JPH0246642B2 - - Google Patents

Info

Publication number
JPH0246642B2
JPH0246642B2 JP60251126A JP25112685A JPH0246642B2 JP H0246642 B2 JPH0246642 B2 JP H0246642B2 JP 60251126 A JP60251126 A JP 60251126A JP 25112685 A JP25112685 A JP 25112685A JP H0246642 B2 JPH0246642 B2 JP H0246642B2
Authority
JP
Japan
Prior art keywords
oxygen
gas
ferromagnetic metal
metal powder
annealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60251126A
Other languages
Japanese (ja)
Other versions
JPS62112702A (en
Inventor
Masae Yoshima
Takayoshi Yoshizaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JNC Corp
Original Assignee
Chisso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chisso Corp filed Critical Chisso Corp
Priority to JP60251126A priority Critical patent/JPS62112702A/en
Publication of JPS62112702A publication Critical patent/JPS62112702A/en
Publication of JPH0246642B2 publication Critical patent/JPH0246642B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Paints Or Removers (AREA)
  • Powder Metallurgy (AREA)
  • Magnetic Record Carriers (AREA)
  • Hard Magnetic Materials (AREA)

Description

【発明の詳細な説明】 本発明は金属粉末の安定化処理に関するもの
で、特に鉄を主成分とする強磁性金属粉末の安定
化処理に関するものである。 近年磁気記録媒体の磁性材料として、鉄を主成
分とする針状強磁性金属粉末が注目され用いられ
るようになつた。この針状強磁性粉末はゲータイ
ト酸化鉄を加熱脱水、還元処理して得られ、従来
の酸化鉄系磁性材料と比較して保磁力、飽和磁化
に優れ高密度記録の達成が可能であるが、耐酸化
安定性が劣るという最大の欠点をもつ。 特に最近の記録機器のコンパクト化並びに長時
間記録化にともない磁気記録テープの特性の向
上、高出力、低ノズルが要求され、磁性金属は微
粒子化の傾向にある。 ところがこのような金属微粒子は比表面積が大
きく化学的に極めて活性であり、大気中に取り出
すと急激な酸化反応による発熱や発火が起こる。
そのため金属微粒子を液相中あるいは気相中にお
いて酸素含有ガスと接触せしめ、該金属微粒子表
面に酸化皮膜を形成することにより安定化処理す
る方法が従来より行なわれている。しかしながら
上記方法により処理した金属磁性粉末は大気中に
長く放置しておくと、磁気特性の劣化が起こり、
また密封容器中に長期間貯蔵後大気中に取り出す
と酸化皮膜を形成し安定化処理した筈の金属磁性
粉末が再活性化し発熱あるいは発火するという現
象が生じ上記安定化処理のみでは充分ではなく、
その取扱い及び貯蔵上問題を含む。 この原因については明らかではないが密封貯蔵
期間中における酸化皮膜の経時変化、例えば皮膜
層酸素の磁性粉粒子表面内での拡散、あるいは粒
子内部金属原子の皮膜表面への拡散などによる再
活性などが考えられる。 本発明者らはこれを改善し密封貯蔵したときの
再活性化を抑制し、大気中での貯蔵期間中におけ
る酸化皮膜の経時変化を防止した、酸化前の鉄を
主成分とする金属磁性粉末の磁気特性をさ程悪化
させない該金属磁性粉末の安定化方法を検討して
きた結果、以下の方法によりこれが解決できるこ
とを見い出し本発明に到達したものである。 本発明は有機溶媒中または気相中で鉄を主成分
とする金属磁性粉末を酸素含有ガスと接触せしめ
該金属粉末に酸化皮膜を形成させ一次安定化した
後に、気相中において不活性気体雰囲気下で加熱
焼鈍を行いしかる後に、再度有機溶媒中または気
相中において酸素含有ガスと接触させることによ
り前記鉄を主成分とする金属磁性粉末を安定化す
る方法である。 本発明の最大の特徴は金属磁性粉末の酸化皮膜
の経時変化、密封貯蔵期間中における再活性化を
防止するところにある。 再活性化の原因については明らかではないが、
例えば酸化皮膜の不均一性による皮膜層酸素の磁
性粉粒子表面層での拡散、または粒子内部の金属
原子の皮膜表面への拡散などが考えられる。 このような原子の拡散は室温においては非常に
ゆつくり進行するものと考えられる。本発明にお
いては加熱焼鈍することによつて酸化皮膜の経時
変化を促進し、再活性化させた後に有機溶媒中ま
たは気相中において酸素含有ガスと接触せしめて
均一で緻密な酸化皮膜を形成させ、経時変化の少
ない、長期密封貯蔵後の再活性化もなく空気中に
取り出しても発熱、発火しない安定な金属磁性粉
末を提供するところに特徴がある。 本発明の方法は、磁気記録媒体として用いる全
ての鉄を主成分とする強磁性金属粉末に適用でき
る。その鉄を主成分とする強磁性金属粉末の例と
しては、オキシ水酸化鉄、ヘマタイト、マグヘマ
イト、マグネタイト等や各種合金タイプの酸化鉄
を還元して得られる強磁性金属粉末を挙げること
ができる。 前記一次安定化酸化皮膜形成処理において有機
溶媒中で酸素含有ガスと強磁性金属粉末を接触さ
せる際、強磁性金属粉末は、成形されたペレツト
状でも有機溶媒中で粗粉砕したスラリー状でもよ
いが、ペレツト状だと造粒物の内部と表面で粒子
の酸化皮膜厚が不均一になり、その後の加熱焼鈍
処理に長時間を要するため好ましくはスラリー状
とした方が良い。一次安定化処理を気相中で行う
場合は取扱いの都合上磁性粒子を成形造粒したペ
レツト状のものが好ましい。 加熱焼鈍の温度は80℃〜600℃である必要があ
る。好ましくは90℃〜200℃が良い。80℃以下だ
と加熱焼鈍の効果を得るのに長時間を要し、600
℃以上だと粒子の焼結や磁性粒子内部と酸化皮膜
の膨張率の違いによる酸化皮膜の破壊などが生じ
保磁力や角形比の低下をひき起こす。 加熱焼鈍時間は温度とのかね合いで決まるもの
であるが、0.5〜24時間である必要がある。より
好ましくは1〜5時間が良い。0.5時間以下だと
加熱焼鈍の効果が殆んど得られず、24時間以上だ
とそれ以上の効果が得られず経済的ではない。 加熱焼鈍前後の処理において使用しうる有機溶
