2弁座14A、14Bに着座してシリンダ4側から電磁切換弁3側への流体の流れを阻止し、シリンダ4は左端に停止している。
【0013】
図1の状態より、電磁切換弁3を左位置に切換操作すると、負荷流路Aを供給流路P1に切換連通し負荷流路Bを排出流路Rに切換連通する。圧力源Pから供給流路P1に供給した流体は負荷流路Aより図3に示す如き弁2の第1流通路6Aを流れて弁体15A頭部に作用して弁体15Aをばね16A力に抗して第2弁座14Aから離座して自由流れで第2流通路7Aに流れてシリンダ4のヘツド室4Aに導入する。また、第1流通路6Aを流れた流体はパイロツト流体としてパイロツトピストン17のロツド部17Aを突設した端面に作用し、パイロツトピストン17はパイロツト流体の圧力の作用で右方向に移動してロツド部17Bが弁体15B頭部に当接し、弁体15Bをばね16B力に抗して押圧して第2弁座14Bから離座すると共に、弁部18Bが第1弁座13Bに着座する。シリンダ4のロツド室4Bから負荷流路Bに導出した流体は第2流通路7Bより絞り孔19Bで絞り制御されて第1流通路6Bを流れて排出流路Rより低圧側Tに排出され、シリンダ4は図1の右方向へメータアウト回路で速度制御して作動する。
【0014】
シリンダ4が図1の右端まで作動すると、電磁切換弁3を中立位置に復帰操作する。これにより、第1流通路6A、6Bが負荷流路A、Bより排出流路Rに切換連通され、パイロツトピストン17にパイロツト流体が作用しなくなり、弁体15A、15Bはばね16A、16B力により第2弁座14A、14Bに着座すると共に、パイロツトピストン17はばね16B力により図3の左方向に移動して弁部18Bが第1弁座13Bから離座する。シリンダ4は右端で停止する。
【0015】
この状態より、電磁切換弁3を右位置に切換操作すると、負荷流路Aを排出流路Rに切換連通し負荷流路Bを供給流路P1に切換連通する。供給流路P1の流体は負荷流路Bを流れて弁体15Bを第2弁座14Bから離座して自由流れで第2流通路7Bに流れてシリンダ4のロツド室4Bに導入する。また、パイロツトピストン17は第1流通路6Bを流れる流体がパイロツト流体として作用し、前述と逆に図2の左方向に移動して弁体15Aを第2弁座14Aから離座すると共に、弁部18Aが第1弁座13Aに着座する。シリンダ4のヘツド室4Aから導出した流体は第2流通路7Aより絞り孔19Aで絞り制御されて第1流通路6Aを流れて排出流路Rより低圧側Tに排出され、シリンダ4は右端より図1の左方向へメータアウト回路で速度制御して作動する。そして、シリンダ4が左端まで作動すると、電磁切換弁3を中立位置に復帰操作し、弁2は弁体15A、15Bが第2弁座14A、14Bに着座すると共に、パイロツトピストン17は右方向に移動して弁部18Aが第1弁座13Aから離座する。シリンダ4は図1に示す左端で停止する。
【0016】
かかる作動で、弁2は、パイロツトピストン17にパイロツト流体が作用していない場合には弁体15A、15Bが第2弁座14A、14Bに着座して第2流通路7A、7Bから第1流通路6A、6Bへの流体の流れを阻止すると共に、パイロツトピストン17にパイロツト流体が作用した場合には弁体15A若しくは15Bを第2弁座14A若しくは14Bから離座して弁部18A若しくは18Bを第1弁座13A若しくは13Bに着座して第2流通路7A若しくは7Bからの流体を絞り孔19A若しくは19Bで絞り制御して第1流通路6A若しくは6Bに流すため、図5に示す従来の装置における一方向絞り弁26A、26Bとパイロツト操作逆止め弁24とを負荷流路A、Bに直列に配設した場合と同等の機能を単一の弁2で得ることができて、装置全体の小型化を図ることができる。また、弁2はパイロツトピストン17に弁部18A、18Bを形成して設け、移動する部材として弁体15A、15B、パイロツトピストン17で良く、既存のパイロツト操作逆止め弁と比較して移動する部材を増加することなくできて、構成の複雑化を良好に抑制することができる。さらにまた、蓋部材20A、20Bを取り外して絞り孔19A、19Bの径が異なる他のスリーブ部材9A、9Bに交換することで、絞り開度を適宜変更することができる。
【0017】
図4は本発明の他実施例を示し、一実施例と同一個所には同符号を付して説明を省略し、異なる個所についてのみ説明する。
流体を絞り制御する絞り孔21A、21Bは、パイロツトピストン22にその一端を小径孔10A、10B内に延在するロツド部22A、22B外周面に開口すると共に、その他端を弁部23A、23Bの常に第1流通路6A、6Bに面する根元に開口して設け、小径孔10A、10Bと第1流通路6A、6B間を第1弁座13A、13Bを介する連通と並列に連通している。そして、一実施例と同様の作動で、一実施例と同様に装置全体の小型化を図ることができると共に、弁2は構成の複雑化を良好に抑制することができる。
【0018】
尚、本実施例では、負荷流路A、Bに対応して弁体15A、15Bを2個設けてシリンダ4の右方向および左方向への作動でともにメータアウト回路で速度制御したが、一方向への作動のみをメータアウト回路で速度制御する場合には必要な負荷流路A若しくはBに対応して1個の弁体を設ければ良いことは勿論である。
【0019】
【発明の効果】
このように、本発明は、流体の一方向への流れを自由流れとすると共に他方向への流れを絞り制御する一方向絞り弁と、パイロツト操作により開閉作動するパイロツト操作逆止め弁とを直列に配設した機能を備えた流体制御装置において、弁本体内に小径孔と小径孔より大径の大径孔を連設し、小径孔には第1弁座を介して流体が流通する第1流通路を連通すると共に大径孔には流体が流通する第2流通路を連通して設け、小径孔と大径孔の連設段部に第2弁座を形成して設け、第2弁座に着座する弁体を大径孔へ移動自在に収装して設け、パイロツト流体の圧力の作用により弁体を第2弁座からの離座方向に押圧するパイロツトピストンを弁体と対向して移動自在に設け、パイロツトピストンは小径孔の内周面と径方向に間隙を有してロツド部を弁体と当接自在に端面より延在し、パイロツトピストンには弁体の離座方向への押圧により第1弁座に着座する弁部をロツド部の根元にテーパー形状に形成して設け、小径孔と第1流通路間を第1弁座を介する連通と並列に流体を絞り制御する絞り孔で連通し、絞り孔を弁本体若しくはパイロツトピストンに設けているため、流体の一方向への流れを自由流れとすると共に他方向への流れを絞り制御する一方向絞り弁とパイロツト操作により開閉作動するパイロツト操作逆止め弁とを直列に配設した場合と同等の機能を単一の弁で得ることができて、装置全体の小形化を図ることができる。
また、弁はパイロツトピストンのロツド部根元にテーパー形状の弁部を形成して設け、移動する部材として弁体、パイロツトピストンで良く、既存のパイロツト操作逆止め弁と比較して移動する部材を増加することなくできて、構成の複雑化を良好に抑制することができる効果を有する。
【図面の簡単な説明】
【図1】本発明の一実施例を示した流体制御装置の回路図である。
【図2】一実施例の要部を示した弁の縦断面図である。
【図3】図2の作動状態を示した縦断面図である。
【図4】他実施例を示した弁の縦断面図である。
【図5】従来例を示した流体制御装置の回路図である。
【符号の説明】
2弁
5弁本体
6A、6B第1流通路
7A、7B第2流通路
10A、10B小径孔
11A、11B大径孔
13A、13B第1弁座
14A、14B第2弁座
15A、15B弁体
17、22パイロツトピストン
18A、18B、23A、23B弁部
19A、19B、21A、21B絞り孔
[0001]
[Industrial application fields]
In the present invention, a one-way throttle valve that controls the flow in one direction of the fluid while restricting the flow in one direction of the fluid and a pilot operation check valve that opens and closes by a pilot operation are arranged in series. The present invention relates to a fluid control device having a function.
[0002]
[Prior art]
