JPH0246776B2 - - Google Patents

Info

Publication number
JPH0246776B2
JPH0246776B2 JP58106697A JP10669783A JPH0246776B2 JP H0246776 B2 JPH0246776 B2 JP H0246776B2 JP 58106697 A JP58106697 A JP 58106697A JP 10669783 A JP10669783 A JP 10669783A JP H0246776 B2 JPH0246776 B2 JP H0246776B2
Authority
JP
Japan
Prior art keywords
fuel
transient
air
correction value
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58106697A
Other languages
Japanese (ja)
Other versions
JPS601344A (en
Inventor
Kunihiko Sato
Masaru Takahashi
Tsuneyuki Egami
Tsutomu Saito
Tokio Kohama
Kimitaka Saito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Soken Inc
Original Assignee
Nippon Soken Inc
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Soken Inc, Toyota Motor Corp filed Critical Nippon Soken Inc
Priority to JP10669783A priority Critical patent/JPS601344A/en
Priority to US06/619,210 priority patent/US4635200A/en
Publication of JPS601344A publication Critical patent/JPS601344A/en
Publication of JPH0246776B2 publication Critical patent/JPH0246776B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1477Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the regulation circuit or part of it,(e.g. comparator, PI regulator, output)
    • F02D41/148Using a plurality of comparators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B77/00Component parts, details or accessories, not otherwise provided for
    • F02B77/08Safety, indicating, or supervising devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2441Methods of calibrating or learning characterised by the learning conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • F02D41/2454Learning of the air-fuel ratio control

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Description

【発明の詳細な説明】 〔産業上の技術分野〕 本発明は空燃比センサ(O2センサ)による空
燃比のフイードバツクシステムを持つ電子制御内
燃機関における燃料噴射制御装置に関し、特に過
渡運転時に燃料供給量を増減補正する内燃機関の
燃料噴射制御装置に関する。
[Detailed Description of the Invention] [Industrial Technical Field] The present invention relates to a fuel injection control device for an electronically controlled internal combustion engine that has an air-fuel ratio feedback system using an air-fuel ratio sensor (O 2 sensor), and particularly relates to a fuel injection control device for an electronically controlled internal combustion engine having an air-fuel ratio feedback system using an air-fuel ratio sensor (O 2 sensor). The present invention relates to a fuel injection control device for an internal combustion engine that increases or decreases the amount of fuel supplied.

〔従来の技術〕[Conventional technology]

空燃比フイードバツクシステムを持つ電子制御
燃料噴射内燃機関では、機関排気系に設置される
O2センサ等の空燃比センサの検知信号に応じて
燃料噴射量のフイードバツク制御を行つている。
In electronically controlled fuel injection internal combustion engines with an air-fuel ratio feedback system, this is installed in the engine exhaust system.
Feedback control of the fuel injection amount is performed according to the detection signal from an air-fuel ratio sensor such as an O 2 sensor.

又、加速時には、吸気ポート等への燃料付着分
を補うために、燃料供給量を増量補正し、又、減
速時には、吸気管負圧の増大に伴い、上述の付着
燃料が気化し、その気化燃料吸入分を考慮して燃
料供給量を減量補正している。(例えば、特開昭
55−35134号公報参照) 〔発明が解決しようとする課題〕 しかしながら、従来の技術において加減速時の
燃料供給量補正は常時一定の仕様で実行され、吸
気弁へのデポジツトの付着といつた経時的な変化
及び市場での燃料性状のバラツキ、夏ガソリン、
冬ガソリンの差等、燃料の気化性状の違いを補正
できるものではなかつた。
Also, during acceleration, the amount of fuel supplied is increased to compensate for the amount of fuel adhering to the intake port, etc. During deceleration, the above-mentioned adhering fuel vaporizes as the intake pipe negative pressure increases. The amount of fuel supplied is corrected to reduce the amount of fuel in consideration. (For example, Tokukai Sho
(Refer to Publication No. 55-35134) [Problems to be Solved by the Invention] However, in the conventional technology, fuel supply amount correction during acceleration and deceleration is always performed according to a fixed specification, and the accumulation of deposits on the intake valves and the like over time. changes and variations in fuel properties in the market, summer gasoline,
It was not possible to compensate for differences in fuel vaporization properties, such as differences in winter gasoline.

なぜなら、吸気弁に付着したデポジツト量が多
くなれば多くなるほどそのデポジツトに付着する
燃料量が多くなるため、加速時の空燃比のずれは
より大きくなり、又、燃料の気化性状の違いによ
り、減速時の空燃比のずれが異なつてくるためで
ある。
This is because the larger the amount of deposits attached to the intake valve, the more fuel will be attached to the deposits, resulting in a larger deviation in the air-fuel ratio during acceleration, and due to differences in the vaporization properties of the fuel, This is because the difference in air-fuel ratio at different times occurs.

そこで、本発明の目的は、経時的原因及び燃料
性状の違いにより生ずる過渡運転時の空燃比のず
れを防止し、運転性を良好とし、排気ガス中の有
害成分の排出量を抑制することができる燃料噴射
制御装置を提供することにある。
Therefore, the purpose of the present invention is to prevent deviations in the air-fuel ratio during transient operation caused by changes in fuel properties over time, to improve drivability, and to suppress emissions of harmful components in exhaust gas. The objective is to provide a fuel injection control device that can

〔課題を解決するための手段〕[Means to solve the problem]

