JPH024672B2 - - Google Patents

Info

Publication number
JPH024672B2
JPH024672B2 JP60019759A JP1975985A JPH024672B2 JP H024672 B2 JPH024672 B2 JP H024672B2 JP 60019759 A JP60019759 A JP 60019759A JP 1975985 A JP1975985 A JP 1975985A JP H024672 B2 JPH024672 B2 JP H024672B2
Authority
JP
Japan
Prior art keywords
plating
substrate
aluminum
magnetic
adhesion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60019759A
Other languages
Japanese (ja)
Other versions
JPS61179842A (en
Inventor
Teruo Uno
Yoshikatsu Hayashi
Hiroshi Ikeda
Seiichi Hirano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Light Metal Industries Ltd
Original Assignee
Sumitomo Light Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Light Metal Industries Ltd filed Critical Sumitomo Light Metal Industries Ltd
Priority to JP1975985A priority Critical patent/JPS61179842A/en
Publication of JPS61179842A publication Critical patent/JPS61179842A/en
Publication of JPH024672B2 publication Critical patent/JPH024672B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Magnetic Record Carriers (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 この発明は磁気デイスク用アルミニウム合金に
関するものである。詳しくは電子計算機の記憶媒
体として使用されるメツキ型磁気デイスク用アル
ミニウム合金に関するものである。 従来の技術 磁気デイスクは一般にアルミニウム合金基板の
表面を精密研摩した後に磁性体薄膜を被覆させた
ものであり、この磁性体被膜を磁化させることに
より信号を記録する。 磁気デイスク基板には、以下のような特性が要
求される。 (1) 精密研摩あるいは切削後の表面精度が良好な
こと。 (2) 基板表面に被覆される磁性体薄膜の欠陥の原
因となる突起や穴が少なく、かつ小さいこと。 (3) ある程度の機械的強度を有し、基板製作時の
機械加工、研摩使用時の高速回転等にも耐え得
ること。 (4) 軽量、非磁性であり、ある程度の耐食性を有
すること。 従来、このような特性を有する磁気デイスク用
基板としてAl−Mg−Mn−Cr系の5086合金が使
用されてきた。最近、磁気デイスクに対する高密
度化、大容量化等の要求が高まり、これに適した
アルミニウム素材や磁性体薄膜の被覆法の開発が
望まれている。従来の5086合金の場合には、素材
中に5〜10μm程度の金属間化合物(Al−Fe,
Al−Fe−Si,Al−Mn,Al−Mn−Fe,Al−Si,
Mg−Si系等)が多数存在するため、機械加工や
研摩時にこれらの粗大な金属間化合物が基板より
脱落して穴となつたり、表面に突起として残留す
るため、研摩時に良好な表面状態が得られない。
そのため、磁性体薄膜を表面に被覆しても表面欠
陥部には磁性体が均一に被覆されず、記憶エラー
の原因となり、高密度磁気デイスク用基板として
は問題がある。 また、磁性体を基板表面に被覆する方法とし
て、これまでは塗布法が主体であつたが、近年メ
ツキ法、スパツタ法等が開発され、高密度磁気デ
イスクへの適用が進められている。この場合、従
来の5086合金は、メツキ性が悪く、メツキ用高密
度磁気デイスクとしての適用には問題がある。 発明が解決しようとする問題点 この発明は従来、磁気デイスク用基板として使
用されている5086合金の上記問題点を解消し、メ
ツキ性、とくにNi−Pメツキ性にすぐれた磁気
デイスク用アルミニウム合金を提供するものであ
る。 問題点を解決するための手段 一般にアルミニウム合金はその基本的性質がメ
ツキに適さない。例えば、アルミニウムは電気化
学的に活性で強固な酸化被膜が形成されること、
合金元素の添加量や分布状態によつてはアルミニ
ウムの表面が化学的および電気化学的に不均一に
なること、熱膨脹係数が大きくメツキ層とアルミ
ニウム間に張力が作用し、欠陥の発生やメツキ層
のはく離を起こし易いこと等の問題がある。 メツキ型磁気デイスクにおいては、磁性体を形
成する以前に基板の平滑性をより向上させるた
め、基板上にNi−P系の中間メツキ層を形成さ
せた後に再度研摩されるが、アルミニウム基板上
に直接メツキ処理する場合には、メツキ層の密着
性が悪い問題がある。良好なメツキを施すにはア
ルミニウム基板の前処理が必要であり、一般に亜
鉛置換法による亜鉛メツキが施され、その上に
Ni−P系の中間層がメツキで形成される。 従つて、メツキ型磁気デイスクの特性は、下地
処理である亜鉛メツキ性およびNi−P中間層の
メツキ性に左右され、均一で無欠陥のNi−Pメ
ツキと密着性すぐれた亜鉛メツキを行う必要があ
り、基板となるアルミニウム素材についても、メ
ツキ性を考慮して合金組成や最適製造法を検討す
る必要がある。 この発明は、上記の目的に沿つたNi−Pおよ
び亜鉛メツキ性にすぐれた磁気デイスク用合金を
提供するものであり、その要旨とするところは以
下のとおりである。 Mg2〜5%、Zn0.2〜2.9%,Be0.1〜50ppmを
含み、さらにMn0.05〜0.5%,Cr0.05〜0.25%,
Zr0.05〜0.25%のうちの1種または2種以上を含
み、不純物としてのFe×Si,CuがFe<0.40%,
Si<0.25%,Cu<0.02%であるアルミニウム合
金。 成分添加の意義とその限定理由は以下のとおり
である。 Mg:Mgの添加は強度を向上させ、磁気デイス
ク材としての必要強度を付与するものである。
2%未満はこの効果が不十分であり、磁気デイ
スク材の切削や研摩時の加工性が低下する。5
%を越えると熱間圧延性が低下する。従つて
Mg添加量は2〜5%とする。 Zn:Znの添加はアルミニウム表面の酸化膜を弱
くし、前処理酸洗により適度な粗さを基板に付
与して亜鉛メツキ層の密着性の向上に寄与する
ばかりでなく、ジンケート層を基板全面に均一
に付着させその後に施されるNi−Pメツキ層
の密着性や欠陥の防止に有効である。0.2%未
満ではこの効果が十分でなく、2.9%を越える
と熱間加工性が低下する。従つてZn添加量は
0.2〜2.9%とする。 Mn:Mnは、均質化処理時に微細な金属間化合
物として析出し、再結晶粒を微細化する作用が
あり、基板の研摩面の仕上り性やNi−Pメツ
キ層の層状構造を安定化させ、密着性の向上等
に有効である。0.05%未満ではこの効果が不十
分であり、0.5%を越えると巨大な金属間化合
物が晶出するので好ましくない。従つてMn添
加量は0.05〜0.5%とする。 Cr:CrもMnと同様な効果があり、結晶粒の微細
化に有効である。添加量が0.05%未満の場合に
はこの効果が不十分であり、0.25%を越えると
巨大な金属間化合物を晶出するので好ましくな
い。従つてCr添加量は0.05〜0.25%とする。 Zr:ZrをMnやCrと同様に結晶粒の微細化に有効
である。添加量が0.05%未満の場合にはこの効
果が不十分であり、0.25%を越えると巨大な金
属間化合物が晶出するので好ましくない。従つ
てCr添加量は0.05〜0.25%とする。 Be:Beは、Al−Mg系合金の酸化防止や熱間加
工性の向上に有効である。0.1ppm未満ではこ
の効果が不十分であり50ppmを越えると毒性の
点で問題があり、添加量は0.1〜50ppmとする。 Ffe・Si:FeやSiはアルミニウム中にほとんど固
溶せず、金属間化合物として析出するが、
Fe・Si量が多い場合には、Al−Fe系、Al−Fe
−Si系等の粗大な金属間化合物が多数存在し、