媒としては前記強磁性粉末に対して不活性なもの
が好ましく、ベンゼン、トルエン、キシレン、ヘ
キサン、ヘプタン、シクロヘキサン等の炭化水素
類、アセトン、メチルエチルケトン、メチルイソ
ブチルケトン、シクロヘキサノン等のケトン類、
酢酸エチル、酢酸ブチル、ジブチルフタレート等
のエステル類、メタノール、エタノール、n−ブ
タノール等のアルコール類、及びパーフルオルブ
チルハイドロフラン、パーフルオルキシレン等の
フツソ系溶媒類等を例示することができる。その
使用量は前記強磁性金属粉末の2重量倍以上が好
ましい。 本発明における加熱焼鈍前後の酸化処理に使用
し得る酸素含有ガスとしては酸素もしくは空気を
N2、He、Ar、Neなどの不活性気体の内の少な
くとも一種で希釈して酸素濃度を5容量%以下と
したものが使用されるが通常は空気をN2で希釈
して酸素濃度を5容量%以下とした混合気体を用
いるのが安価で実用的である。前記加熱焼鈍前後
の酸素含有ガスとの接触処理時の温度は10〜90℃
が好ましい。前記加熱焼鈍前の酸素含有ガスとの
接触処理時間は5〜24時間が好ましい。前記加熱
焼鈍後の酸素含有ガスとの接触時間は1〜12時間
が好ましい。 前記加熱焼鈍時に使用できる不活性気体として
は前記不活性気体のうちいづれでもよいがN2
使うのが工業的に安価で実用的である。 本発明における効果の原因については必ずしも
明らかではないが、加熱焼鈍を行うことにより、
酸化皮膜の不均一に帰因する皮膜層酸素の粒子表
面内での拡散や粒子内部の金属原子の皮膜表面へ
の拡散を促進しその後再び表面酸化することによ
り、酸化皮膜の均一性や結晶性が向上し、均一で
緻密な酸化皮膜が形成され、大気中においても保
磁力や飽和磁化の劣化が少なく、長期密封貯蔵後
大気中に取り出しても発熱や発火しない安定な強
磁性金属粉末が得られる。 以下に実施例を示すが本発明はこれらに限定さ
れるものではない。 実施例 1 保磁力(Hc)1501Oe、飽和磁化(σs)
150emu/g、角形比(Rs)0.513の磁気特性を有
する鉄を主成分とする強磁性金属粉末1.5Kgをト
ルエン30Kg中にてスラリー状とし撹拌装置、加熱
装置及び通気装置を付けた反応容器に入れ
130rpmで撹拌しながらこれに予熱器を経て空気
をN2で希釈した酸素5容量%を含有する50℃の
ガスを90/minで下部より吹込み50℃で12時間
反応を行つた。その後トルエンを過除去し、予
熱器を経て150℃のN2ガスを60/minで下部よ
り吹込み乾燥後ひき続き150℃で3時間加熱焼鈍
を行つた。冷却後トルエンを30Kg加えスラリーと
し130rpmで撹拌しながら予熱器を経て空気をN2
で希釈した酸素5%を含有する50℃のガスを90
/minで下部より吹込み50℃で2時間反応を行
つた。この磁性粉末の磁気特性はHc:1502Oe、
σs:126emu/g、Rs:0.510であつた。また耐酸
化安定性は空気中60℃、90%RHの条件下で3日
間放置後のσsの低下率Δσs〔(安定化後のσs−安定
性テスト後のσs)×100/(安定化後のσs)〕で評
価しその値は5.3%であつた。また開封テスト
(前記安定化処理後の磁性粉末1Kgを乾燥後密封
容器に入れ当初の雰囲気を空気とし35℃で10日間
貯蔵後開封した際の上昇温度又は発火を調べる。)
は開封後2時間で1℃であつた。 実施例 2 実施例1と同じ磁気特性を有する強磁性金属粉
末を用い、加熱焼鈍条件を150℃、20時間とした
以外は実施例1と同様にして処理を行つた。その
磁気特性等を表1に示す。 実施例 3 Hc1510Oe、σs149emu/g、Rs0.510の磁気特
性を有する強磁性金属粉末を用い、加熱焼鈍条件
を80℃、24時間とした以外は実施例1と同様にし
て処理を行つた。その磁気特性等を表1に示す。 比較例 1 実施例3と同じ磁気特性を有する強磁性金属粉
末を用い加熱焼鈍条件を300℃、0.4時間とした以
外は実施例1と同様にして処理を行つた。その磁
気特性等を表1に示す。 比較例 2 Hc1507Oe、σs153、Rs0.509の磁気特性を有す
る強磁性金属粉末を用い加熱焼鈍条件を650℃、
1時間とした以外は実施例1と同様な処理を行つ
た。その磁気特性等を表1に示す。 表1より各処理を行なつた後において前記強磁
性金属粉末の保磁力及び角形比の低下が著しいこ
とが明らかである。 比較例 3 実施例1と同じ磁気特性を有する強磁性金属粉
末1.5Kgをトルエン30Kg中にてスラリー状とし実
施例1と同様な反応容器に入れ130rpmで撹拌し
ながらこれに予熱器を経て空気をN2で希釈した
酸素5%を含有する50℃のガスを90/minで下
部より吹込み50℃で12時間反応を行つた後トルエ
ンを過除去しその後乾燥した。 この磁性粉末の磁気特性はHc1500Oe、
σs130emu/g、Rs0.509であつた。耐酸化安定性
はΔσs24%であつた。開封テストの結果は開封後
1〜2分で赤熱し酸化暴走反応に至つた。 比較例 4 実施例3と同じ磁気特性を有する強磁性金属粉
末を用い反応温度を90℃とした以外は比較例3と
同様な処理を行つた。その磁気特性等を表1に示
す。 比較例 5 実施例3と同じ磁気特性を有する強磁性金属粉
末を用い反応時間を48時間とした以外は比較例4
と同様な処理を行つた。その磁気特性等を表1に
示す。 比較例 6 加熱焼鈍までを実施例1と同様にして磁性粉末
を得た。この粉末について開封テストを行なうべ
く乾燥して空気中に取り出したところ、直ちに発
火した。 【表】
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a stabilization treatment for metal powder, and particularly to a stabilization treatment for a ferromagnetic metal powder whose main component is iron. In recent years, acicular ferromagnetic metal powder containing iron as a main component has been attracting attention and being used as a magnetic material for magnetic recording media. This acicular ferromagnetic powder is obtained by heating, dehydrating, and reducing goethite iron oxide, and has superior coercive force and saturation magnetization compared to conventional iron oxide magnetic materials, making it possible to achieve high-density recording. The biggest drawback is poor