第1図に従つて説明すると、本発明による内燃
機関の燃料噴射制御装置は、内燃機関の運転状態
を検出する運転状態検出手段200と、該運転状態
検出手段の検出結果に基づき前記内燃機関への燃
料供給量を算出する燃料供給量算出手段と201、
上記内燃機関に吸入される混合気の空燃比を検出
する空燃比検出手段202と、該空燃比検出手段の
検出結果に基づき前記燃料供給量をフイードバツ
ク補正値により補正するフイードバツク補正手段
203と、前記運転状態検出手段により前記内燃機
関の運転状態が過渡運転状態であると判断された
場合、前記燃料供給量を過渡補正値により補正す
る過渡補正手段204と、前記フイードバツク補正
手段及び前記過渡補正手段に基づき補正された前
記燃料供給量を前記内燃機関に供給する燃料供給
手段205とを有する内燃機関の燃料噴射制御装置
において、前記フイードバツク補正値を記憶する
第1のメモリ手段206と、前記過渡補正値を記憶
する第2のメモリ手段207と、前記運転状態検出
手段により前記内燃機関の運転状態が過渡運転状
態であると判断された場合、過渡運転前の定常運
転時に第1のメモリ手段に記憶されたフイードバ
ツク補正値と、過底運転に移行してから所定期間
内におけるフイードバツク補正値との偏差を算出
する偏差算出手段208と、該偏差算出手段の算出
結果に基づき、第2のメモリ手段に記憶された過
渡補正値を修正更新する過渡補正値更新手段209
とを備えることを特徴とする。
Explaining according to FIG. 1, the fuel injection control device for an internal combustion engine according to the present invention includes an operating state detecting means 200 for detecting the operating state of the internal combustion engine, and an operating state detecting means 200 for detecting the operating state of the internal combustion engine. 201; a fuel supply amount calculation means for calculating the fuel supply amount;
air-fuel ratio detection means 202 for detecting the air-fuel ratio of the air-fuel mixture taken into the internal combustion engine; and feedback correction means for correcting the fuel supply amount with a feedback correction value based on the detection result of the air-fuel ratio detection means.
203, transient correction means 204 for correcting the fuel supply amount with a transient correction value when the operating state of the internal combustion engine is determined to be a transient operating state by the operating state detection means; A fuel injection control device for an internal combustion engine, comprising: a fuel supply means 205 for supplying the fuel supply amount corrected based on the transient correction means to the internal combustion engine; a first memory means 206 for storing the feedback correction value; a second memory means 207 for storing the transient correction value; and when the operating state detection means determines that the operating state of the internal combustion engine is a transient operating state, a first memory means 207 stores the transient correction value; A deviation calculation means 208 calculates the deviation between the feedback correction value stored in the means and the feedback correction value within a predetermined period after transition to over-bottom operation; Transient correction value updating means 209 for modifying and updating the transient correction value stored in the memory means
It is characterized by comprising:

〔作用〕[Effect]

運転状態検出手段200は内燃機関のそのときの
運転状態を検出し、その検出結果に基づき、燃料
供給量算出手段201が目標値としての基本燃料供
給量の演算を行う。空燃比検出手段202は内燃機
関に吸入される混合気の空燃比を検出する。フイ
ードバツク補正手段203は空燃比検出手段202によ
り検出されたリツチかリーンかの信号に応じ燃料
供給量をフイードバツク補正値により補正する。
フイードバツク補正値は第1のメモリ手段206に
格納される。過渡補正手段204は運転状態検出手
段200により過渡運転状態と検出された場合、燃
料供給量を過渡補正値により補正するが過渡補正
値は第2のメモリ手段207に格納される。また、
過渡運転状態と検出された場合には偏差算出手段
208は過渡運転前の定常運転時に第1のメモリ手
段206に記憶されたフイードバツク補正値と今回
のフイードバツク補正値との偏差を算出する。過
渡補正値更新手段209はその偏差に応じて第2の
メモリ手段207に記憶された過渡補正値を修正更
新する。かくして、燃料供給手段205は、燃料供
給量算出手段201によつて算出された燃料供給量
をフイードバツク補正値及び過渡補正値により補
正した最終的な燃料供給量の燃料を内燃機関に供
給する。
The operating state detection means 200 detects the current operating state of the internal combustion engine, and based on the detection result, the fuel supply amount calculation means 201 calculates the basic fuel supply amount as a target value. The air-fuel ratio detection means 202 detects the air-fuel ratio of the air-fuel mixture taken into the internal combustion engine. Feedback correction means 203 corrects the fuel supply amount using a feedback correction value in response to the rich or lean signal detected by air-fuel ratio detection means 202.
The feedback correction value is stored in first memory means 206. The transient correction means 204 corrects the fuel supply amount using a transient correction value when a transient operating state is detected by the operating state detection means 200, and the transient correction value is stored in the second memory means 207. Also,
Deviation calculation means when a transient operating condition is detected.
208 calculates the deviation between the feedback correction value stored in the first memory means 206 during steady operation before transient operation and the current feedback correction value. The transient correction value updating means 209 corrects and updates the transient correction value stored in the second memory means 207 according to the deviation. Thus, the fuel supply means 205 supplies the internal combustion engine with the final fuel supply amount obtained by correcting the fuel supply amount calculated by the fuel supply amount calculation means 201 using the feedback correction value and the transient correction value.

デポジツトの影響は過渡運転時顕著に現われ
る。
The influence of deposits becomes noticeable during transient operation.

デポジツトが増えると過渡時の空燃比のずれが
大きくなり、それに伴つて過渡運転時のフイード
バツク補正値と定常運転時のフイードバツク補正
値との間に差が生じてくる。つまり過渡補正値の
要求値が変わることになる。よつてこの差に基づ
いて過渡補正値を学習することによりデポジツト
の増加といつた経時的変化に対しても過渡補正値
を要求値と合致させることができる。
As the amount of deposits increases, the deviation in the air-fuel ratio during transient operation increases, and accordingly, a difference arises between the feedback correction value during transient operation and the feedback correction value during steady operation. In other words, the required value of the transient correction value changes. Therefore, by learning the transient correction value based on this difference, it is possible to match the transient correction value with the required value even in response to changes over time such as an increase in deposits.

