JPH0246406A - Optical waveguide and its production - Google Patents

Optical waveguide and its production

Info

Publication number
JPH0246406A
JPH0246406A JP19650088A JP19650088A JPH0246406A JP H0246406 A JPH0246406 A JP H0246406A JP 19650088 A JP19650088 A JP 19650088A JP 19650088 A JP19650088 A JP 19650088A JP H0246406 A JPH0246406 A JP H0246406A
Authority
JP
Japan
Prior art keywords
waveguide
layer
mask
waveguide layer
sio2
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19650088A
Other languages
Japanese (ja)
Inventor
Koji Yamazaki
康二 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP19650088A priority Critical patent/JPH0246406A/en
Publication of JPH0246406A publication Critical patent/JPH0246406A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To execute confinement of light effectively by using an optical waveguide having a ridge type waveguide layer and a waveguide covered completely with a thin dielectric film. CONSTITUTION:A ZnS layer functioning as a lower clad layer is formed on a GaAs substrate by an epitaxial growth in accordance with MOCVD method, then SiO2 is deposited as mask 5 by a thermal CVD method, etc. Then, the SiO2 mask is patterned by a photolithographic technique. In this case, the SiO2 film at a part for forming a waveguide layer is removed by etching. Then, a waveguide layer comprising ZnSe is formed by a selective epitaxial growth method using the patterned SiO2 as mask. Org. compds. of Zn and Se are used as raw materials, and the selective epitaxial growth is proceeded by regulating a growth pressure to <=100Torr, a growth temp. to >=400 deg.C and <=700 deg.C, and a molar ratio of a VI group raw material to a II group raw material to be fed to <=6, by a reduced pressure MOCVD method, etc. After forming ZnSe which serves as a waveguide layer, the SiO2 film is removed with an HF type etchant. Thus, an SiO2 film is formed so as to cover the whole ZnSe surface.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、光集積回路或いは光電子集積回路等の構成要
素として用いられるII −VI族化合物半導体の光導
波路に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an optical waveguide made of a II-VI compound semiconductor used as a component of an optical integrated circuit or an optoelectronic integrated circuit.

[従来の技術] 従来報告されているII〜VI族化合物半導体の光導波
路は、トシャ・ヨコガワ、アプライド・フィジックス・
レター(Toshiya Yokogawa、Appl
Phys、 Leff) Vol、 52、No、2、
F1988) 120に記載されている構造のものであ
る。第5図は該光導波路の概略図であり、6はGaAS
基板、7はZnSより成るクラッド層、8はZn5e−
ZnS超格子より成る導波路層、9はSiO2のストラ
イブである。この光導波路はS i 02のストライブ
幅が6μm、導波路層の厚さが04〜】24I1mの時
、波長が0.63311mの光に対してシングルモード
となり、又伝搬損失はo、71dB/cmであると報告
されている。
[Prior Art] The conventionally reported optical waveguides of group II to VI compound semiconductors are those of Tosha Yokogawa, Applied Physics;
Letter (Toshiya Yokogawa, Appl
Phys, Leff) Vol. 52, No. 2,
F1988) 120. FIG. 5 is a schematic diagram of the optical waveguide, and 6 is a GaAS
Substrate, 7 is a cladding layer made of ZnS, 8 is Zn5e-
The waveguide layer 9 is made of a ZnS superlattice, and 9 is a stripe of SiO2. This optical waveguide becomes a single mode for light with a wavelength of 0.63311 m when the stripe width of S i 02 is 6 μm and the thickness of the waveguide layer is 04~]24I1 m, and the propagation loss is o, 71 dB/ It is reported that cm.