oxidation stability. In particular, as recording equipment has recently become more compact and recorded for longer periods of time, magnetic recording tapes are required to have improved characteristics, higher output, and lower nozzles, and there is a trend toward finer particles of magnetic metals. However, such fine metal particles have a large specific surface area and are extremely chemically active, and when taken out into the atmosphere, heat generation and ignition occur due to rapid oxidation reactions.
Therefore, a method has been conventionally used in which fine metal particles are brought into contact with an oxygen-containing gas in a liquid phase or a gas phase to form an oxide film on the surface of the fine metal particles, thereby performing a stabilization treatment. However, if the metal magnetic powder treated by the above method is left in the atmosphere for a long time, its magnetic properties will deteriorate.
Furthermore, when taken out into the atmosphere after being stored in a sealed container for a long period of time, the metal magnetic powder, which was supposed to have been stabilized by forming an oxide film, becomes reactivated and generates heat or ignites, and the above stabilization treatment alone is not sufficient.
including handling and storage issues. The cause of this is not clear, but it may be due to changes in the oxide film over time during sealed storage, such as diffusion of oxygen in the film layer within the surface of the magnetic powder particles, or reactivation due to diffusion of metal atoms inside the particles to the surface of the film. Conceivable. The present inventors have improved this by suppressing reactivation during sealed storage and preventing the oxide film from changing over time during storage in the atmosphere. As a result of research into a method for stabilizing the metal magnetic powder that does not significantly deteriorate the magnetic properties of the metal magnetic powder, it was discovered that this problem could be solved by the following method, and the present invention was achieved. In the present invention, a metal magnetic powder containing iron as a main component is brought into contact with an oxygen-containing gas in an organic solvent or in a gas phase to form an oxide film on the metal powder for primary stabilization, and then in an inert gas atmosphere in a gas phase. In this method, the metal magnetic powder containing iron as a main component is stabilized by heating and annealing the powder and then bringing it into contact with an oxygen-containing gas again in an organic solvent or gas phase. The most important feature of the present invention is that the oxide film of the metal magnetic powder is prevented from changing over time and from being reactivated during sealed storage. Although the cause of reactivation is not clear,