Conventionally, there is such a fluid control apparatus as shown in FIG. In this system, a pilot operation check valve 24 and an electromagnetic switching valve 3 are laminated on a manifold 1, and the electromagnetic switching valve 3 uses two load flow paths A and B connected to a cylinder 4 as a pressure source P. Provided in switching communication between the connected supply flow path P1 and the discharge flow path R connected to the low pressure side T, the pilot operation check valve 24 is provided with valve bodies 24A and 24B in the load flow paths A and B, Each valve body 24A, 24B opens when the fluid flow from the cylinder 4 side to the electromagnetic switching valve 3 side is actuated by the pressure of the pilot fluid flowing through the pilot flow paths 25A, 25B connected to the other load flow path B or A. When the pressure of the pilot fluid does not act, the actuator is closed and prevented, and conversely, the flow from the electromagnetic switching valve 3 side to the cylinder 4 side is provided as a free flow. In addition, one-way throttle valves 26A and 26B are arranged in series with the valve elements 24A and 24B of the pilot operation check valve 24 in the load flow paths A and B, respectively. The flow to the cylinder 4 side is a free flow, the flow from the cylinder 4 side is throttled, and the cylinder 4 is speed controlled by a meter-out circuit.
[0003]
In the state shown in FIG. 5, the electromagnetic switching valve 3 is located in the neutral position, and the pilot operation check valve 24 closes the valve bodies 24A and 24B to block the flow of fluid from the cylinder 4 side. The cylinder 4 is stopped. When the electromagnetic switching valve 3 is switched to the left position in FIG. 5, the load channel A is switched to the supply channel P1, the load channel B is switched to the discharge channel R, and the supply flow from the pressure source P is supplied. The fluid supplied to the path P1 flows through the valve body 24A of the pilot operation check valve 24 and the one-way throttle valve 26A from the load flow path A in a free flow and is introduced into the head chamber 4A of the cylinder 4, and the rod chamber 4B of the cylinder 4 The fluid led out from the discharge passage R is controlled by the one-way throttle valve 26B and is opened by the action of the pressure of the pilot fluid flowing through the pilot passage 25B of the pilot check valve 24. The cylinder 4 operates by controlling the speed in the right direction of FIG. 5 with a meter-out circuit. Further, when the electromagnetic switching valve 3 is switched to the right position in FIG. 5, the cylinder 4 operates by controlling the speed in the left direction in FIG.
[0004]
[Problems to be solved by the invention]
However, in the conventional configuration, the one-way throttle valves 26A and 26B and the pilot operation check valve 24 must be provided separately, and there is a problem that the entire apparatus is increased in size.
The present invention solves such a problem, and a one-way throttle valve for restricting the flow in one direction of the fluid and controlling the flow in the other direction and a pilot operation non-return operation that opens and closes by a pilot operation. The present invention provides a fluid control device in which a function equivalent to that in the case where valves are arranged in series can be obtained with a single valve, and the entire device is reduced in size.
[0005]
[Means for Solving the Problems]
For this reason, the present invention is arranged in series with a one-way throttle valve that restricts the flow in one direction of the fluid and controls the flow in the other direction, and a pilot check valve that opens and closes by a pilot operation. In the fluid control apparatus having the provided function, a first flow in which a small-diameter hole and a large-diameter hole larger in diameter than the small-diameter hole are continuously provided in the valve body, and the fluid circulates through the first valve seat in the small-diameter hole. And a second flow passage through which the fluid flows, and a second valve seat formed on the connecting step portion of the small diameter hole and the large diameter hole. A valve body seated on the valve body is slidably disposed in the large-diameter hole, and a pilot piston that presses the valve body in the direction away from the second valve seat by the action of the pressure of the pilot fluid is opposed to the valve body. provided movably, pilot piston with a gap on the inner circumferential surface in the radial direction of the small-diameter hole rod portion Extending from the valve body and the abutting freely end surface, provided to form a valve portion to be seated on the first valve seat by the pressure of the pilot piston to separating direction of the valve body is tapered at the base of the rod portion, The small-diameter hole and the first flow passage communicate with each other via a throttle hole that controls the fluid in parallel with the communication via the first valve seat , and the throttle hole is provided in the valve body . In this case, the throttle hole may be provided in the pilot piston instead of the valve body.