品質上問導となるため、不純物元素としての
Fe・Si量はFe<0.40%,Si<0.25%とする。 Cu:Cuが多い場合には、電位を貴にし、前処理
酸洗による適当な粗さを基板に付与しなくなる
ため、不純物元素としてのCuは、Cu<0.02%
とする。 本発明に適用する亜鉛メツキ法は、例えば、
NaOH300gr/,Zn080gr/を溶解した15〜
20℃の水溶液中に数秒〜数分間浸漬することによ
り基板表面に亜鉛を析出させる方法で行われる。 また、亜鉛メツキの後に施すNi−Pメツキ法
は、次亜リン酸を還元剤とする無電解Ni−Pメ
ツキ法であり、通常80〜90℃で2〜4hr処理する
ことにより15〜30μmのメツキ層が形成される。 Ni−Pメツキ後の皮膜には欠陥がないこと、
密着性がよいこと等が必要とされるが、アルミニ
ウム基板中に巨大な介在物が存在したり、ジンケ
ートの不良部が存在するとNi−Pメツキ後にも
その欠陥が存在し、また、ジンケートの密着性が
悪いとNi−Pメツキ皮膜の密着性が低下する。 この発明は、Znを添加することにより表面酸
化皮膜を弱くしてジンケートの密着性を向上させ
ることにより、Ni−Pメツキ皮膜の密着性の向
上と欠陥の防止をはかろうとするものである。さ
にMn,Cr,Zr等の選択成分を添加することによ
り結晶粒を微細化し、Ni−Pメツキ層の均一化
や密着性の向上をはかろうとするものである。 実施例 実施例 1 表1に示す化学成分を有する100mm厚の鋳塊を
製作した。表中Cu,Tiは不純物である。この鋳
塊を500℃で24hr均質化処理した後に480℃で熱間
圧延を開始し、板厚6mmに圧延した。熱間圧延板
を約66%冷間圧延して2mm板とし、その後220℃
×2hr焼鈍して半硬材とした。 この材料について荒切削、歪取り焼鈍(400℃
×2hr)後に砥抑研摩した。ついで亜鉛メツキを
下地処理として行つた後にNi−Pメツキを行い
諸性能を評価した。表2にその結果を示す。 なお、亜鉛メツキはNaOH300gr/、
ZnO80gr/を溶解した20℃の水溶液中に30秒浸
漬することにより実施し、Ni−Pメツキは市販
の無電解Ni−Pメツキ液(90℃)に3hr浸漬した
実施した。 実施例No.1〜10は良好な性能を有している。 No.11は強度が低く、砥粒研摩が困難である。 No.12はZn量が低いためメツキ性に問題 No.13〜14はMn+Zr等の添加量が高く、巨大金
属間化合物が存在するため、メツキ面に欠陥が多
く問題。 No.15は不純物Fe,Siが多いためメツキ面に欠
陥が多い。
INDUSTRIAL APPLICATION FIELD This invention relates to an aluminum alloy for magnetic disks. More specifically, the present invention relates to an aluminum alloy for plated magnetic disks used as storage media for electronic computers. 2. Description of the Related Art Magnetic disks are generally made by precisely polishing the surface of an aluminum alloy substrate and then coating it with a magnetic thin film. Signals are recorded by magnetizing this magnetic film. A magnetic disk substrate is required to have the following characteristics. (1) Good surface accuracy after precision polishing or cutting. (2) There are fewer and smaller protrusions and holes that can cause defects in the magnetic thin film coated on the substrate surface. (3) It must have a certain degree of mechanical strength and be able to withstand machining during substrate manufacturing and high-speed rotation during polishing. (4) It must be lightweight, non-magnetic, and have a certain degree of corrosion resistance. Conventionally, Al-Mg-Mn-Cr alloy 5086 has been used as a magnetic disk substrate having such characteristics. Recently, there has been an increasing demand for higher density, larger capacity, etc. for magnetic disks, and there is a desire for the development of coating methods with aluminum materials and magnetic thin films suitable for these demands. In the case of conventional 5086 alloy, intermetallic compounds (Al-Fe,
Al−Fe−Si, Al−Mn, Al−Mn−Fe, Al−Si,
(Mg-Si system, etc.), these coarse intermetallic compounds fall off from the substrate during machining and polishing, forming holes or remaining as protrusions on the surface, making it difficult to maintain a good surface condition during polishing. I can't get it.
Therefore, even if the surface is coated with a magnetic thin film, the magnetic substance is not uniformly coated on the surface defects, causing storage errors, which is problematic as a substrate for high-density magnetic disks. Furthermore, as a method for coating the surface of a substrate with a magnetic material, coating methods have been the main method so far, but plating methods, sputtering methods, etc. have been developed in recent years, and their application to high-density magnetic disks is progressing. In this case, the conventional 5086 alloy has poor plating properties and is problematic in its application as a high-density magnetic disk for plating. Problems to be Solved by the Invention The present invention solves the above-mentioned problems of the 5086 alloy conventionally used as a substrate for magnetic disks, and provides an aluminum alloy for magnetic disks with excellent plating properties, especially Ni-P plating properties. This is what we provide. Means for solving the problem Generally, aluminum alloys are not suitable for plating due to their basic properties. For example, aluminum is electrochemically active and forms a strong oxide film;