For example, diffusion of film layer oxygen in the surface layer of the magnetic powder particles due to non-uniformity of the oxide film, or diffusion of metal atoms inside the particles to the film surface, etc., can be considered. It is thought that such atomic diffusion proceeds very slowly at room temperature. In the present invention, the aging of the oxide film is promoted by heating and annealing, and after reactivation, it is brought into contact with an oxygen-containing gas in an organic solvent or gas phase to form a uniform and dense oxide film. It is characterized by providing a stable metal magnetic powder that has little change over time, does not undergo reactivation after long-term sealed storage, and does not generate heat or ignite even when taken out into the air. The method of the present invention can be applied to all ferromagnetic metal powders containing iron as a main component used as magnetic recording media. Examples of the ferromagnetic metal powder containing iron as a main component include iron oxyhydroxide, hematite, maghemite, magnetite, etc., and ferromagnetic metal powder obtained by reducing various alloy types of iron oxide. When the oxygen-containing gas and the ferromagnetic metal powder are brought into contact with each other in an organic solvent in the primary stabilizing oxide film forming treatment, the ferromagnetic metal powder may be in the form of molded pellets or in the form of a slurry coarsely ground in the organic solvent. If the particles are in the form of pellets, the thickness of the oxide film on the particles will be uneven between the inside and the surface of the granules, and the subsequent heat annealing treatment will take a long time, so it is preferably in the form of a slurry. When the primary stabilization treatment is carried out in the gas phase, it is preferable to use pellet-shaped particles obtained by molding and granulating magnetic particles for convenience of handling. The temperature of heating annealing needs to be 80°C to 600°C. Preferably the temperature is 90°C to 200°C. If it is below 80℃, it will take a long time to obtain the effect of heat annealing, and
If the temperature is above ℃, sintering of the particles and destruction of the oxide film due to the difference in expansion coefficient between the inside of the magnetic particle and the oxide film occur, resulting in a decrease in coercive force and squareness ratio. The heating annealing time is determined depending on the temperature, but it needs to be 0.5 to 24 hours. More preferably 1 to 5 hours. If it is less than 0.5 hours, the effect of heat annealing will hardly be obtained, and if it is more than 24 hours, no further effect will be obtained and it is not economical. The organic solvent that can be used in the treatments before and after heat annealing is preferably one that is inert to the ferromagnetic powder, and includes hydrocarbons such as benzene, toluene, xylene, hexane, heptane, and cyclohexane, acetone, methyl ethyl ketone, and methyl isobutyl. ketones, ketones such as cyclohexanone,
Examples include esters such as ethyl acetate, butyl acetate, and dibutyl phthalate, alcohols such as methanol, ethanol, and n-butanol, and fluorocarbon solvents such as perfluorobutylhydrofuran and perfluoroxylene. . The amount used is preferably at least twice the weight of the ferromagnetic metal powder. Oxygen or air can be used as the oxygen-containing gas that can be used for the oxidation treatment before and after heat annealing in the present invention.