[0006]
[Action]
In such a configuration of the present invention, when the pressure of the pilot fluid does not act on the pilot piston, when the fluid flows in from the first flow passage, the fluid flows through the first valve seat and the small diameter hole, and the valve body is moved to the second valve seat. When the fluid flows into the second flow path from the large-diameter hole, the valve body is seated on the second valve seat and the second valve seat is opened. The flow to the 1st flow path side is blocked. Further, when the pressure of the pilot fluid acts on the pilot piston, the pilot piston presses the valve body by the action of the pressure of the pilot fluid to separate from the second valve seat, and the valve portion is seated on the first valve seat, The fluid flowing in from the second flow passage flows from the large-diameter hole through the second valve seat and the small-diameter hole, and is controlled by the throttle hole to flow to the first flow passage. For this reason, if the pressure of the pilot fluid is not acting on the pilot piston, the fluid flows freely from the first flow path to the second flow path and prevents the flow of fluid from the second flow path to the first flow path. When the pressure of the pilot fluid acts on the pilot piston, the fluid can be controlled to flow from the second flow passage to the first flow passage, so that the flow in one direction of the fluid is a free flow and the flow in the other direction. A single valve can provide the same function as a one-way throttle valve that controls the flow and a pilot operated check valve that opens and closes by pilot operation. Can be achieved.
[0007]
【Example】
Hereinafter, an embodiment of the present invention will be described with reference to the drawings. In addition, the same code | symbol is attached | subjected to the same location as a prior art example.
In FIG. 1 and FIG. 2, reference numeral 1 denotes a manifold, in which a valve 2 and an electromagnetic switching valve 3 are stacked. The electromagnetic switching valve 3 has two load passages A and B connected to the head chamber 4A and the rod chamber 4B of the cylinder 4, a supply passage P1 connected to the pressure source P, and a discharge passage R connected to the low pressure side T. Are provided in communication with each other.
[0008]
Reference numeral 5 denotes a valve body of the valve 2, which is provided in a rectangular parallelepiped shape so as to be freely stacked on the manifold 1 with the electromagnetic switching valve 3, and vertically passes through the supply flow path P1 and the discharge flow path R in the vertical direction. Opening is provided on the end surfaces 5A and 5B, and the first flow passages 6A and 6B through which fluid flows are connected to the load flow paths A and B on the electromagnetic switching valve 3 side on the upper end surface 5A, and the lower end surface 5B. The second flow passages 7A and 7B through which fluid flows are connected to the load flow paths A and B on the manifold 1 side. Reference numeral 8 denotes a through hole, which is provided through the valve body 5 so as to open on both side surfaces 5C and 5D orthogonal to the upper and lower end surfaces 5A and 5B. The first flow passages 6A and 6B and the second flow passage 7A are provided in the through hole 8. , 7B are provided to be opened with a gap in the axial direction.
[0009]
9A and 9B are cylindrical sleeve members, which are provided by being inserted into the through-hole 8 from the openings of both side surfaces 5C and 5D, respectively, and lid members 20A for detachably closing the openings of the both side surfaces 5C and 5D of the through-hole 8; A part of the valve body 5 is configured by being fixedly positioned in the axial direction by 20B. The sleeve members 9A and 9B are provided with small-diameter holes 10A and 10B and large-diameter holes 11A and 11B having a larger diameter than the small-diameter holes 10A and 10B, penetrating in the axial direction and opening at both end faces. The small-diameter holes 10A and 10B are provided in communication with the first flow passages 6A and 6B from the openings on the one end surfaces of the sleeve members 9A and 9B, and the large-diameter holes 11A and 11B flow in the radial direction in the sleeve members 9A and 9B. It communicates with the second flow passages 7A and 7B via the passages 12A and 12B.