Depending on the amount and distribution of alloying elements, the surface of aluminum may become chemically and electrochemically non-uniform, and its large coefficient of thermal expansion may cause tension between the plating layer and the aluminum, causing defects and damage to the plating layer. There are problems such as easy peeling. In plating type magnetic disks, in order to further improve the smoothness of the substrate before forming the magnetic material, a Ni-P intermediate plating layer is formed on the substrate and then polished again. In the case of direct plating, there is a problem that the adhesion of the plating layer is poor. Pre-treatment of the aluminum substrate is required to achieve good plating, and generally galvanization is performed using the zinc substitution method, and then
A Ni-P based intermediate layer is formed by plating. Therefore, the properties of a plated magnetic disk depend on the zinc plating properties of the base treatment and the plating properties of the Ni-P intermediate layer, and it is necessary to perform uniform and defect-free Ni-P plating and zinc plating with excellent adhesion. Therefore, it is necessary to consider the alloy composition and optimal manufacturing method for the aluminum material used as the substrate, taking plating properties into consideration. The present invention provides an alloy for magnetic disks having excellent Ni-P and galvanizing properties in accordance with the above-mentioned objects, and the gist thereof is as follows. Contains Mg2~5%, Zn0.2~2.9%, Be0.1~50ppm, and further includes Mn0.05~0.5%, Cr0.05~0.25%,
Contains one or more of Zr0.05-0.25%, Fe×Si as an impurity, Cu is Fe<0.40%,
Aluminum alloy with Si<0.25% and Cu<0.02%. The significance of component addition and the reason for its limitation are as follows. Mg: The addition of Mg improves the strength and provides the necessary strength as a magnetic disk material.
If it is less than 2%, this effect is insufficient and the workability during cutting and polishing of the magnetic disk material decreases. 5
%, hot rolling properties deteriorate. Accordingly
The amount of Mg added is 2 to 5%. Zn: The addition of Zn not only weakens the oxide film on the aluminum surface, but also contributes to improving the adhesion of the galvanized layer by imparting appropriate roughness to the substrate through pretreatment pickling, and also helps to spread the zincate layer over the entire surface of the substrate. This is effective for improving the adhesion of the Ni--P plating layer applied afterwards and for preventing defects. If it is less than 0.2%, this effect will not be sufficient, and if it exceeds 2.9%, hot workability will decrease. Therefore, the amount of Zn added is
Set at 0.2-2.9%. Mn: Mn precipitates as a fine intermetallic compound during homogenization treatment and has the effect of refining recrystallized grains, stabilizing the finish of the polished surface of the substrate and the layered structure of the Ni-P plating layer. Effective for improving adhesion, etc. If it is less than 0.05%, this effect is insufficient, and if it exceeds 0.5%, a huge intermetallic compound will crystallize, which is not preferable. Therefore, the amount of Mn added is set to 0.05 to 0.5%. Cr: Cr also has the same effect as Mn and is effective in refining crystal grains. If the amount added is less than 0.05%, this effect is insufficient, and if it exceeds 0.25%, a huge intermetallic compound will crystallize, which is not preferable. Therefore, the amount of Cr added