Air is diluted with at least one inert gas such as N 2 , He, Ar, or Ne to reduce the oxygen concentration to 5% by volume or less, but usually air is diluted with N 2 to reduce the oxygen concentration. It is inexpensive and practical to use a gas mixture containing 5% by volume or less. The temperature during the contact treatment with oxygen-containing gas before and after the heat annealing is 10 to 90°C.
is preferred. The contact treatment time with the oxygen-containing gas before the heat annealing is preferably 5 to 24 hours. The contact time with the oxygen-containing gas after the heat annealing is preferably 1 to 12 hours. As the inert gas that can be used during the heat annealing, any of the above inert gases may be used, but it is industrially inexpensive and practical to use N2 . Although the cause of the effect in the present invention is not necessarily clear, by performing heat annealing,
The uniformity and crystallinity of the oxide film are improved by promoting the diffusion of oxygen within the particle surface and the diffusion of metal atoms inside the particle to the film surface, and then oxidizing the surface again. The result is a stable ferromagnetic metal powder that has improved ferromagnetic properties, forms a uniform and dense oxide film, has little deterioration in coercive force and saturation magnetization even in the atmosphere, and does not generate heat or ignite even when taken out into the atmosphere after long-term sealed storage. It will be done. Examples are shown below, but the present invention is not limited thereto. Example 1 Coercive force (Hc) 1501Oe, saturation magnetization (σs)
1.5 kg of iron-based ferromagnetic metal powder with magnetic properties of 150 emu/g and a squareness ratio (Rs) of 0.513 was slurried in 30 kg of toluene and placed in a reaction vessel equipped with a stirring device, heating device, and aeration device. Get in
While stirring at 130 rpm, a 50°C gas containing 5% by volume of oxygen, which is air diluted with N 2 , was blown from the bottom at 90/min through a preheater, and the reaction was carried out at 50°C for 12 hours. Thereafter, toluene was excessively removed, and N 2 gas at 150°C was blown from the bottom at 60/min through a preheater to dry it, followed by annealing at 150°C for 3 hours. After cooling, add 30Kg of toluene to make a slurry. While stirring at 130rpm, air is passed through a preheater to N2.
90°C gas containing 5% oxygen diluted with
/min from the bottom and the reaction was carried out at 50°C for 2 hours. The magnetic properties of this magnetic powder are Hc: 1502Oe,
σs: 126emu/g, Rs: 0.510. In addition, the oxidation resistance stability is determined by the rate of decrease in σs after being left in the air for 3 days at 60℃ and 90% RH [(σs after stabilization - σs after stability test) × 100/(after stabilization The value was 5.3%. Also, an opening test (1 kg of the magnetic powder after the above stabilization treatment is dried, placed in a sealed container, the initial atmosphere is air, and stored at 35°C for 10 days, and then opened to check for temperature rise or ignition.)