〔実施例〕〔Example〕

以下図面を参照しながら実施例を説明すると、
第2図において、10は空気クリーナ、12はエ
アフローメータ、14はスロツトル弁、16は燃
料噴射弁であり、内燃機関の吸気管18内に順次
設置されている。18はシリンダブロツク、20
はシリンダヘツドである。シリンダブロツク18
内にピストン22が設けられその上方に燃焼室2
4が形成され、点火栓25の電極25′が臨んで
設けられる。燃焼室24に吸気管18からの混合
気が吸気弁26が開放したとき導入される。排気
ガスは燃焼室24より排気マニホルド28に取り
出される。30は燃料タンク、32は燃料ポンプ
であり、燃料パイプ34を介して燃料噴射弁16
に燃料を供給する。36はデイストリビユータ、
38はイグニツシヨンコイルであり点火栓25に
接続される。
Examples will be described below with reference to the drawings.
In FIG. 2, 10 is an air cleaner, 12 is an air flow meter, 14 is a throttle valve, and 16 is a fuel injection valve, which are installed in this order in an intake pipe 18 of an internal combustion engine. 18 is a cylinder block, 20
is the cylinder head. cylinder block 18
A piston 22 is provided therein, and a combustion chamber 2 is provided above it.
4 is formed, and the electrode 25' of the spark plug 25 is provided facing thereto. The air-fuel mixture from the intake pipe 18 is introduced into the combustion chamber 24 when the intake valve 26 is opened. Exhaust gas is taken out from the combustion chamber 24 to an exhaust manifold 28. 30 is a fuel tank, 32 is a fuel pump, and the fuel injection valve 16 is connected via a fuel pipe 34.
supply fuel. 36 is a data distributor,
38 is an ignition coil connected to the ignition plug 25.

40は運転状態制御を行う制御回路である。制
御回路40には次のような種々のセンサ群からの
信号が入力しており、エンジンの現在の運転条件
を知らしめられる。即ち、前述エアフローメータ
12からは吸入空気量を現わす信号が線1を介
して入力される。排気マニホルド28には空燃比
センサとしてのO2センサ42が設けられ空燃比
信号を線2を介して制御回路36に印加してい
る。更に、デイストリビユータ36のケース36
1にはデイストリビユータ軸362上の回転検知
片363と対面するように回転角センサ44,4
6が設けられ線34を介し制御回路に結線さ
れる。そのうちの一方44はデイストリビユータ
軸362、即ちエンジンの1回転中に多数のパル
スを出す回転数検知用であり、もう一つ46は気
筒判別用であり、また、クランク角度に一致した
割込み信号を形成する役目を果たす。50は水温
センサでありシリンダブロツクの冷却水ジヤケツ
トに接触するように設けられ、線5を介して制
御回路40に信号を印加する。スロツトルセンサ
51スロツトル弁の開度に応じた信号を線6
介し制御回路に印加する。
40 is a control circuit that controls the operating state. The control circuit 40 receives signals from various sensor groups as described below, and is informed of the current operating conditions of the engine. That is, a signal representing the amount of intake air is input from the air flow meter 12 via line 1 . An O 2 sensor 42 as an air-fuel ratio sensor is provided in the exhaust manifold 28 and applies an air-fuel ratio signal to the control circuit 36 via a line 2 . Furthermore, the case 36 of the distributor 36
1 includes rotation angle sensors 44, 4 facing the rotation detection piece 363 on the distributor shaft 362.
6 is provided and connected to the control circuit via lines 3 and 4 . One of them 44 is for detecting the rotation speed of the distributor shaft 362, which outputs a large number of pulses during one rotation of the engine, and the other 46 is for cylinder discrimination, and also an interrupt signal that corresponds to the crank angle. plays a role in forming the A water temperature sensor 50 is provided so as to be in contact with the cooling water jacket of the cylinder block, and applies a signal to the control circuit 40 via a line 5 . Throttle sensor 51 applies a signal corresponding to the opening degree of the throttle valve to the control circuit via line 6 .

第3図は制御回路の構成をブロツクダイヤグラ
ムによつて示すものであり、エアフローメータ1
2および水温センサ50、スロツトルセンサ51
その他本発明と直接関係しないため図示しない他
のアナログセンサはアナログマルチプレクサ54
に結線され、A/Dコンバータ56によつて2進
信号に変換される。回転角センサ44からのエン
ジンの1/nクランク角毎の信号は速度信号形成回
路58によつてエンジンの速度に応じた2進信号
に変換され入力ポート59に印加される。回転角
センサ46からのエンジン1回転毎の信号及び回
転角センサエンジンの1/nクランク角毎の信号は
タイミング発生回路60に送り込まれ、割り込み
信号としてCPU62に印加される。O2センサ42
からの空燃比信号は比較増幅回路66によつて基
準レベルと比較され入力ポート59に印加され
る。
Figure 3 shows the configuration of the control circuit using a block diagram.
2 and water temperature sensor 50, throttle sensor 51
Other analog sensors not shown because they are not directly related to the present invention are the analog multiplexer 54.
and is converted into a binary signal by an A/D converter 56. A signal every 1/n crank angle of the engine from the rotation angle sensor 44 is converted by a speed signal forming circuit 58 into a binary signal corresponding to the speed of the engine, and is applied to an input port 59. A signal from the rotation angle sensor 46 for each engine rotation and a signal for each 1/n crank angle of the rotation angle sensor engine are sent to a timing generation circuit 60 and applied to the CPU 62 as an interrupt signal. O2 sensor 42
The air-fuel ratio signal is compared with a reference level by the comparison amplifier circuit 66 and applied to the input port 59.

アナログマルチプレクサ54、A/Dコンバー
タ56、入力ポート59は、マイクロコンピユー
タシステムの構成要素であるCPU62,RAM68,
ROM70にバス72を介して結線される。CPU62
はクロツク発生回路74からのクロツクパルスに
同期して、前記センサ群からの検知信号の取り込
み、及び燃料噴射量の計算を行い、計算結果は
CPU62よりバス72を介して出力ポート76に
出力される。出力ポート76は駆動回路78を介
して燃料噴射弁16に結線される。CPU62は
ROM70に書かれたプログラムに従つてそのよう
な燃料噴射量の計算を行う。
The analog multiplexer 54, A/D converter 56, and input port 59 are the components of the microcomputer system, such as the CPU 62, RAM 68,
It is connected to the ROM 70 via a bus 72. CPU62
synchronizes with the clock pulse from the clock generation circuit 74, takes in the detection signals from the sensor group and calculates the fuel injection amount, and the calculation result is
The signal is output from the CPU 62 to the output port 76 via the bus 72. The output port 76 is connected to the fuel injection valve 16 via a drive circuit 78 . CPU62 is
The fuel injection amount is calculated according to the program written in ROM70.