〔発明が解決しようとする課題) しかし、前述の従来技術の光導波路は導波路層上にスト
ライブ状のSiO□を形成することにより、界面と平行
な方向の実効的な屈折率段差をつけている為、この方向
における導波路領域とクラッド域との屈折率の段差が小
さく光の閉じ込めが有効に行われないという課題を有す
る。そこで本発明はこの様な課題を解決するもので、そ
の目的とするところは光を有効に閉し込める構造のII
VI族化合物半導体の光導波路及びその製造方法を提供
するところにある。
[Problems to be Solved by the Invention] However, the optical waveguide of the prior art described above creates an effective refractive index step in the direction parallel to the interface by forming striped SiO□ on the waveguide layer. Therefore, there is a problem that the difference in refractive index between the waveguide region and the cladding region in this direction is small and light cannot be effectively confined. Therefore, the present invention is intended to solve such problems, and its purpose is to create a II structure that can effectively confine light.
An object of the present invention is to provide a group VI compound semiconductor optical waveguide and a method for manufacturing the same.

[課題を解決するための手段1 本発明の光導波路は、基板上にII −VI族化合物半
導体より成るクラッド層と該クラッド層よりも大きな屈
折率を有するIT−VI族化合物半導体より成る導波路
層を積層した構造を有し、かつ少なくとも導波路層がリ
ッジ型てあり、がっ導波路層は誘電体薄膜により完全に
覆われていることを特徴とする。さらに、該光導波路の
第1の製造方法は、基板上にクラッド層を形成する工程
と、該クラッド層上にマスクを形成する工程と、該マス
クを用いて導波路層をクララ1へ層上の一部に選択的に
形成する工程と、マスクを除去する工程と、該導波路層
の全面に誘電体薄月莫を形成する工程を含むことを特徴
とする。又第2の製造方法は、基板上にマスクを形成す
る工程と、該マスクを用いてクラッド層と導波路層を基
板上の一部に選択的に形成する工程と、マスクを除去す
る工程と、該導波層の全面に誘電体薄膜を形成する工程
を含もことを特徴とする。
[Means for Solving the Problems 1] The optical waveguide of the present invention includes a cladding layer made of a II-VI group compound semiconductor on a substrate and a waveguide made of an IT-VI group compound semiconductor having a larger refractive index than the cladding layer. It has a structure in which layers are laminated, and at least the waveguide layer is ridge-shaped, and the waveguide layer is completely covered with a dielectric thin film. Further, the first method for manufacturing the optical waveguide includes a step of forming a cladding layer on the substrate, a step of forming a mask on the cladding layer, and a layering of the waveguide layer onto the Clara 1 using the mask. , a step of removing the mask, and a step of forming a thin dielectric layer over the entire surface of the waveguide layer. The second manufacturing method includes a step of forming a mask on a substrate, a step of selectively forming a cladding layer and a waveguide layer on a part of the substrate using the mask, and a step of removing the mask. The method is characterized in that it includes a step of forming a dielectric thin film on the entire surface of the waveguide layer.

[実施例11 第1図は本発明の実施例におLdるII −VI族化合
物半導体の光導波路の概略断面図である。1はGaAs
基板、2はZnSより成るクラッド層、3はZn5eよ
り成る導波路層、4は5102膜である。この構造にお
いて、界面と垂直な方向は導波路層の屈折率が2.34
に対して下部のクラッド層の屈折率が2.31及び上部
は屈折率が146のSiO3膜である為屈折率の段差は
十分に大きく、又界面と平行な方向においても屈折率が
234の導波路層を屈折率が146のS10□膜で挟ん
だ構造の為屈折率の段差は十分に大きい。この様に導波
路層とその周囲との屈折率の段差が大きい為、導波路層
への光の閉し込めが有効に行われる。0.6328+1
mの波長の光を用いて該光導波路の伝搬損失を測定した
ところ05 dB/cm以下と低損失なものであった。
[Example 11] FIG. 1 is a schematic cross-sectional view of an optical waveguide made of a II-VI group compound semiconductor according to an example of the present invention. 1 is GaAs
2 is a cladding layer made of ZnS, 3 is a waveguide layer made of Zn5e, and 4 is a 5102 film. In this structure, the refractive index of the waveguide layer is 2.34 in the direction perpendicular to the interface.
On the other hand, since the lower cladding layer has a refractive index of 2.31 and the upper part is a SiO3 film with a refractive index of 146, the difference in refractive index is sufficiently large. Since the waveguide layer is sandwiched between S10□ films having a refractive index of 146, the difference in refractive index is sufficiently large. Since the difference in refractive index between the waveguide layer and its surroundings is large in this way, light is effectively confined in the waveguide layer. 0.6328+1
When the propagation loss of the optical waveguide was measured using light with a wavelength of m, it was found to be as low as 05 dB/cm or less.