The temperature was 1°C 2 hours after opening. Example 2 The treatment was carried out in the same manner as in Example 1 except that ferromagnetic metal powder having the same magnetic properties as in Example 1 was used and the heat annealing conditions were 150° C. for 20 hours. Its magnetic properties etc. are shown in Table 1. Example 3 A treatment was carried out in the same manner as in Example 1 except that ferromagnetic metal powder having magnetic properties of Hc1510Oe, σs149emu/g, and Rs0.510 was used, and the heat annealing conditions were 80° C. for 24 hours. Its magnetic properties etc. are shown in Table 1. Comparative Example 1 The treatment was carried out in the same manner as in Example 1 except that ferromagnetic metal powder having the same magnetic properties as in Example 3 was used and the heating annealing conditions were 300°C and 0.4 hours. Its magnetic properties etc. are shown in Table 1. Comparative Example 2 Using ferromagnetic metal powder with magnetic properties of Hc1507Oe, σs153, Rs0.509, heating annealing conditions were 650℃,
The same treatment as in Example 1 was performed except that the heating time was 1 hour. Its magnetic properties etc. are shown in Table 1. It is clear from Table 1 that after each treatment, the coercive force and squareness ratio of the ferromagnetic metal powder significantly decreased. Comparative Example 3 1.5 kg of ferromagnetic metal powder having the same magnetic properties as in Example 1 was made into a slurry in 30 kg of toluene, placed in a reaction vessel similar to Example 1, and while stirring at 130 rpm, air was bubbled through the preheater. A gas at 50° C. containing 5% oxygen diluted with N 2 was blown from the bottom at a rate of 90/min, and the reaction was carried out at 50° C. for 12 hours. After that, toluene was excessively removed, and the mixture was dried. The magnetic properties of this magnetic powder are Hc1500Oe,
It was σs130emu/g and Rs0.509. The oxidation resistance stability was Δσs24%. The result of the opening test was that the product became red hot within 1 to 2 minutes after opening, leading to an oxidation runaway reaction. Comparative Example 4 The same treatment as in Comparative Example 3 was carried out except that ferromagnetic metal powder having the same magnetic properties as in Example 3 was used and the reaction temperature was 90°C. Its magnetic properties etc. are shown in Table 1. Comparative Example 5 Comparative Example 4 except that ferromagnetic metal powder having the same magnetic properties as Example 3 was used and the reaction time was 48 hours.
The same process was performed. Its magnetic properties etc. are shown in Table 1. Comparative Example 6 Magnetic powder was obtained in the same manner as in Example 1 up to heating annealing. When this powder was dried and taken out into the air for an open test, it immediately caught fire. 【table】