本発明におけるそのソフトウエア構成を述べる
前に、第4図によつて本発明のアイデアを説明す
る。本発明のようなO2センサを用いた燃料噴射
エンジンでは、燃料噴射制御は次のように行われ
る。エンジンの運転条件、例えば回転数Nと、吸
入空気量Qaから基本燃料噴射量tp=C×(Qa
N)が計算される(C:定数)。一方O2センサ4
2によつて現実の空燃比が検知される。もし空燃
比がリツチ側にずれたときは前記基本噴射量tp
対し加えられるフイードバツク補正係数FAFが
減少され、一方リーン側にずれたときは同FAF
が増大され、これにより空燃比にフイードバツク
がかかる。第4図はこのフイードバツクのありさ
まを略示するものであつて、例えば時刻t1におい
てO2センサ42の信号がリツチ1からリーン0
に切替わると、フイードバツク補正係数FAFが
R1で示すように大きくなり、混合気としては濃
くなるため空燃比は小さく修正されてゆく。ま
た、時刻t2において、O2センサ42の信号がリー
ンからリツチに切替わると、フイードバツク修正
係数がR2の如く小さくなりそのため燃料噴射量
は減少して空燃比は大きい方に修正されてゆく。
このようなフイードバツクの働きで空燃比はロの
如く目標値(A/F)0に維持される。また、空燃
比の目標値への収束を早めるため、O2センサ4
2の信号がリツチからリーンへ又はリーンからリ
ツチへの切替りにおいてはスキツプが第4図のニ
のS1,S2の通り入れられることも周知の通りであ
る。
Before describing the software configuration of the present invention, the idea of the present invention will be explained with reference to FIG. In a fuel injection engine using an O 2 sensor like the present invention, fuel injection control is performed as follows. Based on the engine operating conditions, for example, the rotation speed N and the intake air amount Q a , the basic fuel injection amount t p = C × (Q a /
N) is calculated (C: constant). On the other hand O2 sensor 4
2, the actual air-fuel ratio is detected. If the air-fuel ratio deviates to the rich side, the feedback correction coefficient FAF added to the basic injection amount t p is decreased, while if the air-fuel ratio deviates to the lean side, the FAF
is increased, which causes a feedback to the air/fuel ratio. FIG. 4 schematically shows the state of this feedback. For example, at time t1 , the signal of the O 2 sensor 42 changes from rich 1 to lean 0.
When switched to , the feedback correction coefficient FAF is
As R1 increases, the air-fuel mixture becomes richer, and the air-fuel ratio is corrected to a smaller value. Furthermore, at time t2 , when the signal from the O2 sensor 42 switches from lean to rich, the feedback correction coefficient becomes smaller as R2 , and therefore the fuel injection amount decreases and the air-fuel ratio is corrected to a larger value. .
Due to the action of such feedback, the air-fuel ratio is maintained at the target value (A/F) 0 as shown in (b). In addition, in order to hasten the convergence of the air-fuel ratio to the target value, the O 2 sensor 4
It is also well known that when the signal No. 2 switches from rich to lean or from lean to rich, skips are inserted as indicated by S 1 and S 2 in FIG.

以上述べた作動においてエンジンが加速に入る
場合は要求燃料噴射量が大きくなる。この場合フ
イードバツクだけでは対応できないことから加速
補正係数を乗算することにより燃料量を増大させ
ることで綜合的には空燃比を一定に保とうと企図
する。即ちエンジンが定常から加速への切替りに
あることを検知し、加速補正係数が1から1以上
の所定の値Kに設定され、これを含め燃料噴射量
が計算される。これにより過渡運転時にも空燃比
を一定に維持しようと企図する。しかし、始めに
述べたようなデポジツト等による経時的な原因で
単に加速補正係数を導入するだけでは十分な補正
ができない。即ち、第4図の時刻t3を加速の開始
とすると、空燃比がXの如くリーンにずれたり、
逆にリツチにずれたりするのである。本発明では
次のことに着目して、このような過渡運転時にお
ける空燃比の荒れの解消を図るものである。即
ち、空燃比にXの如き荒れがある場合はフイード
バツク補正量FAFが定常時と較べ変化する筈で
ある。フイードバツク補正量の加速時における定
常時に対するこのような偏差ΔA/Fは逆にいえ
ば加速運転時の空燃比の荒れの目安となる。従つ
て、この偏差に応じて加速補正係数を修正すれば
空燃比の荒れを押さえ第4図のロのYのように均
一とできる筈である。
In the above-described operation, when the engine accelerates, the required fuel injection amount increases. In this case, since feedback alone cannot cope with this problem, it is attempted to keep the air-fuel ratio constant by increasing the amount of fuel by multiplying it by an acceleration correction coefficient. That is, it is detected that the engine is switching from steady state to acceleration, the acceleration correction coefficient is set from 1 to a predetermined value K of 1 or more, and the fuel injection amount is calculated including this. This is intended to maintain the air-fuel ratio constant even during transient operation. However, due to aging factors such as deposits as mentioned above, sufficient correction cannot be achieved simply by introducing an acceleration correction coefficient. That is, if the acceleration starts at time t3 in Fig. 4, the air-fuel ratio shifts to lean as shown in X,
On the contrary, it may shift towards richness. The present invention focuses on the following points and aims to eliminate such fluctuations in the air-fuel ratio during transient operation. That is, if the air-fuel ratio has a roughness like X, the feedback correction amount FAF should change compared to the steady state. In other words, the deviation ΔA/F of the feedback correction amount during acceleration from the steady state is a measure of the roughness of the air-fuel ratio during acceleration operation. Therefore, if the acceleration correction coefficient is corrected according to this deviation, it is possible to suppress the roughness of the air-fuel ratio and make it uniform as indicated by Y in FIG. 4B.