[0010]
13A and 13B are 1st valve seats, and are formed and formed in the opening ridge part to sleeve member 9A, 9B one end surface of small diameter hole 10A, 10B. Reference numerals 14A and 14B denote second valve seats which are formed and provided at the stepped portions of the small diameter holes 10A and 10B and the large diameter holes 11A and 11B. 15A and 15B are valve bodies, which are movably accommodated in the large-diameter holes 11A and 11B and are seated on the second valve seats 14A and 14B. Reference numerals 16A and 16B denote springs, which are accommodated on the back portions of the valve bodies 15A and 15B, and are provided by energizing the valve bodies 15A and 15B in the seating direction on the second valve seats 14A and 14B. A pilot piston 17 is provided so as to be movable in the axial direction center of the through-hole 8. Rod portions 17A and 17B are provided so as to project from both end faces thereof. The rod portions 17A and 17B have small-diameter holes 10A and 10B. The end portions of the rod portions 17A and 17B extend so as to be in contact with the head portions of the valve bodies 15A and 15B so as to be in contact with the inner peripheral surface with a gap in the radial direction.
[0011]
The pilot piston 17 is provided by forming tapered valve portions 18A and 18B at the bases of the rod portions 17A and 17B, and the fluid flowing through the first flow passage 6A or 6B acts as a pilot fluid and this pressure acts on the end face. The valve body 15B or 15A is moved in the right or left direction in FIG. 2 to press the valve body 15B or 15A away from the second valve seat 14B or 14A, and the valve portion 18B or 18A is seated on the first valve seat 13B or 13A. It is provided freely. Reference numerals 19A and 19B are throttle holes for restricting the fluid. The small diameter holes 10A and 10B and the first flow passages 6A and 6B are connected to the sleeve members 9A and 9B in parallel with the communication via the first valve seats 13A and 13B. It is drilled in the radial direction.
[0012]
Next, the operation of this configuration will be described.
1 and 2 show a stopped state of the cylinder 4, the electromagnetic switching valve 3 is located at the neutral position, connects the load flow paths A and B to the discharge flow path R, and shuts off the supply flow path P1, and the valve 2 The valve bodies 15A and 15B are seated on the second valve seats 14A and 14B by the forces of the springs 16A and 16B to prevent the flow of fluid from the cylinder 4 side to the electromagnetic switching valve 3 side, and the cylinder 4 is stopped at the left end. .
[0013]
When the electromagnetic switching valve 3 is switched to the left position from the state of FIG. 1, the load flow path A is switched to the supply flow path P1 and the load flow path B is switched to the discharge flow path R. The fluid supplied from the pressure source P to the supply flow path P1 flows from the load flow path A through the first flow passage 6A of the valve 2 as shown in FIG. On the other hand, it is separated from the second valve seat 14A and flows in the second flow passage 7A in a free flow and is introduced into the head chamber 4A of the cylinder 4. The fluid flowing through the first flow passage 6A acts as a pilot fluid on the end surface of the pilot piston 17 where the rod portion 17A protrudes, and the pilot piston 17 moves rightward due to the pressure of the pilot fluid and moves into the rod portion. 17B comes into contact with the head of the valve body 15B, presses the valve body 15B against the force of the spring 16B to separate from the second valve seat 14B, and the valve portion 18B sits on the first valve seat 13B. The fluid led out from the rod chamber 4B of the cylinder 4 to the load flow path B is controlled by the throttle hole 19B from the second flow path 7B, flows through the first flow path 6B, and is discharged from the discharge flow path R to the low pressure side T. The cylinder 4 operates by controlling the speed with a meter-out circuit in the right direction in FIG.