これは、前述した様に光が導波路層内に有効に閉し込め
られている為、GaAs基板中への光のしみ出しが小さ
(GaAs基板内での吸収が小さいことを示す。又、後
述する様に光導波路の製造工程において導波路層のエツ
チングをする必要がない為、導波路層の表面が平坦であ
り散乱損が小さいことも低損失の一因である。ZnS及
びZn5e等のIIVI族化合物半導体は、基板のGa
Asと同し閃亜鉛鉱型の結晶構造である為GaAs基板
上に容易にエピタキシャル成長できる。又、発光素子及
び受光素子等の光デバイスや電子デバイスもGaAs基
板上に作製することができる為、本発明の光導波路はこ
れらのデバイスを集積化した光集積回路或いは光電子集
積回路等に容易に応用することができる。又基板として
GaAs以外にもInP等の1ll−V族生導体基板も
用いることができる。又導波路層及びクララ)へ層の材
料として表1に示した様なTI −VI族化合物半導体
を用いることもてきる。
This is because, as mentioned above, the light is effectively confined within the waveguide layer, so the seepage of light into the GaAs substrate is small (indicating that absorption within the GaAs substrate is small. As will be described later, it is not necessary to etch the waveguide layer in the manufacturing process of the optical waveguide, so the surface of the waveguide layer is flat and the scattering loss is small, which is one of the reasons for the low loss. Group III compound semiconductors have a Ga substrate.
Since it has the same zincblende crystal structure as As, it can be easily epitaxially grown on a GaAs substrate. Furthermore, since optical devices and electronic devices such as light emitting elements and light receiving elements can be fabricated on GaAs substrates, the optical waveguide of the present invention can be easily integrated into optical integrated circuits or optoelectronic integrated circuits that integrate these devices. It can be applied. In addition to GaAs, a 111-V group raw conductor substrate such as InP can also be used as the substrate. Further, TI-VI group compound semiconductors as shown in Table 1 can be used as materials for the waveguide layer and the Clara layer.

表] 又本発明の光導波路においてはZn5eの導波路層は5
102膜に完全に覆われて保護されてぃる為、外界の影
響を受けることなく長期間安定な動作が得られ信頼性が
高い。導波路層の保護膜としてSiO□以外にもSi3
N4又はAl2O3等の他の誘電体薄膜を用いることが
できる。
Table] Furthermore, in the optical waveguide of the present invention, the Zn5e waveguide layer is 5
Since it is completely covered and protected by the 102 film, it can operate stably for a long period of time without being affected by the outside world, and is highly reliable. In addition to SiO□, Si3 can be used as a protective film for the waveguide layer.
Other dielectric thin films such as N4 or Al2O3 can be used.

以下に本発明の光導波路の製造方法を第3図(a)〜(
d)を用いて説明する。初めに、GaAs基板上に下部
のクラッド層となるZnS層をMOCVD法によりエピ
タキシャル成長し、次に熱CVD法等によりマスク5の
SiO□を堆積する。この状態が第3図(a)である。
The method for manufacturing an optical waveguide of the present invention is described below in Figures 3(a) to 3(a).
This will be explained using d). First, a ZnS layer to be a lower cladding layer is epitaxially grown on a GaAs substrate by MOCVD, and then SiO□ of mask 5 is deposited by thermal CVD or the like. This state is shown in FIG. 3(a).