以下に、このような本発明を実現する制御回路
のソフトウエア構成をフローチヤートによつて説
明する。この実施例では定常運転として運転条件
の最も安定しているアイドルをとり、アイドルか
らの発進のときのフイードバツク補正量をアイド
ル時のそれと比較し偏差を計算している。しか
し、本発明のアイデアをこれに限定する意図のも
のでないことはもとよりである。なお、第5図の
略上半部は主としてフイードバツク補正係数
FAFのスキツプに関するものであり、略下半部
が加減速時の補正係数の学習補正に関するもので
ある。
The software configuration of the control circuit that implements the present invention will be explained below using a flowchart. In this embodiment, idling, which is the most stable operating condition, is taken as steady operation, and the deviation is calculated by comparing the amount of feedback correction when starting from idling with that when idling. However, it goes without saying that the idea of the present invention is not intended to be limited to this. The upper half of Fig. 5 mainly shows the feedback correction coefficient.
This relates to FAF skipping, and the lower half relates to learning correction of correction coefficients during acceleration and deceleration.

第5図の100は本発明に係る燃料噴射量の計
算ルーチンの開始を示し、このルーチンは回転角
センサ44,46の信号を受けるタイミング発生
回路60がエンジンの所定クランク角毎に信号を
出すことで実行が開始される。次いで102では
CPU62はエンジンの運転条件に応じて定まる基
本噴射量tpの演算を行う。即ち、CPU62は速度形
成回路58からのエンジン回転数Neとエアフロ
ーメータ12からの吸入空気量Qaとによりtpを計
算しその計算結果はRAM68に一旦格納される。
Reference numeral 100 in FIG. 5 indicates the start of the fuel injection amount calculation routine according to the present invention, and this routine is performed by the timing generation circuit 60 receiving signals from the rotation angle sensors 44 and 46 to output a signal at every predetermined crank angle of the engine. Execution begins. Then at 102
The CPU 62 calculates a basic injection amount t p determined according to engine operating conditions. That is, the CPU 62 calculates t p based on the engine speed N e from the speed forming circuit 58 and the intake air amount Q a from the air flow meter 12, and the calculation result is temporarily stored in the RAM 68.

104ではCPUはO2センサ42からの信号が
1か0か、即ち混合気がリツチかリーンかの判定
を行う。No、即ちリーンのときは106に進み
空燃比フラグfO2が0か否かの検定を行う。この
フラグfO2は混合気がリツチからリーンへの切替
りで下され0、リーンからリツチへの切替りで立
てられる1フラグである。Noの結果は空燃比が
前回1即ちリツチからリーンへの切替り(第4図
ニのt1)を示す。107ではフラグfO2=0とリ
セツトされる。次の108ではフイードバツク補
正係数FAFをRAM68のf(A/F)の領域に格
納する。即ち第4図ニのスキツプ点t1における
(スキツプ直前の)FAFの値がf(A/F)とし
て記憶される。この意味については後で述べる。
次の110ではフイードバツク補正係数FAFを
前回のFAFに10を加えたものとしてRAMに格納
する。その結果、FAFは急激に増大される。即
ち、第4図のt1の点が空燃比のリツチからリーン
への切替りを示しその点でS1に示すようにフイー
ドバツク補正係数FAFが急増大する(いわゆる
スキツプ)。このようなスキツプ変化によつてフ
イードバツクの追従性が増大されるのは周知の通
りである。
At 104, the CPU determines whether the signal from the O 2 sensor 42 is 1 or 0, that is, whether the air-fuel mixture is rich or lean. If No, ie, lean, the process proceeds to 106, where it is verified whether the air-fuel ratio flag fO2 is 0 or not. This flag fO2 is set to 0 when the air-fuel mixture changes from rich to lean, and set to 1 when the air-fuel mixture changes from lean to rich. A No result indicates that the air-fuel ratio was 1 last time, that is, a switch from rich to lean (t 1 in FIG. 4D). At 107, the flag fO 2 is reset to 0. In the next step 108, the feedback correction coefficient FAF is stored in the area f (A/F) of the RAM 68. That is, the value of FAF at the skip point t1 in FIG. 4D (immediately before the skip) is stored as f(A/F). The meaning of this will be discussed later.
In the next step 110, the feedback correction coefficient FAF is stored in the RAM as the previous FAF plus 10. As a result, FAF is rapidly increased. That is, the point t1 in FIG. 4 indicates the air-fuel ratio switching from rich to lean, and at that point the feedback correction coefficient FAF suddenly increases as shown at S1 (so-called skip). It is well known that the followability of feedback is increased by such skip changes.

次の112ではCPUはスロツトルポジシヨン
センサ51からの信号の取り込みを行いエンジン
がアイドリングか否か判定する。今アイドルと仮
定すれば、Yesの結果となり、114に進む。1
14では、108における今回のスキツプ時のフ
イードバツク補正係数f(A/F)とRAM68に
格納される前回のスキツプ時の補正係数f(A/
F)Lとの平均がf(A/F)MとしてRAMに
格納される。即ち、現在問題としているスキツプ
点t1の前のスキツプ点はリーンからリツチへの切
替り点t0であり、そのときの補正係数がf(A/
F)Lである。隣接する2つのスキツプでの補正
係数の平均であるf(A/F)Mは、デポジツト
等の経時変化要因を含む現在のFB制御の中心値
であり、加減速補正係数の補正計算のために、定
常運転時における基準値として使用される(実際
には、過渡運転に移行する直前の値が採用され
る)。
In the next step 112, the CPU receives a signal from the throttle position sensor 51 and determines whether the engine is idling. If we assume that it is currently idle, the result will be Yes, and the process will proceed to step 114. 1
14, the feedback correction coefficient f(A/F) for the current skip in 108 and the correction coefficient f(A/F) for the previous skip stored in the RAM 68 are entered.
The average with F)L is stored in RAM as f(A/F)M. That is, the skip point before the current skip point t 1 is the switching point t 0 from lean to rich, and the correction coefficient at that time is f(A/
F) It is L. f(A/F)M, which is the average of the correction coefficients for two adjacent skips, is the center value of the current FB control that includes factors such as deposits and other changes over time, and is used for correction calculation of the acceleration/deceleration correction coefficient. , is used as a reference value during steady operation (actually, the value immediately before transition to transient operation is adopted).