should be 0.05 to 0.25%. Zr: Like Mn and Cr, Zr is effective in refining crystal grains. If the amount added is less than 0.05%, this effect will be insufficient, and if it exceeds 0.25%, a huge intermetallic compound will crystallize, which is not preferable. Therefore, the amount of Cr added should be 0.05 to 0.25%. Be: Be is effective in preventing oxidation and improving hot workability of Al-Mg alloys. If it is less than 0.1 ppm, this effect is insufficient, and if it exceeds 50 ppm, there is a problem in terms of toxicity, so the amount added should be 0.1 to 50 ppm. Ffe・Si: Fe and Si hardly dissolve in solid solution in aluminum and precipitate as intermetallic compounds.
When the amount of Fe/Si is large, Al-Fe system, Al-Fe system
-There are many coarse intermetallic compounds such as Si-based,
Since it is a question of quality, it is used as an impurity element.
The amount of Fe and Si shall be Fe<0.40% and Si<0.25%. Cu: If there is a large amount of Cu, the potential becomes noble and the appropriate roughness cannot be imparted to the substrate by pre-treatment pickling, so Cu as an impurity element is less than 0.02%.
shall be. The galvanizing method applied to the present invention is, for example,
15~ dissolved NaOH300gr/, Zn080gr/
Zinc is deposited on the surface of the substrate by immersing it in an aqueous solution at 20°C for several seconds to several minutes. In addition, the Ni-P plating method that is applied after zinc plating is an electroless Ni-P plating method that uses hypophosphorous acid as a reducing agent, and is usually treated at 80 to 90°C for 2 to 4 hours to form a layer of 15 to 30 μm. A plating layer is formed. There should be no defects in the film after Ni-P plating,
Good adhesion is required, but if there are large inclusions or defective parts of zincate in the aluminum substrate, those defects will still exist after Ni-P plating, and the adhesion of zincate will be poor. If the properties are poor, the adhesion of the Ni-P plating film will decrease. This invention aims to improve the adhesion of the Ni--P plating film and prevent defects by weakening the surface oxide film and improving the adhesion of zincate by adding Zn. By adding selective components such as Mn, Cr, and Zr, the crystal grains are made finer in order to make the Ni--P plating layer more uniform and to improve its adhesion. Examples Example 1 A 100 mm thick ingot having the chemical components shown in Table 1 was manufactured. Cu and Ti in the table are impurities. After homogenizing the ingot at 500°C for 24 hours, hot rolling was started at 480°C, and the ingot was rolled to a thickness of 6 mm. Approximately 66% of the hot-rolled plate is cold-rolled into a 2mm plate, and then heated at 220°C.
It was annealed for ×2 hours to produce a semi-hard material. Rough cutting and strain relief annealing (400℃) for this material.
x 2 hours) and then subjected to abrasive polishing. Next, zinc plating was performed as a base treatment, followed by Ni-P plating and various performances were evaluated. Table 2 shows the results. In addition, zinc plating is NaOH300gr/,
The test was carried out by immersing for 30 seconds in a 20°C aqueous solution containing 80gr of ZnO, and the Ni-P plating was carried out by immersing it in a commercially available electroless Ni-P plating solution (90°C) for 3 hours. Examples Nos. 1 to 10 have good performance. No. 11 has low strength and is difficult to polish with abrasive particles. No. 12 has a problem with plating properties because the amount of Zn is low. No. 13 to 14 have a high amount of added Mn + Zr, etc., and there are large intermetallic compounds, so there are many defects on the plating surface. No. 15 has a lot of impurities Fe and Si, so there are many defects on the plating surface.