ZnSのエピタキシャル成長方法ぽは、他にMBE法、
MOMBE法或いはホットウォールエピタキシー法等が
有り、これ等の方法によってもZnSのクラッド層を同
様に形成することが可能である。次にフォトリングラフ
ィ技術によりS i 02のパターニングを行う。この
場合導波路層を形成する部分の5in2膜をエツチング
により除去する。この状態が第3図(b)である。パタ
ーニングされたSiO3をマスクとして選択エピタキシ
ャル成長によりZn5eの導波路層を形成し第3図(c
)の様にする。Zn5eの選択エピタキシャル成長は以
下の様な方法で行うことができる。原料としてZn及び
Seの有機化合物を用い、成長圧力を100Torr以
下、成長温度を400℃以上700℃以下、VI族原料
とII族原料の原料供給モル比を6以下の条件の下で減
圧MOCVD法或いはMOMBE法により行う。導波路
層であるZn5eを形成した後、沸酸系のエッチャント
によりSiO2を除去し、導波路層であるZn5eの全
面を覆う様にSiO□膜を形成し第3図(d)の様に光
導波路が完成する。上記の例ではマスクとしてS i 
O2を用いた例について示したが、S i 3N4等の
他の誘電体薄膜或いはW等も同様に用いることができる
。又、CdS、ZnTe、CdSe等の選択エピタキシ
ャル成長する場合、Cd、S、Zn、Te、Seのそれ
ぞれの有機化合物を原料として用いる。又導波路層を保
護膜と6のマスクの材質が同一の場合、マスクを除去す
る工程を省(ことも可能である。
ZnS epitaxial growth methods include MBE method,
There are MOMBE method, hot wall epitaxy method, etc., and it is possible to form a ZnS cladding layer in the same way by these methods as well. Next, patterning of S i 02 is performed using photolithography technology. In this case, the portion of the 5in2 film where the waveguide layer will be formed is removed by etching. This state is shown in FIG. 3(b). A waveguide layer of Zn5e was formed by selective epitaxial growth using the patterned SiO3 as a mask, as shown in Fig. 3(c).
). Selective epitaxial growth of Zn5e can be performed by the following method. Low-pressure MOCVD method using organic compounds of Zn and Se as raw materials, growth pressure of 100 Torr or less, growth temperature of 400°C to 700°C, and raw material supply molar ratio of Group VI raw material and Group II raw material of 6 or less. Alternatively, the MOMBE method may be used. After forming the Zn5e waveguide layer, SiO2 is removed using a hydrochloric acid-based etchant, and a SiO□ film is formed to cover the entire surface of the Zn5e waveguide layer. The wave path is completed. In the above example, S i
Although an example using O2 has been shown, other dielectric thin films such as Si3N4, W, etc. can be used in the same way. Further, in the case of selective epitaxial growth of CdS, ZnTe, CdSe, etc., respective organic compounds of Cd, S, Zn, Te, and Se are used as raw materials. Furthermore, if the waveguide layer is made of the same material as the protective film and the mask 6, the step of removing the mask can be omitted.

〔実施例21 第1図は本発明の実施例におけるII −VI族化合物
半導体の光導波路の概略断面図である。1はGaAs基
板、2はZnSより成るクラッド層、3はZn5eより
成る導波路層、4はS i O2膜である。この構造に
おいて、界面と垂直な方向は導波路層の屈折率が2.3
4に対して下部のクラッド層の屈折率が2.31及び上
部は屈折率が146のSiO□膜である為屈折率の段差
は十分に大きく、又界面と平行な方向においても屈折率
が2.34の導波路層を屈折率が146のSiO2膜で
挟んだ構造の為屈折率の段差は十分に大きい。この様に
導波路層とその周囲との屈折率の段差が大きい為、導波
路層への光の閉じ込めが有効に行われる。0.6328
umの波長の光を用いて該光導波路の伝搬損失を測定し
たところ0 、5 dB/cm以下と低損失なものであ
った。これは、前述した様に光が導波路層内に有効に閉
じ込められている為、GaAs基板中への光のしみ出し
が小さ(GaAs基板内での吸収が小さいことを示す。
[Example 21] FIG. 1 is a schematic cross-sectional view of an optical waveguide made of a II-VI group compound semiconductor in an example of the present invention. 1 is a GaAs substrate, 2 is a cladding layer made of ZnS, 3 is a waveguide layer made of Zn5e, and 4 is a SiO2 film. In this structure, the refractive index of the waveguide layer is 2.3 in the direction perpendicular to the interface.
4, the lower cladding layer has a refractive index of 2.31 and the upper part is a SiO□ film with a refractive index of 146, so the difference in refractive index is sufficiently large, and even in the direction parallel to the interface, the refractive index is 2.31. Since it has a structure in which a waveguide layer with a diameter of .34 is sandwiched between SiO2 films with a refractive index of 146, the difference in refractive index is sufficiently large. Since the difference in refractive index between the waveguide layer and its surroundings is large in this way, light is effectively confined in the waveguide layer. 0.6328
When the propagation loss of the optical waveguide was measured using light with a wavelength of um, it was found to be as low as 0.5 dB/cm or less. This is because, as described above, the light is effectively confined within the waveguide layer, so that the light seeps into the GaAs substrate (indicates that absorption within the GaAs substrate is small).