118では108で計算されたf(A/F)が
f(A/F)LのRAM領域に格納され、これは
114で既に説明した通りFAFの平均f(A/
F)Mの計算の際前回のスキツプ時のFAFとし
て利用される。
In step 118, f(A/F) calculated in step 108 is stored in the RAM area of f(A/F)L, and as already explained in step 114, this is the average f(A/F) of FAF.
F) Used as the FAF at the previous skip when calculating M.

120ではtp×FAFが計算され、更に121で
吸入空気量変化速度、スロツトル開度変化速度等
によつて加速状態が検出された場合は122で加
速補正係数Kが積算され最終的な燃料噴射量とな
りRAMに格納される。123でこのルーチンは
終わりとなる。
At step 120, t p ×FAF is calculated, and if an acceleration state is detected at step 121 based on the intake air amount change rate, throttle opening change rate, etc., then at step 122, the acceleration correction coefficient K is integrated, and the final fuel injection is performed. amount and is stored in RAM. At 123, this routine ends.

次にCPU62が第5図のルーチンの実行に入る
と、106では空燃比フラグfO2=0である(1
07)ことからYesの判定となる。122では
FAFに1を加えたものを新たな補正係数とする。
そのため補正係数は第4図のR1の如く緩りと増
加し次にO2センサの信号が反転されるまで引続
く。尚、108,122で補正係数の変化量を
10,1としたのは前者が大きく後者が小さいこと
を説明するためだけであり、この数値自体には特
別の意味はない。
Next, when the CPU 62 starts executing the routine shown in FIG. 5, the air-fuel ratio flag fO 2 =0 (106).
07) Therefore, the judgment is Yes. In 122
The new correction coefficient is FAF plus 1.
Therefore, the correction factor increases slowly as R 1 in FIG. 4 until the next time the O 2 sensor signal is reversed. In addition, the amount of change in the correction coefficient is expressed as 108 and 122.
The reason for setting it to 10.1 is only to explain that the former is large and the latter is small, and this number itself has no special meaning.

フイードバツク補正係数FAFが第4図のR1
如く少しづつ増大されてゆくことで空燃比はリツ
チに変り時刻t2でO2センサ42の信号は0から1
に切替る。従つて、O2=1となり104での判
定はYesとなり、130に進む。130では空燃
フラグ比fO2が1か否かの検定を行う。O2センサ
42の信号が0から1へ切替わるt2点ではfO2
0であるからNoに分岐する。131でフラグfO2
=1とセツトされる。次いで132でフイードバ
ツク補正係数FAFをRAM68のf(A/F)の領
域に格納する。この意味は108と同じである。
次の134ではフイードバツク補正係数FAFを
前回のFAFから10を引いたものとしてRAM70に
格納する。即ち第4図のt2の点が空燃比のリーン
からリツチへの切替りを示しその点で示すように
フイードバツク補正係数がS2の如く急降下する。
このようなスキツプ変化の意義は前に述べたと同
様である。
As the feedback correction coefficient FAF is gradually increased as indicated by R 1 in FIG. 4, the air-fuel ratio changes to richer, and at time t 2 the signal from the O 2 sensor 42 changes from 0 to 1.
Switch to. Therefore, O 2 =1, the determination at 104 is Yes, and the process proceeds to 130 . At 130, it is verified whether the air-fuel flag ratio fO 2 is 1 or not. At the t2 point where the signal of the O 2 sensor 42 switches from 0 to 1, fO 2 =
Since it is 0, it branches to No. Flag fO 2 at 131
= 1. Next, in step 132, the feedback correction coefficient FAF is stored in the area f(A/F) of the RAM 68. This meaning is the same as 108.
In the next step 134, the feedback correction coefficient FAF is stored in the RAM 70 as the previous FAF minus 10. That is, the point t2 in FIG. 4 indicates the air-fuel ratio switching from lean to rich, and at that point the feedback correction coefficient suddenly drops as shown at S2 .
The significance of such a skip change is the same as described above.

次にCPU62が第5図のルーチンの実行に入る
と130ではfO2=1である131のことから
Yesと判定され140に進む。140ではFAFか
ら1を引いたものが新たな補正係数とされる。そ
のため補正係数は第4図ニのR2の如く緩りと減
少し次にO2センサ42の信号が反転されるまで
維持する。
Next, when the CPU 62 starts executing the routine shown in FIG .
It is determined Yes and the process proceeds to 140. At 140, FAF minus 1 is set as a new correction coefficient. Therefore, the correction coefficient gradually decreases as indicated by R 2 in FIG. 4D and is maintained until the signal from the O 2 sensor 42 is reversed.