[0014]
When the cylinder 4 operates to the right end of FIG. 1, the electromagnetic switching valve 3 is returned to the neutral position. Thereby, the first flow passages 6A and 6B are switched and communicated from the load flow passages A and B to the discharge flow passage R, the pilot fluid does not act on the pilot piston 17, and the valve bodies 15A and 15B are moved by the springs 16A and 16B. While being seated on the second valve seats 14A and 14B, the pilot piston 17 is moved to the left in FIG. 3 by the force of the spring 16B, and the valve portion 18B is separated from the first valve seat 13B. The cylinder 4 stops at the right end.
[0015]
When the electromagnetic switching valve 3 is switched to the right position from this state, the load channel A is switched to the discharge channel R and the load channel B is switched to the supply channel P1. The fluid in the supply flow path P1 flows through the load flow path B, leaves the valve body 15B away from the second valve seat 14B, flows in a free flow into the second flow passage 7B, and is introduced into the rod chamber 4B of the cylinder 4. The pilot piston 17 acts as a pilot fluid when the fluid flowing through the first flow passage 6B moves to the left in FIG. 2 in the opposite direction to separate the valve body 15A from the second valve seat 14A. The portion 18A is seated on the first valve seat 13A. The fluid led out from the head chamber 4A of the cylinder 4 is controlled by the throttle hole 19A from the second flow passage 7A and flows through the first flow passage 6A and is discharged to the low pressure side T from the discharge flow path R. The cylinder 4 is discharged from the right end. It operates by controlling the speed with a meter-out circuit to the left in FIG. When the cylinder 4 operates to the left end, the electromagnetic switching valve 3 is returned to the neutral position, the valve 2 is seated on the second valve seats 14A and 14B, and the pilot piston 17 is moved rightward. The valve portion 18A moves to separate from the first valve seat 13A. The cylinder 4 stops at the left end shown in FIG.
[0016]
With this operation, when the pilot fluid is not acting on the pilot piston 17, the valve body 15A, 15B is seated on the second valve seats 14A, 14B and the first flow from the second flow passages 7A, 7B. The flow of the fluid to the passages 6A and 6B is blocked, and when the pilot fluid acts on the pilot piston 17, the valve body 15A or 15B is separated from the second valve seat 14A or 14B, and the valve portion 18A or 18B is moved. The conventional apparatus shown in FIG. 5 is used for sitting on the first valve seat 13A or 13B and controlling the fluid from the second flow passage 7A or 7B through the restriction hole 19A or 19B to flow into the first flow passage 6A or 6B. A single valve 2 can provide the same function as when the one-way throttle valves 26A and 26B and the pilot check valve 24 are arranged in series in the load channels A and B. And it is, it is possible to miniaturize the entire apparatus. Further, the valve 2 may be provided by forming the valve portions 18A and 18B on the pilot piston 17, and may be the valve bodies 15A and 15B and the pilot piston 17 as members that move, and the member that moves as compared with the existing pilot operation check valve. The increase in the complexity of the configuration can be satisfactorily suppressed. Furthermore, the opening degree of the throttle can be changed as appropriate by removing the lid members 20A and 20B and replacing the sleeve members 9A and 9B with different diameters of the throttle holes 19A and 19B.
[0017]
FIG. 4 shows another embodiment of the present invention. The same reference numerals are given to the same portions as those of the first embodiment, the description thereof is omitted, and only different portions will be described.