又、後述する様に先導波路の製造工程において導波路層
のエツチングをする必要がない為、導波路層の表面が平
坦であり散乱損が小さいことも低損失の一因である。又
、クラッド層のZnSと導波路層のZn5eは同一炉内
で連続して形成できる為、これらの界面における不純物
濃度或いは欠陥濃度が低くなる。これにより導波路層の
Zn5e中の不純物或いは欠陥濃度が低くなる。この様
に本発明の構造の光導波路においては、導波路層及び導
波路層とクラッド層との界面における不純物或いは欠陥
濃度が低くなる為、該不純物或いは欠陥が形成する深い
準位に関する光吸収が減少し低損失の光導波路となる。
Further, as will be described later, since there is no need to etch the waveguide layer in the process of manufacturing the guide waveguide, the surface of the waveguide layer is flat and the scattering loss is small, which is another factor contributing to the low loss. Furthermore, since ZnS for the cladding layer and Zn5e for the waveguide layer can be formed successively in the same furnace, the impurity concentration or defect concentration at their interface becomes low. This reduces the concentration of impurities or defects in Zn5e of the waveguide layer. As described above, in the optical waveguide having the structure of the present invention, since the concentration of impurities or defects at the waveguide layer and the interface between the waveguide layer and the cladding layer is low, light absorption related to the deep level formed by the impurities or defects is reduced. This results in an optical waveguide with low loss.

ZnS及びZn5e等のII −VT族化合物半導体は
、基板のGaAsと同じ閃亜鉛鉱型の結晶構造である為
GaAs基板上に容易にエピタキシャル成長できる。又
、発光素子及び受光素子等の光デバイスや電子デバイス
もGaAs基板上に作製することができる為、本発明の
光導波路はこれらのデバイスを集積化した光集積回路或
いは光電子集積回路等に容易に応用することができる。
II-VT group compound semiconductors such as ZnS and Zn5e can be easily grown epitaxially on a GaAs substrate because they have the same zincblende crystal structure as the GaAs substrate. Furthermore, since optical devices and electronic devices such as light emitting elements and light receiving elements can be fabricated on GaAs substrates, the optical waveguide of the present invention can be easily integrated into optical integrated circuits or optoelectronic integrated circuits that integrate these devices. It can be applied.

又基板としてGaAs以外にもInP等のIII −V
族生導体基板も用いることができる。又導波路層及びク
ラッド層の材料として表1に示した様なII−VI族化
合物半導体を用いることもてきる。又本発明の光導波路
においてはZn5eの導波路層は5102膜に完全に覆
われて保護されている為、外界の影響を受けることなく
長期間安定な動作が得られ信頼性が高い。導波路層の保
護膜としてSiO3以外にもSi 3N4又はAI□0
3等の他の誘電体薄膜を用いることができる。
In addition to GaAs, III-V such as InP can also be used as a substrate.
Polymer conductive substrates can also be used. Further, II-VI group compound semiconductors as shown in Table 1 can be used as materials for the waveguide layer and cladding layer. Furthermore, in the optical waveguide of the present invention, since the Zn5e waveguide layer is completely covered and protected by the 5102 film, stable operation can be obtained for a long period of time without being affected by the external environment, and the reliability is high. In addition to SiO3, Si 3N4 or AI□0 can be used as a protective film for the waveguide layer.
Other dielectric thin films such as No. 3 can be used.