以上のようなアイドル運転から加速に入るとス
ロツトルセンサ51の信号は第4図のイの如くt3
の時刻より増大し、CPUは121,122にお
いて加速増量を実施するとともに加速補正係数の
学習補正計算を行う。このとき第5図の112で
の判定はNoに転じ、プログラムは150に進む。
150では加速開始から5秒経過したか否かが判
定される。No即ち加速直後の場合は152に進
み今回のスキツプ時のフイードバツク補正係数f
(A/F)からアイドリング時の平均のフイード
バツク補正係数f(A/F)Mを引き、これを偏
差ΔA/FとしてRAMに一旦格納する。即ち加
速時に空燃比が第4図ロのXの通り薄い側にずれ
たとすると、リツチからリーンへの切替点よりス
キツプ後に、フイードバツク補正値はアイドリン
グ時に求めた平均のフイードバツク補正係数f
(A/F)Mから大きい方へずれ始め、例えばt4
の時点で最大となつて始めてO2センサ42の信
号がリーンからリツチへ切替ることになる。次の
154ではそのような偏差ΔA/Fが所定の範囲
例えば±5%内にあるるかどうかが判定される。
No、即ち偏差があまり大きくない場合には15
5に進み、そのRAMのK′エリヤに格納されてい
る値をその運転時の加速補正係数Kとする。従つ
て、120でこの加速補正係数を取り入れて全燃
料噴射量が計算されることとなる。
When acceleration starts from idling operation as described above, the signal of the throttle sensor 51 becomes t 3 as shown in Fig. 4 A.
The CPU increases the acceleration amount at 121 and 122, and performs learning correction calculation of the acceleration correction coefficient. At this time, the determination at 112 in FIG. 5 changes to No, and the program proceeds to 150.
At 150, it is determined whether 5 seconds have elapsed since the start of acceleration. If No, that is, immediately after acceleration, proceed to 152 and calculate the feedback correction coefficient f for the current skip.
The average feedback correction coefficient f(A/F)M during idling is subtracted from (A/F), and this is temporarily stored in the RAM as the deviation ΔA/F. In other words, if the air-fuel ratio deviates to the lean side during acceleration as indicated by X in Figure 4 (b), then after skipping from the rich to lean switching point, the feedback correction value will be the average feedback correction coefficient f determined during idling.
(A/F) Starts to shift towards the larger side from M, for example t 4
The signal from the O 2 sensor 42 switches from lean to rich only when it reaches its maximum at the time of . In the next step 154, it is determined whether such deviation ΔA/F is within a predetermined range, for example, ±5%.
No, i.e. 15 if the deviation is not too large.
5, the value stored in the K' area of the RAM is set as the acceleration correction coefficient K during that operation. Therefore, in step 120, the total fuel injection amount is calculated by incorporating this acceleration correction coefficient.

150でNoと判定された場合、即ち5%以上
又は以下の場合は156に進み、そのような5%
以上の偏差が正か負か判定される。正の場合は1
58に分岐し、リーンになる傾向を修正すべく前
回の加速補正値K′に10%を加えたものをRAMに
格納する。また負の場合は160に分岐しリツチ
になる傾向を修正すべく前回の加速補正値K′か
ら10%を引いたものをRAMに格納する。K′を格
納するRAMエリヤは不揮発RAMとして構成さ
れている。そのため、このように計算された加速
補正係数は常に修正更新されることになる。
If it is determined No in 150, i.e. more than or less than 5%, proceed to 156, and such 5%
The deviation above is determined to be positive or negative. 1 if positive
58, and stores the previous acceleration correction value K' plus 10% in order to correct the lean tendency. If it is negative, the process branches to 160, and the previous acceleration correction value K' minus 10% is stored in the RAM in order to correct the tendency to become rich. The RAM area that stores K' is configured as a nonvolatile RAM. Therefore, the acceleration correction coefficient calculated in this way is constantly revised and updated.

このようにして計算されたフイードバツク修
正、加速補正も含めた全燃料噴射量τは122で
RAMの所定エリヤに格納され、所定のクランク
角度が来るとCPUはこのデータを出力ポート7
6にセツトする。燃料噴射弁16はそのτに対応
した時間作動される。
The total fuel injection amount τ calculated in this way, including feedback correction and acceleration correction, is 122.
The data is stored in a predetermined area of RAM, and when a predetermined crank angle is reached, the CPU outputs this data to port 7.
Set to 6. The fuel injection valve 16 is operated for a time corresponding to τ.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、過渡運
転と検出したときは過渡運転移行前の定常運転時
に記憶されたフイードバツク補正値と今回のフイ
ードバツク補正値の偏差より過渡運転時の補正係
数を学習するようにしたので、過渡運転移行前の
定常運転時に記憶されたフイードバツク補正値を
学習基準として過渡運転時に空燃比がリーン側又
はリツチ側にずれる傾向を見分けて補正係数を修
正、更新することができ、よつて吸気弁のかさ部
へのデポジツトの吸着といつた経時的な変化等に
より発生する空燃比のずれを解消できる。
As explained above, according to the present invention, when transient operation is detected, the correction coefficient for transient operation is learned from the deviation between the feedback correction value stored during steady operation before transition to transient operation and the current feedback correction value. As a result, it is possible to identify the tendency of the air-fuel ratio to deviate to the lean side or rich side during transient operation and correct and update the correction coefficient using the feedback correction value stored during steady operation before transition to transient operation as a learning standard. Therefore, it is possible to eliminate deviations in the air-fuel ratio that occur due to changes over time such as adsorption of deposits to the bulk portion of the intake valve.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の基本的構成を示す図、第2図
は本発明の実施例構成を示す図、第3図は第2図
の制御回路のブロツクダイヤグラム図、第4図は
第2図の装置の作動のタイムチヤート模式図、第
5図は本発明のソフトウエア構成を示すフローチ
ヤート図である。 12……エアフローメータ、14……スロツト
ル弁、16……燃料噴射弁、18……吸気系、4
0……制御回路、42……O2センサ。
Fig. 1 is a diagram showing the basic configuration of the present invention, Fig. 2 is a diagram showing the configuration of an embodiment of the invention, Fig. 3 is a block diagram of the control circuit shown in Fig. 2, and Fig. 4 is a diagram showing the control circuit shown in Fig. 2. FIG. 5 is a schematic time chart of the operation of the device, and FIG. 5 is a flow chart showing the software configuration of the present invention. 12... Air flow meter, 14... Throttle valve, 16... Fuel injection valve, 18... Intake system, 4
0...Control circuit, 42... O2 sensor.