The throttle holes 21A and 21B for throttle-controlling the fluid open one end of the pilot piston 22 to the outer peripheral surface of the rod portions 22A and 22B extending into the small diameter holes 10A and 10B, and the other end of the valve portions 23A and 23B. An opening is always provided at the base facing the first flow passages 6A and 6B, and the small-diameter holes 10A and 10B and the first flow passages 6A and 6B are communicated in parallel with the communication through the first valve seats 13A and 13B. . And, by the same operation as that of the embodiment, it is possible to reduce the size of the entire apparatus similarly to the embodiment, and the valve 2 can satisfactorily suppress the complication of the configuration.
[0018]
In this embodiment, two valve bodies 15A and 15B are provided corresponding to the load flow paths A and B, and the speed is controlled by the meter-out circuit when the cylinder 4 is operated in the right direction and the left direction. Of course, when the speed control is performed only for the operation in the direction by the meter-out circuit, it is of course necessary to provide one valve element corresponding to the required load flow path A or B.
[0019]
【The invention's effect】
As described above, the present invention provides a series of a one-way throttle valve for controlling the flow in one direction of the fluid to be a free flow and controlling the flow in the other direction, and a pilot operation check valve that opens and closes by a pilot operation. In the fluid control device having the function disposed in the valve body, a small-diameter hole and a large-diameter hole larger in diameter than the small-diameter hole are continuously provided in the valve body, and fluid flows through the small-diameter hole via the first valve seat. The second flow passage is provided in communication with the first flow passage and the fluid is circulated in the large-diameter hole, and the second valve seat is provided in the continuous step portion of the small-diameter hole and the large-diameter hole. A valve body seated on the valve seat is slidably disposed in the large-diameter hole, and a pilot piston that presses the valve body in the direction away from the second valve seat by the action of the pressure of the pilot fluid faces the valve body. and provided movably, pilot piston Rotsu with a gap on the inner circumferential surface in the radial direction of the small diameter hole Parts extending from the valve body and the abutting freely end surface and to form a valve portion to be seated on the first valve seat by the pressure of the pilot piston to separating direction of the valve body is tapered at the base of the rod portion The small-diameter hole and the first flow passage are communicated by a throttle hole that controls the fluid in parallel with the communication through the first valve seat , and the throttle hole is provided in the valve body or the pilot piston, so that one direction of the fluid A one-way throttle valve that throttles and controls the flow in the other direction and a pilot operation check valve that opens and closes by pilot operation are provided in a single function. It can be obtained with a valve, and the overall size of the apparatus can be reduced.
Also, the valve is provided with a tapered valve at the base of the rod part of the pilot piston, and the valve body and pilot piston may be used as the moving member, and the number of moving members is increased compared to existing pilot operation check valves. This has the effect that the complication of the configuration can be satisfactorily suppressed.
[Brief description of the drawings]
FIG. 1 is a circuit diagram of a fluid control apparatus showing an embodiment of the present invention.
FIG. 2 is a longitudinal sectional view of a valve showing the main part of one embodiment.
FIG. 3 is a longitudinal sectional view showing the operating state of FIG. 2;
FIG. 4 is a longitudinal sectional view of a valve showing another embodiment.
FIG. 5 is a circuit diagram of a fluid control apparatus showing a conventional example.
[Explanation of symbols]
2 valve 5 valve body 6A, 6B first flow passage 7A, 7B second flow passage 10A, 10B small diameter hole 11A, 11B large diameter hole 13A, 13B first valve seat 14A, 14B second valve seat 15A, 15B valve body 17 , 22 Pilot piston 18A, 18B, 23A, 23B Valve portion 19A, 19B, 21A, 21B Restriction hole