【表】【table】

【表】【table】

【表】 発明の効果 この発明のアルミニウム合金によれば、メツキ
面は均一でかつ欠陥がなく、メツキ層の密着性も
良好なすぐれたメツキ型磁気デイスク用基板から
得られる。
[Table] Effects of the Invention According to the aluminum alloy of the present invention, an excellent plating type magnetic disk substrate having a uniform plating surface and no defects and good adhesion of the plating layer can be obtained.

Claims (1)

【特許請求の範囲】[Claims] 1 Mg2〜5%、Zn0.2〜2.9%,Be0.1〜50ppm
を含み、さらにMn0.05〜0.5%,Cr0.05〜0.25%,
Zr0.05〜0.25%のうちの1種または2種以上を含
み、残りアルミニウムと不純物よりなり、不純物
としてFe,Si,CuがFe<0.40%,Si<0.25%,
Cu<0.02であることを特徴とするメツキ性にすぐ
れた磁気デイスク用アルミニウム合金。
1 Mg2~5%, Zn0.2~2.9%, Be0.1~50ppm
Contains Mn0.05~0.5%, Cr0.05~0.25%,
Contains one or more of Zr0.05 to 0.25%, and the remainder consists of aluminum and impurities, and the impurities include Fe, Si, and Cu, Fe<0.40%, Si<0.25%,
An aluminum alloy for magnetic disks with excellent plating properties, characterized by Cu<0.02.
JP1975985A 1985-02-04 1985-02-04 Aluminum alloy for magnetic disc superior in plating property Granted JPS61179842A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1975985A JPS61179842A (en) 1985-02-04 1985-02-04 Aluminum alloy for magnetic disc superior in plating property