Claims (1)

【特許請求の範囲】 1 有機溶媒中において酸素濃度5容量%以下の
酸素含有ガスと接触させ表層部を酸化させた鉄を
主成分とする強磁性金属粉末を、気相中で不活性
気体雰囲気において80〜600℃で0.5〜24時間加熱
焼鈍後、有機溶媒中において酸素濃度5容量%以
下の酸素含有ガスと接触させることを特徴とする
酸化皮膜を有する強磁性金属粉末の製造法。 2 前記加熱焼鈍温度が90℃〜200℃であること
を特徴とする特許請求の範囲第1項記載の方法。 3 前記加熱焼鈍時間が1〜5時間であることを
特徴とする特許請求の範囲第1項又は2項に記載
の方法。 4 前記加熱焼鈍前後の処理における前記有機溶
媒の量が前記鉄を主成分とする強磁性金属粉末の
2重量倍以上とすることを特徴とする特許請求の
範囲第1項ないし第3項のいずれかに記載の方
法。 5 前記有機溶媒として強磁性金属粉末に対して
不活性な有機溶媒を用いることを特徴とする特許
請求の範囲第1項ないし第4項のいずれかに記載
の方法。 6 前記加熱焼鈍前後の前記酸素含有ガスとして
空気もしくは酸素ガスに窒素、ヘリウム、アルゴ
ン及びネオンのうち少なくとも一種からなる不活
性気体を希釈ガスとして混合したものを用いるこ
とを特徴とする特許請求の範囲第1項ないし第5
項のいずれかに記載の方法。 7 前記加熱焼鈍に用いる不活性気体として窒
素、ヘリウム、アルゴン又はネオンを用いる特許
請求の範囲第1項ないし第6項のいずれかに記載
の方法。
[Scope of Claims] 1. Ferromagnetic metal powder mainly composed of iron, which has been brought into contact with an oxygen-containing gas having an oxygen concentration of 5% by volume or less in an organic solvent to oxidize the surface layer, is heated in a gas phase in an inert gas atmosphere. A method for producing a ferromagnetic metal powder having an oxide film, which comprises heating and annealing the powder at 80 to 600°C for 0.5 to 24 hours, and then contacting the powder with an oxygen-containing gas having an oxygen concentration of 5% by volume or less in an organic solvent. 2. The method according to claim 1, wherein the heating annealing temperature is 90°C to 200°C. 3. The method according to claim 1 or 2, wherein the heating annealing time is 1 to 5 hours. 4. Any one of claims 1 to 3, characterized in that the amount of the organic solvent in the treatments before and after the heating annealing is at least twice the weight of the ferromagnetic metal powder containing iron as a main component. Method described in Crab. 5. The method according to any one of claims 1 to 4, characterized in that an organic solvent inert to the ferromagnetic metal powder is used as the organic solvent. 6. Claims characterized in that the oxygen-containing gas before and after the heating annealing is a mixture of air or oxygen gas with an inert gas consisting of at least one of nitrogen, helium, argon, and neon as a diluent gas. Paragraphs 1 to 5
The method described in any of the paragraphs. 7. The method according to any one of claims 1 to 6, wherein nitrogen, helium, argon, or neon is used as the inert gas for the heat annealing.
JP60251126A 1985-11-09 1985-11-09 Production of ferromagnetic metallic powder having oxide film Granted JPS62112702A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60251126A JPS62112702A (en) 1985-11-09 1985-11-09 Production of ferromagnetic metallic powder having oxide film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60251126A JPS62112702A (en) 1985-11-09 1985-11-09 Production of ferromagnetic metallic powder having oxide film