以下に本発明の光導波路の製造方法を第4図(a)〜(
d)を用いて説明する。初めに、GaAs基板上に熱C
VD法等によりマスク5の8102を堆積する。この状
態が第4図(a)である。次にフォトリングラフィ技術
によりSiO3のバターニングを行う。この場合導波路
層を形成する部分のS i O2をエツチングにより除
去する。この状態が第4図(b)である。パターニング
された5102をマスクとして選択エピタキシャル成長
によりクラッド層のZnS及び導波路層のZn5eを同
一の成長炉内で連続して形成する。この時マスクのSi
O3上には堆積物がなく第4図(C)の様な状態となる
。ZnS及びZn5eの選択エピタキシャル成長は以下
の様な方法で行うことができる。原料としてZn及びS
及びSeの有機化合物を用い、成長圧力が100 To
rr以下、成長温度が400℃以上700℃以下、VI
族原料とII族原料の供給モル比がθ以下の条件の下で
減圧MOCVD法或いはMOMBE法により行う。クラ
ッド層のZnS及び導波路層のZn5eを形成した後、
沸酸系のエッチャントにより5102を除去し導波路層
であるZn5eの全面を覆う様にSiO□膜を形成し第
4図(d)の様に光導波路が完成する。上記の例ではマ
スクとしてSiO3を用いた例について示したが、81
3N4等の他の誘電体薄膜或いはW等も同様に用いるこ
とができる。又、CdS、ZnTe、CdSe等の選択
エピタキシャル成長する場合、Cd、S、Zn、Te、
Seのそれぞれの有機化合物を原料として用いる。又導
波路層を保護膜と6のマスフの材質が同一の場合、マス
クを除去する工程を省くことも可能である。
The method for manufacturing an optical waveguide of the present invention will be described below in FIGS.
This will be explained using d). First, heat C is applied on the GaAs substrate.
Mask 5 8102 is deposited by VD method or the like. This state is shown in FIG. 4(a). Next, patterning of SiO3 is performed using photolithography technology. In this case, the S i O2 in the portion where the waveguide layer will be formed is removed by etching. This state is shown in FIG. 4(b). Using patterned 5102 as a mask, ZnS for the cladding layer and Zn5e for the waveguide layer are successively formed in the same growth furnace by selective epitaxial growth. At this time, the Si of the mask
There is no deposit on O3, resulting in a state as shown in FIG. 4(C). Selective epitaxial growth of ZnS and Zn5e can be performed by the following method. Zn and S as raw materials
Using an organic compound of Se and Se, the growth pressure was 100 To
rr or less, growth temperature is 400°C or more and 700°C or less, VI
This is carried out by a reduced pressure MOCVD method or a MOMBE method under the condition that the molar ratio of the Group raw material to the Group II raw material is θ or less. After forming the ZnS cladding layer and the Zn5e waveguide layer,
5102 is removed using a hydrofluoric acid etchant and a SiO□ film is formed to cover the entire surface of the Zn5e waveguide layer, completing the optical waveguide as shown in FIG. 4(d). In the above example, an example using SiO3 as a mask was shown, but 81
Other dielectric thin films such as 3N4 or W can also be used in the same manner. In addition, in the case of selective epitaxial growth of CdS, ZnTe, CdSe, etc., Cd, S, Zn, Te,
Each organic compound of Se is used as a raw material. Further, when the waveguide layer, the protective film and the mask 6 are made of the same material, it is possible to omit the step of removing the mask.

[発明の効果] 以上述べた様に本発明のII −VI族化合物半導体の
光導波路は下記の効果を有する。
[Effects of the Invention] As described above, the optical waveguide of the II-VI group compound semiconductor of the present invention has the following effects.

1)本発明の光導波路の構造において光の閉し込めを有
効に行うことができる。
1) In the structure of the optical waveguide of the present invention, light can be effectively confined.

1i)i)により光学的な非線形効果を有効に使うこと
が可能になる。
1i) i) makes it possible to effectively use optical nonlinear effects.