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1975985A JPS61179842A (en) 1985-02-04 1985-02-04 Aluminum alloy for magnetic disc superior in plating property

Publications (2)

Publication Number Publication Date
JPS61179842A JPS61179842A (en) 1986-08-12
JPH024672B2 true JPH024672B2 (en) 1990-01-30

Family

ID=12008267

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1975985A Granted JPS61179842A (en) 1985-02-04 1985-02-04 Aluminum alloy for magnetic disc superior in plating property

Country Status (1)

Country Link
JP (1) JPS61179842A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63143235A (en) * 1986-12-06 1988-06-15 Mitsubishi Alum Co Ltd Aluminum alloy for printing plate
JPH081699B2 (en) * 1988-10-28 1996-01-10 株式会社神戸製鋼所 Method for manufacturing an alloy mirror-finished substrate for magnetic disk

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58221255A (en) * 1982-05-13 1983-12-22 Nippon Light Metal Co Ltd Aluminum alloy material for laser mirror and its manufacture
JPS59193239A (en) * 1983-04-15 1984-11-01 Mitsubishi Alum Co Ltd Al-alloy for magnetic disk substrate
JPS60194040A (en) * 1984-02-18 1985-10-02 Kobe Steel Ltd Aluminum alloy substrate for disc having superior suitability to plating
JPS6191352A (en) * 1984-10-11 1986-05-09 Kobe Steel Ltd Method for annealing al alloy plate for substrate of magnetic disk hardly causing micro-waving

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58221255A (en) * 1982-05-13 1983-12-22 Nippon Light Metal Co Ltd Aluminum alloy material for laser mirror and its manufacture
JPS59193239A (en) * 1983-04-15 1984-11-01 Mitsubishi Alum Co Ltd Al-alloy for magnetic disk substrate
JPS60194040A (en) * 1984-02-18 1985-10-02 Kobe Steel Ltd Aluminum alloy substrate for disc having superior suitability to plating
JPS6191352A (en) * 1984-10-11 1986-05-09 Kobe Steel Ltd Method for annealing al alloy plate for substrate of magnetic disk hardly causing micro-waving

Also Published As

Publication number Publication date
JPS61179842A (en) 1986-08-12

Similar Documents

Publication Publication Date Title
CN111771241B (en) Aluminum alloy substrate for magnetic disk, method for producing same, and magnetic disk using same
JP6439064B1 (en) Magnetic disk, aluminum composite substrate for magnetic disk, and method for manufacturing the aluminum alloy substrate
JPS60194040A (en) Aluminum alloy substrate for disc having superior suitability to plating
US5244516A (en) Aluminum alloy plate for discs with improved platability and process for producing the same
KR0129525B1 (en) Aluminium alloy for magnetic disc substrate excellent platability
KR930007317B1 (en) Aluminium alloy for the substrate of magnetic disk
JPS6254053A (en) Aluminum alloy for magnetic disk excellent in plating suitability and contact strength of plating layer and minimal plating defects
JPS6327420B2 (en)
JPH024672B2 (en)
JP3710009B2 (en) Aluminum alloy plate for magnetic disk substrate and manufacturing method thereof
JPS6247450A (en) Aluminum alloy for magnetic disk combining superior plating suitability with minimized plating defects
JPH02205651A (en) Aluminum alloy for magnetic disk base
JPH02111839A (en) Aluminum alloy sheet for disk having superior plating suitability and its production
JPH01225739A (en) Aluminum alloy for magnetic disk substrate
JP2565741B2 (en) Aluminum alloy plate for disk excellent in grindability and plating property with a grindstone and method for producing the same
JPH025810B2 (en)
JPH0689431B2 (en) Aluminum alloy for magnetic disks with excellent Ni-P plating
JPH07195150A (en) Method for casting aluminum alloy for hdd
JPH0499143A (en) Aluminum alloy for magnetic disk base plate having good ni-p plating property
JPH07310135A (en) Aluminum alloy for magnetic disk substrate
JPH09263870A (en) Aluminum alloy for magnetic disk substrate, and magnetic disk substrate
JPH01225741A (en) Aluminum alloy for magnetic disk substrate
JPS62188743A (en) Aluminum alloy for magnetic disk substrate
JPS63319142A (en) Aluminum alloy plymetal for magnetic disk base
JP3830240B2 (en) Aluminum alloy substrate for magnetic disk