Publications (2)

Publication Number Publication Date
JPS62112702A JPS62112702A (en) 1987-05-23
JPH0246642B2 true JPH0246642B2 (en) 1990-10-16

Family

ID=17218054

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60251126A Granted JPS62112702A (en) 1985-11-09 1985-11-09 Production of ferromagnetic metallic powder having oxide film

Country Status (1)

Country Link
JP (1) JPS62112702A (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1988000387A1 (en) * 1986-06-27 1988-01-14 Namiki Precision Jewel Co., Ltd. Process for producing permanent magnets
JPH0620008B2 (en) * 1987-08-24 1994-03-16 チッソ株式会社 Method for producing ferromagnetic metal powder having oxide film
US5244510A (en) * 1989-06-13 1993-09-14 Yakov Bogatin Magnetic materials and process for producing the same
US5129964A (en) * 1989-09-06 1992-07-14 Sps Technologies, Inc. Process for making nd-b-fe type magnets utilizing a hydrogen and oxygen treatment
JP2739600B2 (en) * 1989-10-03 1998-04-15 富士写真フイルム株式会社 Method of processing ferromagnetic metal powder and method of manufacturing magnetic recording medium
JPH03169001A (en) * 1989-11-29 1991-07-22 Nippon Steel Corp Dry-process stabilization of metal powder
US5735969A (en) * 1996-03-07 1998-04-07 Imation Corp. Method of producing acicular magnetic alloy particles
JP5170410B2 (en) * 2008-04-15 2013-03-27 戸田工業株式会社 Method for producing metal magnetic particle powder for magnetic recording, and magnetic recording medium

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5611724A (en) * 1979-07-07 1981-02-05 Kunio Narita *matsutake* *mushroom* cultivation method
JPS5852522A (en) * 1981-08-12 1983-03-28 ユニリ−バ−・ナ−ムロ−ゼ・ベンノ−トシヤ−プ Weighing selecting device for article, particularly, fish
JPS61154112A (en) * 1984-12-27 1986-07-12 Mitsui Toatsu Chem Inc Stabilization method of ferromagnetic metallic particulate

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5611724A (en) * 1979-07-07 1981-02-05 Kunio Narita *matsutake* *mushroom* cultivation method
JPS5852522A (en) * 1981-08-12 1983-03-28 ユニリ−バ−・ナ−ムロ−ゼ・ベンノ−トシヤ−プ Weighing selecting device for article, particularly, fish
JPS61154112A (en) * 1984-12-27 1986-07-12 Mitsui Toatsu Chem Inc Stabilization method of ferromagnetic metallic particulate

Also Published As

Publication number Publication date
JPS62112702A (en) 1987-05-23

Similar Documents

Publication Publication Date Title
US3702270A (en) Method of making a magnetic powder
US4608093A (en) Ferromagnetic particles with stable magnetic characteristics and method of preparing same
JPH0246642B2 (en)
JPH0225402B2 (en)
US4909865A (en) Process for producing a ferromagnetic metal powder having an oxidized coating
US4371567A (en) High coercivity, cobalt-doped ferrimagnetic iron oxide particulates
JP2731603B2 (en) Stabilization method of metal magnetic powder
GB2058845A (en) Method of producing fine metal particles
US7166172B2 (en) Method of making ferromagnetic iron alloy powder for magnetic recording medium
JPS6114642B2 (en)
JPH01172501A (en) Manufacture of metal magnetic powder
JPH0743824B2 (en) Magnetic recording medium and manufacturing method thereof
JPH08153613A (en) Stabilizing method for metal magnetic powder
JP2898679B2 (en) Stabilization method for metal with active surface
JPS6136044B2 (en)
JPS6132259B2 (en)
JPS62197324A (en) Production of feromagnetic iron oxide powder
JPS6130001B2 (en)
JPS63239802A (en) Manufacture of magnetic iron powder
JPH05234734A (en) Method for stabilizing metal magnetic powder
JPS6187302A (en) Manufacture of magnetic recording medium
JPH03253505A (en) Production of ferromagnetic metal powder
JPH0312027A (en) Magnetic recording medium
JPH0834145B2 (en) Method for producing metal magnetic powder for magnetic recording
JPH11130439A (en) Fusiform goethite particle powder and its production, fusiform hematite particle powder and its production and fusiform metallic magnetic particle powder consisting essentially of iron and its production