Claims (1)

【特許請求の範囲】 1 内燃機関の運転条件を検出する運転条件検出
手段と、 該運転条件検出手段の検出結果に基づき前記内
燃機関への燃料供給量を算出する燃料供給量算出
手段と、 上記内燃機関に吸入される混合気の空燃比を検
出する空燃比検出手段と、 該空燃比検出手段の検出結果に基づき前記燃料
供給量をフイードバツク補正値により補正するフ
イードバツク補正手段と、 前記運転常態検出手段により前記内燃機関の運
転状態が過渡運転状態であると判断された場合、
前記燃料供給量を過渡補正値により補正する過渡
補正手段と、 前記フイードバツク補正手段及び前記過渡補正
手段に基づき補正された前記燃料供給量を前記内
燃機関に供給する燃料供給手段とを有する内燃機
関の燃料噴射制御装置において、 前記フイードバツク補正値を記憶する第1のメ
モリ手段と、 前記過渡補正値を記憶する第2のメモリ手段
と、 前記運転状態検出手段により前記内燃機関の運
転状態が過渡運転状態であると判断された場合、
過渡運転前の定常運転時に第1のメモリ手段に記
憶されたフイードバツク補正値と、過渡運転が開
始後の所定期間内のフイードバツク補正値との偏
差を算出する偏差算出手段と、 該偏差算出手段の算出結果に基づき、第2のメ
モリ手段に記憶された過渡補正値を修正更新する
過渡補正値更新手段とを備えることを特徴とする
内燃機関の燃料噴射制御装置。
[Scope of Claims] 1. Operating condition detection means for detecting operating conditions of the internal combustion engine; Fuel supply amount calculation means for calculating the amount of fuel supplied to the internal combustion engine based on the detection result of the operating condition detection means; an air-fuel ratio detection means for detecting the air-fuel ratio of the air-fuel mixture taken into the internal combustion engine; a feedback correction means for correcting the fuel supply amount with a feedback correction value based on the detection result of the air-fuel ratio detection means; and the normal operation state detection means. when it is determined by the means that the operating state of the internal combustion engine is in a transient operating state;
An internal combustion engine comprising: a transient correction means for correcting the fuel supply amount using a transient correction value; and a fuel supply means for supplying the internal combustion engine with the fuel supply amount corrected based on the feedback correction means and the transient correction means. In the fuel injection control device, the operating state of the internal combustion engine is determined to be a transient operating state by the first memory means for storing the feedback correction value, the second memory means for storing the transient correction value, and the operating state detecting means. If it is determined that
a deviation calculation means for calculating the deviation between the feedback correction value stored in the first memory means during the steady operation before the transient operation and the feedback correction value within a predetermined period after the start of the transient operation; 1. A fuel injection control device for an internal combustion engine, comprising: a transient correction value updating unit that corrects and updates a transient correction value stored in a second memory unit based on a calculation result.
JP10669783A 1983-06-16 1983-06-16 Fuel injection control device for internal-combustion engine Granted JPS601344A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP10669783A JPS601344A (en) 1983-06-16 1983-06-16 Fuel injection control device for internal-combustion engine
US06/619,210 US4635200A (en) 1983-06-16 1984-06-11 System for controlling air-fuel ratio in an internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10669783A JPS601344A (en) 1983-06-16 1983-06-16 Fuel injection control device for internal-combustion engine

Publications (2)

Publication Number Publication Date
JPS601344A JPS601344A (en) 1985-01-07
JPH0246776B2 true JPH0246776B2 (en) 1990-10-17

Family

ID=14440209

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10669783A Granted JPS601344A (en) 1983-06-16 1983-06-16 Fuel injection control device for internal-combustion engine

Country Status (1)

Country Link
JP (1) JPS601344A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0626523B2 (en) * 1985-02-25 1994-04-13 松下電工株式会社 Counter manufacturing method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5535134A (en) * 1978-09-01 1980-03-12 Toyota Motor Corp Air-fuel ratio control system in internal combustion engine
JPS59208143A (en) * 1983-05-13 1984-11-26 Hitachi Ltd Control device for internal-combustion engine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5535134A (en) * 1978-09-01 1980-03-12 Toyota Motor Corp Air-fuel ratio control system in internal combustion engine
JPS59208143A (en) * 1983-05-13 1984-11-26 Hitachi Ltd Control device for internal-combustion engine

Also Published As

Publication number Publication date
JPS601344A (en) 1985-01-07

Similar Documents

Publication Publication Date Title
JPH0214976B2 (en)
JPH0532573B2 (en)
US5320080A (en) Lean burn control system for internal combustion engine
JPS6231179B2 (en)
US4520784A (en) Method of and apparatus for controlling fuel injection
JPH0246776B2 (en)
JP2535884B2 (en) Fuel supply system abnormality detection device for internal combustion engine
JPS6231180B2 (en)
JPH04279746A (en) Fuel character detecting device of internal combustion engine
JPH0526935B2 (en)
JP2750777B2 (en) Electronic control fuel supply device for internal combustion engine
JP3170046B2 (en) Air-fuel ratio learning method for internal combustion engine
JPH0612235Y2 (en) Air-fuel ratio controller for internal combustion engine
JPH0555704B2 (en)
JPS58150034A (en) Air-fuel ratio storage control method of internal-combustion engine
JPS63235632A (en) Fuel injection control equipment at engine start
JP2860855B2 (en) Electronic control fuel supply device for internal combustion engine
JPS63189656A (en) Fuel control device for engine
JPH08284717A (en) Learning area setting method for air-fuel ratio learning control
JPH04279747A (en) Fuel character detecting device of internal combustion engine
JPH0754744A (en) Correcting method for idle stabilizing ignition timing
JPH09126016A (en) Air-fuel ratio learning control method for internal combustion engine
JPH0621585B2 (en) Engine controller
JPS6166828A (en) Air-fuel ratio control device of engine
JPH10212991A (en) Fuel injection control device for internal combustion engine