Claims (2)

流体の一方向への流れを自由流れとすると共に他方向への流れを絞り制御する一方向絞り弁と、パイロツト操作により開閉作動するパイロツト操作逆止め弁とを直列に配設した機能を備えた流体制御装置において、弁本体内に小径孔と小径孔より大径の大径孔を連設し、小径孔には第1弁座を介して流体が流通する第1流通路を連通すると共に大径孔には流体が流通する第2流通路を連通して設け、小径孔と大径孔の連設段部に第2弁座を形成して設け、第2弁座に着座する弁体を大径孔へ移動自在に収装して設け、パイロツト流体の圧力の作用により弁体を第2弁座からの離座方向に押圧するパイロツトピストンを弁体と対向して移動自在に設け、パイロツトピストンは小径孔の内周面と径方向に間隙を有してロツド部を弁体と当接自在に端面より延在し、パイロツトピストンには弁体の離座方向への押圧により第1弁座に着座する弁部をロツド部の根元にテーパー形状に形成して設け、小径孔と第1流通路間を第1弁座を介する連通と並列に流体を絞り制御する絞り孔で連通し、絞り孔を弁本体に設けて成る流体制御装置。A one-way throttle valve that restricts the flow in one direction of the fluid to a free flow and controls the flow in the other direction and a pilot operation check valve that opens and closes by a pilot operation are provided in series. In the fluid control device, a small-diameter hole and a large-diameter hole larger in diameter than the small-diameter hole are continuously provided in the valve body, and the small-diameter hole communicates with a first flow passage through which fluid flows through the first valve seat. A second flow passage through which a fluid flows is provided in communication with the diameter hole, a second valve seat is formed in a connecting step portion of the small diameter hole and the large diameter hole, and a valve body seated on the second valve seat is provided. provided accommodated movably to the large-diameter hole, the valve body by the action of the pressure of pilot fluid opposite to the valve body pilot piston for pressing the separating direction from the second valve seat is provided movably, pilot The piston has a gap in the radial direction with the inner peripheral surface of the small-diameter hole so that the rod part can be in contact with the valve body. Extending from the surface, the pilot piston is provided to form a valve portion to be seated on the first valve seat by the pressure in the separating direction of the valve body is tapered at the base of the rod portion, the small diameter hole and the first flow path A fluid control device in which a throttle hole is provided in a valve main body in communication with a throttle hole that controls the fluid in parallel with the communication via the first valve seat. 流体の一方向への流れを自由流れとすると共に他方向への流れを絞り制御する一方向絞り弁と、パイロツト操作により開閉作動するパイロツト操作逆止め弁とを直列に配設した機能を備えた流体制御装置において、弁本体内に小径孔と小径孔より大径の大径孔を連設し、小径孔には第1弁座を介して流体が流通する第1流通路を連通すると共に大径孔には流体が流通する第2流通路を連通して設け、小径孔と大径孔の連設段部に第2弁座を形成して設け、第2弁座に着座する弁体を大径孔へ移動自在に収装して設け、パイロツト流体の圧力の作用により弁体を第2弁座からの離座方向に押圧するパイロツトピストンを弁体と対向して移動自在に設け、パイロツトピストンは小径孔の内周面と径方向に間隙を有してロツド部を弁体と当接自在に端面より延在し、パイロツトピストンには弁体の離座方向への押圧により第1弁座に着座する弁部をロツド部の根元にテーパー形状に形成して設け、小径孔と第1流通路間を第1弁座を介する連通と並列に流体を絞り制御する絞り孔で連通し、絞り孔をパイロツトピストンに設けて成る流体制御装置。 A one-way throttle valve that restricts the flow in one direction of the fluid to a free flow and controls the flow in the other direction and a pilot operation check valve that opens and closes by a pilot operation are provided in series. In the fluid control device, a small-diameter hole and a large-diameter hole larger in diameter than the small-diameter hole are continuously provided in the valve body, and the small-diameter hole communicates with a first flow passage through which fluid flows through the first valve seat. A second flow passage through which a fluid flows is provided in communication with the diameter hole, a second valve seat is formed in a connecting step portion of the small diameter hole and the large diameter hole, and a valve body seated on the second valve seat is provided. A pilot piston that presses the valve body in the direction of separation from the second valve seat by the action of the pressure of the pilot fluid is provided so as to be movable in the large-diameter hole. The piston has a gap in the radial direction with the inner peripheral surface of the small-diameter hole so that the rod part can be in contact with the valve body. The pilot piston extends from the surface and is provided with a valve portion that is seated on the first valve seat by pressing the valve body in the seating direction in a tapered shape at the base of the rod portion, and has a small diameter hole and a first flow passage A fluid control device in which a throttle hole is provided in a pilot piston, and communicated with a throttle hole that controls the fluid in parallel with the communication via the first valve seat .
JP26169094A 1994-09-30 1994-09-30 Fluid control device Expired - Fee Related JP3634412B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26169094A JP3634412B2 (en) 1994-09-30 1994-09-30 Fluid control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26169094A JP3634412B2 (en) 1994-09-30 1994-09-30 Fluid control device