111)可視の光に対して低損失である。111) Low loss for visible light.

iv)発光素子及び受光素子を構成するIll −V族
化合物半導体と同し結晶構造を有する為、これ等の光デ
バイスと同一基板上に本発明の光導波路を容易に作製す
ることが可能である。これは、本発明の光導波路が光集
積回路或いは光電子集積回路等の構成要素として適して
いることを意味する。
iv) Since it has the same crystal structure as the Ill-V group compound semiconductor that constitutes the light emitting element and the light receiving element, it is possible to easily fabricate the optical waveguide of the present invention on the same substrate as these optical devices. . This means that the optical waveguide of the present invention is suitable as a component of an optical integrated circuit or an optoelectronic integrated circuit.

■)導波路層が外界から保護されている為、経時変化が
小さく信頼性が高い。
■) Since the waveguide layer is protected from the outside world, there is little change over time and high reliability.

又、本発明の先導波路の製造方法は以下の様な効果を有
する。
Further, the method for manufacturing a leading waveguide of the present invention has the following effects.

vi)上記の構造の光導波路をセルファラインプロセス
で容易に作製することができる。
vi) The optical waveguide having the above structure can be easily manufactured by a self-line process.

viil導波路層のエツチング工程が不要である為エツ
チングによって必然的に起る表面の荒れを防ぐことがで
き散乱損失の小さい先導波路を作製することができる。
Since the etching step of the viil waveguide layer is not necessary, it is possible to prevent surface roughness that inevitably occurs due to etching, and to produce a guide waveguide with low scattering loss.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例におけるII −VI族化合物
半導体の光導波路の概略断面図。 第2図は本発明の実施例におけるII −VI族化合物
半導体の先導波路の製造工程を示す概略断面図。 第3図(a)〜(d)は、本発明の実施例における第1
図の構造の光導波路の製造工程を示す概略断面図。 第4図(a)〜(d)は本発明の実施例における第2図
の構造の光導波路の製造工程を示す概略断面図。 第5図は従来技術のII −VI族化合物半導体装置導
波路の概略図。 ・GaAs基板 ・ZnSクラッド層 ・Zn5e導波路層 ・SiO□膜 ・S i 02マスク ・GaAs基板 ・ZnSクラッド層 ・Zn5e−ZnS超格子導波路層 ・S i 02 以上 出願人 セイコーエプソン株式会社 代理人 弁理士 上 柳 雅 誉(他1名)(d) (ト) (t)
FIG. 1 is a schematic cross-sectional view of an optical waveguide made of a II-VI group compound semiconductor in an embodiment of the present invention. FIG. 2 is a schematic cross-sectional view showing the manufacturing process of a leading waveguide of a II-VI group compound semiconductor in an example of the present invention. FIGS. 3(a) to 3(d) show the first embodiment of the present invention.
FIG. 3 is a schematic cross-sectional view showing the manufacturing process of the optical waveguide having the structure shown in the figure. 4(a) to 4(d) are schematic sectional views showing the manufacturing process of the optical waveguide having the structure shown in FIG. 2 in an embodiment of the present invention. FIG. 5 is a schematic diagram of a conventional II-VI group compound semiconductor device waveguide.・GaAs substrate ・ZnS cladding layer ・Zn5e waveguide layer ・SiO□ film ・S i 02 mask ・GaAs substrate ・ZnS cladding layer ・Zn5e-ZnS superlattice waveguide layer ・S i 02 Applicant Seiko Epson Corporation Agent Patent attorney Masa Homare Kamiyagi (1 other person) (d) (g) (t)

Claims (3)

【特許請求の範囲】[Claims] (1)基板上にII−VI族化合物半導体より成るクラッド
層と該クラッド層よりも大きな屈折率を有するII−VI族
化合物半導体より成る導波路を層積層した構造を有し、
かつ少なくとも導波路層がリッジ型であり、かつ導波路
層は誘電体薄膜により完全に覆われていることを特徴と
する光導波路。
(1) It has a structure in which a cladding layer made of a II-VI compound semiconductor and a waveguide made of a II-VI compound semiconductor having a larger refractive index than the cladding layer are laminated on a substrate,
An optical waveguide characterized in that at least the waveguide layer is ridge-shaped, and the waveguide layer is completely covered with a dielectric thin film.
(2)基板上にクラッド層を形成する工程と、該クラッ
ド層上にマスクを形成する工程と、該マスクを用いて導
波路層をクラッド層上の一部に選択的に形成する工程と
、マスクを除去する工程と、該導波路層の全面に誘電体
薄膜を形成する工程を含むことを特徴とする光導波路の
製造方法。
(2) forming a cladding layer on the substrate; forming a mask on the cladding layer; and selectively forming a waveguide layer on a portion of the cladding layer using the mask; A method for manufacturing an optical waveguide, comprising the steps of removing a mask and forming a dielectric thin film over the entire surface of the waveguide layer.
(3)基板上にマスクを形成する工程と、該マスクを用
いてクラッド層と導波路層を基板上の一部に選択的に形
成する工程と、マスクを除去する工程と、該導波層の全
面に誘電体薄膜を形成する工程を含むことを特徴とする
第2項記載の光導波路の製造方法。
(3) forming a mask on the substrate; using the mask to selectively form a cladding layer and a waveguide layer on a portion of the substrate; removing the mask; and the waveguide layer 3. The method for manufacturing an optical waveguide according to claim 2, comprising the step of forming a dielectric thin film on the entire surface of the optical waveguide.
JP19650088A 1988-08-06 1988-08-06 Optical waveguide and its production Pending JPH0246406A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19650088A JPH0246406A (en) 1988-08-06 1988-08-06 Optical waveguide and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19650088A JPH0246406A (en) 1988-08-06 1988-08-06 Optical waveguide and its production

Publications (1)

Publication Number Publication Date
JPH0246406A true JPH0246406A (en) 1990-02-15

Family

ID=16358789

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19650088A Pending JPH0246406A (en) 1988-08-06 1988-08-06 Optical waveguide and its production

Country Status (1)

Country Link
JP (1) JPH0246406A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991017575A2 (en) * 1990-05-01 1991-11-14 British Telecommunications Public Limited Company Optoelectronic device
WO2011127840A1 (en) * 2010-04-15 2011-10-20 Shanghai Silight Technology Co., Ltd Method for fabricating waveguides using epitaxial growth

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991017575A2 (en) * 1990-05-01 1991-11-14 British Telecommunications Public Limited Company Optoelectronic device
US5446751A (en) * 1990-05-01 1995-08-29 British Telecommunications Public Limited Company Optoelectronic device
WO2011127840A1 (en) * 2010-04-15 2011-10-20 Shanghai Silight Technology Co., Ltd Method for fabricating waveguides using epitaxial growth

Similar Documents

Publication Publication Date Title
GB2112956A (en) Dielectric optical waveguide and technique for fabricating same
WO1991010263A1 (en) Geometry dependent doping and electronic devices produced
EP1719003B1 (en) Buried heterostructure device fabricated by single step mocvd
JPH0677205A (en) Microscopic structure forming method for compound semiconductor
JP3977920B2 (en) Manufacturing method of semiconductor device
JPS6022105A (en) Semiconductor device and manufacture thereof
US5374587A (en) Method of manufacturing optical semiconductor element
JPH0246406A (en) Optical waveguide and its production
JPH0329903A (en) Optical waveguide and production thereof
JPH0246407A (en) Optical waveguide and its production
EP0411816B1 (en) Tapered semiconductor waveguides and method of making same
JPH0246408A (en) Optical waveguide and its production
Adachi et al. InGaAsP‐InP planar‐stripe lasers fabricated by wet chemical etching
JP2682482B2 (en) Method for manufacturing compound semiconductor integrated circuit
JPH0237305A (en) Light guide and its production
JPH0239005A (en) Light guide and its production
JP3047049B2 (en) Method of manufacturing buried semiconductor laser
KR100651971B1 (en) Method for growing nitride semiconductor film
JPH07221390A (en) Optical semiconductor integrated circuit and its manufacture
JPH02251909A (en) Optical wave guide
JPH06177487A (en) Manufacture of high-resistance buried layer
JPH0264605A (en) Manufacture of optical waveguide
KR0141254B1 (en) A method of manufacturing semiconductor laser device
KR920008891B1 (en) Manufacturing method of buried heterostructure laser diode
JPH0269703A (en) Branch type optical waveguide