Publications (2)

Publication Number Publication Date
JPH08105406A JPH08105406A (en) 1996-04-23
JP3634412B2 true JP3634412B2 (en) 2005-03-30

Family

ID=17365367

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26169094A Expired - Fee Related JP3634412B2 (en) 1994-09-30 1994-09-30 Fluid control device

Country Status (1)

Country Link
JP (1) JP3634412B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006105227A (en) * 2004-10-04 2006-04-20 Kayaba Ind Co Ltd Operate check valve, hydraulic drive unit
CN104755771B (en) * 2012-11-05 2017-03-15 Kyb株式会社 Cylinder control device

Also Published As

Publication number Publication date
JPH08105406A (en) 1996-04-23

Similar Documents

Publication Publication Date Title
EP0869418B1 (en) Pressure regulating valve mounted in base-mounted transfer valve
JPH0583405U (en) Control valve with pressure compensation valve
JP3634412B2 (en) Fluid control device
JP2784836B2 (en) Solenoid switching valve
JPH11218253A (en) Proportional solenoid type direction throttle valve
JPH06229402A (en) Flow rate direction control valve device
JP3714726B2 (en) Pilot operated check valve
JPS6021590Y2 (en) Pilot operated directional valve
JP2020133695A (en) Solenoid valve and work machine
JPH0650302A (en) Control valve device
JPS6123985Y2 (en)
JP3793666B2 (en) Hydraulic control device
JPS6319405A (en) Flow control valve
JPH0562675B2 (en)
JPH0249361Y2 (en)
JP3574171B2 (en) Valve device
JP2954790B2 (en) Control device for transmission operation actuator
JPH0640322Y2 (en) Liquid control device
JPS62194008A (en) Fluid control device
JPH0375762B2 (en)
JP2506965Y2 (en) Solenoid directional valve
JPH0438135Y2 (en)
JPS5824699Y2 (en) Pilot operated switching valve
JP4504144B2 (en) On-off valve and hydraulic device for injection control using the on-off valve
JP2571246Y2 (en) Pilot operated check valve

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040810

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040924

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041224

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090107

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100107

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100107

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110107

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120107

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees