JPH0269703A - Branch type optical waveguide - Google Patents

Branch type optical waveguide

Info

Publication number
JPH0269703A
JPH0269703A JP22192288A JP22192288A JPH0269703A JP H0269703 A JPH0269703 A JP H0269703A JP 22192288 A JP22192288 A JP 22192288A JP 22192288 A JP22192288 A JP 22192288A JP H0269703 A JPH0269703 A JP H0269703A
Authority
JP
Japan
Prior art keywords
optical waveguide
compound semiconductor
mask
waveguide
type optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22192288A
Other languages
Japanese (ja)
Inventor
Kazuaki Watanabe
和昭 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP22192288A priority Critical patent/JPH0269703A/en
Publication of JPH0269703A publication Critical patent/JPH0269703A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Integrated Circuits (AREA)

Abstract

PURPOSE:To eliminate a decrease in propagation efficiency due to scattering loss by forming optical waveguide layers of a II-VI compound semiconductor which has a large refractive index and forming at least one of the layers by selective epitaxial growth. CONSTITUTION:An SiO2 film vapor-deposited on a GaAs substrate 11 and then removed at a part where the optical waveguide is formed by a photolithographic process to form a mask. Then, a lower clad layer 12, an optical waveguide layer 13, and an upper clad layer 14 are grown selectively in order. In this selective growth, the II-VI compound semiconductor is grown selectively epitaxial growth only at the part where the mask of the SiO2 film is not present. Thus, a double hetero joining type optical waveguide structure is grown selectively and then the SiO2 film of the mask is removed to complete the II-VI compound semiconductor branch type optical waveguide. Consequently, the surface roughening etc., of the waveguide area due to etching, etc., is prevented and a decrease in scattering loss is therefore reduced.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、光集積回路或いは光電子集積回路等の構成要
素として用いられる化合物半導体光導波路に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a compound semiconductor optical waveguide used as a component of an optical integrated circuit or an optoelectronic integrated circuit.

[従来の技術1 従来の光導波路(分岐型光導波路も含む)は、1.0μ
mおよび1.3μm波長帯の光を導波することを目的に
、AlGaAs/GaAs系、あるいはInGaAsP
/InP系の様なIII −V族化合物半導体により形
成されていた。第5図は、アプライド・フィジックス・
レター(Appl、Phys。
[Conventional technology 1 Conventional optical waveguides (including branched optical waveguides) have a diameter of 1.0 μm.
For the purpose of guiding light in the m and 1.3 μm wavelength bands, AlGaAs/GaAs system or InGaAsP
/InP-based III-V compound semiconductors. Figure 5 shows the applied physics
Letter (Appl, Phys.

Lett、l 47,186(19851に掲載された
光導波路でGaAs基板(21)上にAI GaAsよ
りなるクラッド層(22)高純度GaAs (キャリア
濃度10”cm−”)  (23)を順次積層し、エツ
チングによりリブを形成する。GaAsの高純度化によ
り自由キャリア吸収を減少させると共に、AlGaAs
により光が基板側にもれるのを防ぎ、低い伝搬損失値を
得ている。
Lett, l 47, 186 (19851) In an optical waveguide, a cladding layer (22) made of AI GaAs (22) of high purity GaAs (carrier concentration 10"cm-") (23) was sequentially laminated on a GaAs substrate (21). , forming ribs by etching.High purity of GaAs reduces free carrier absorption, and AlGaAs
This prevents light from leaking to the substrate side, resulting in a low propagation loss value.

〔発明が解決しようとする課題) しかし、前述の従来技術の光導波路は、III −V族
化合物半導体により形成されているため、光導波路層を
形成する結晶のエネルギーギャップに近いが、あるいは
それより大きい光子エネルギーを有する光を導波しよう
とすると、吸収損失が太きく伝搬効率が低かった。
[Problems to be Solved by the Invention] However, since the optical waveguide of the above-mentioned prior art is formed of a III-V group compound semiconductor, the energy gap is close to or even greater than that of the crystal forming the optical waveguide layer. When trying to guide light with large photon energy, the absorption loss was large and the propagation efficiency was low.

また、ダブルへテロ接合をエピタキシャル成長させた後
、エツチングにより光導波路を形成していたので、エツ
チングによる表面荒れを避けることができず、散乱損失
による伝搬効率の低下を招いていた。しかも長い工程を
経て導波路が形成されていた為、最終的には低い歩留り
になってしまう。
Furthermore, since the optical waveguide was formed by etching after epitaxially growing the double heterojunction, surface roughness due to etching could not be avoided, resulting in a reduction in propagation efficiency due to scattering loss. Moreover, since the waveguide was formed through a long process, the yield would ultimately be low.

そこで本発明はこの様な課題を解決するもので、その目
的とするところは吸収損失の少ない分岐型光導波路を簡
単なプロセスで歩留りよく製造するところにある。
The present invention is intended to solve these problems, and its purpose is to manufacture a branched optical waveguide with low absorption loss through a simple process and with high yield.

[課題を解決するための手段] 本発明の分岐型光導波路は、光導波路が1力所以上で分
岐又は合流している分岐型光導波路において、該光導波
路は基板上に少なくともII−VI族化合物半導体より
なるクラッド層と、該クラッド層よりも屈折率が大きな
1l−VI族化合物半導体よりなる光導波路層を有し、
上記各層のうち少なくとも1層は選択エピキシャル成長
したことを特徴とする。
[Means for Solving the Problems] The branched optical waveguide of the present invention is a branched optical waveguide in which optical waveguides are branched or merged at one or more force points, and the optical waveguide has at least a group II-VI group on a substrate. It has a cladding layer made of a compound semiconductor and an optical waveguide layer made of a 1l-VI group compound semiconductor having a larger refractive index than the cladding layer,
At least one of the above layers is selectively epitaxially grown.

r実 施 例〕 第1図は本発明の実施例におけるII −VI族化合物
半導体の分岐型光導波路の上面図および断面図である。
Embodiment FIG. 1 is a top view and a sectional view of a branched optical waveguide made of a II-VI group compound semiconductor in an embodiment of the present invention.

従来例との相違は光導波路をII −VI族化合物半導
体により製作している点である。
The difference from the conventional example is that the optical waveguide is made of a II-VI group compound semiconductor.

lはGaAs基板、2はZnSよりなる下側クラッド層
、3はZn5eよりなる光導波路層、4はZnSよりな
る上側クラッド層である。Zn5e、ZnSの屈折率は
それぞれ2.34.2.31で、界面に垂直方向にはこ
の大きな屈折率段差により有効に光が閉じ込められ、ま
た界面と平行方向にも屈折率が2.34のZn5e光導
波路層を屈折率1.0の大気がはさんだ構造になってい
るので光の導波路内への閉じ込めは十分である。
1 is a GaAs substrate, 2 is a lower cladding layer made of ZnS, 3 is an optical waveguide layer made of Zn5e, and 4 is an upper cladding layer made of ZnS. The refractive indices of Zn5e and ZnS are 2.34 and 2.31, respectively, and light is effectively confined in the direction perpendicular to the interface due to this large refractive index step, and also in the direction parallel to the interface, with a refractive index of 2.34. Since the Zn5e optical waveguide layer is sandwiched between the atmosphere having a refractive index of 1.0, light is sufficiently confined within the waveguide.

以下に本発明の分岐型光導波路の製造工程゛を、第2図
を用いて順を追って説明する。
Below, the manufacturing process of the branched optical waveguide of the present invention will be explained step by step with reference to FIG.

まず、GaAs基板(1)を準備し、モノシラン(Si
Hu)を原料とする熱CVD法によりSiO□膜を基板
上に蒸着する0次いでフォトリジルグラフ工程により光
導波路を作る部分のSiO3膜を除去しマスクを形成す
る。(第2図(a)) 次いで下クラッド層(2)、光導波路層(3)、上クラ
ッド層(4)を順次選択成長する。原料は亜鉛ソースと
してジメチル亜鉛(DMZn)、硫黄ソースとしてジメ
チル硫黄(DMS) 、セレンソースとしてジメチルセ
レン(DMSe)の各有機金属を用い、有機金属気相成
長法(MOCVD法)による、ZnSとZ n Seの
へテロ接合は、ジメチル亜鉛を流したまま、ジメチルセ
レン、ジメチル硫黄の各ガスラインのパルプの切り換え
を行い形成する。成長条件は成長圧力100Torr以
下、成長温度が400℃以上700℃以下、■鉄原料と
II族原料の原料供給比が6以下とする。なお使用原料
としてジメチル亜鉛等のメチル誘導体により説明したが
、ジエチル亜鉛等のエチル誘導体や、その他のアルキル
金属化合物の利用も可能である。なお上記の選択エピタ
キシャル成長では、Si0g膜がマスクとなり、マスク
上には何も付着物がなく、マスクのない部分にのみ選択
的にIt−VI族化合物半導体がエピタキシャル成長す
る。
First, a GaAs substrate (1) is prepared, and a monosilane (Si)
A SiO□ film is deposited on the substrate by a thermal CVD method using Hu) as a raw material.The SiO□ film is then removed by a photolysylgraph process to form a mask. (FIG. 2(a)) Next, the lower cladding layer (2), the optical waveguide layer (3), and the upper cladding layer (4) are selectively grown in this order. ZnS and Z were grown by metal organic chemical vapor deposition (MOCVD) using organic metals such as dimethylzinc (DMZn) as a zinc source, dimethylsulfur (DMS) as a sulfur source, and dimethylselenium (DMSe) as a selenium source as raw materials. The n Se heterojunction is formed by switching the pulps in the dimethyl selenium and dimethyl sulfur gas lines while dimethyl zinc is flowing. The growth conditions are a growth pressure of 100 Torr or less, a growth temperature of 400° C. or more and 700° C. or less, and (2) a raw material supply ratio of iron raw material and Group II raw material of 6 or less. Although the explanation has been made using methyl derivatives such as dimethylzinc as the raw material used, it is also possible to use ethyl derivatives such as diethylzinc and other alkyl metal compounds. In the selective epitaxial growth described above, the SiOg film serves as a mask, there is no deposit on the mask, and the It-VI group compound semiconductor is epitaxially grown selectively only in the areas where there is no mask.

以上の様にしてダブルへテロ接合型光導波路構造を選択
的に成長したのちマスクのSiO□膜を除去すると、I
I−Ml族化合物半導体分岐型光導波路が完成する。
After selectively growing a double heterojunction optical waveguide structure as described above, when the mask SiO□ film is removed, the I
The I-Ml group compound semiconductor branched optical waveguide is completed.

本発明の分岐型光導波路は、光導波路を大きなエネルギ
ーギャップを有するH −VI族化合物半導体により構
成している。従って導波中の吸収存失が小さく押さえら
れる。また導波路層のエピタキシャル成長後はマスクの
SiOxを除去するのみなので、導波路領域のエツチン
グ等により生じる表面荒れを防ぐことができ、このこと
は散乱損失の減少に大きく貢献する。
In the branched optical waveguide of the present invention, the optical waveguide is made of an H-VI group compound semiconductor having a large energy gap. Therefore, absorption and loss during waveguiding can be kept small. Further, since the SiOx of the mask is only removed after epitaxial growth of the waveguide layer, surface roughness caused by etching of the waveguide region can be prevented, which greatly contributes to reducing scattering loss.

尚、実施例の説明では下クラッド層、光導波路層、上ク
ラッド層のダブルへテロ接合構造を有し、かつ界面に平
行方向には光導波路層を大気ではさむことによって屈折
率段差を得る、第1図の様な構造の分岐型光導波路を用
いて説明したが、この他にも第3図に示す様な導波路構
造によっても本発明の分岐型光導波路は実現できる。
In addition, in the description of the embodiment, it has a double heterojunction structure of a lower cladding layer, an optical waveguide layer, and an upper cladding layer, and a refractive index step is obtained by sandwiching the optical waveguide layer in the atmosphere in the direction parallel to the interface. Although the description has been made using a branched optical waveguide having a structure as shown in FIG. 1, the branched optical waveguide of the present invention can also be realized by a waveguide structure as shown in FIG.

(a)はより簡略化したタイプで上側クラッド層を省略
したもの、(b)は光導波路層の側面をZnSによって
埋め込んだもので、工程数は増えるが導波路の側面を空
気中にさらしている場合に比べて、導波光の1次モード
がカットオフになる導波路幅を広くとることができ、プ
ロセスの作業性が向上する。(C)は上側クラッド層の
構成物質として化合物半導体のかわりに5ift絶縁膜
を用いたもので、5iO=の屈折率(1,4)とZn5
eの屈折率の差により光の閉じ込めが行なわれる。
(a) is a simpler type in which the upper cladding layer is omitted, and (b) is a type in which the side surfaces of the optical waveguide layer are embedded with ZnS, which requires more steps but exposes the side surfaces of the waveguide to the air. The width of the waveguide at which the first mode of the guided light is cut off can be made wider than in the case where the first mode of the guided light is cut off, and the workability of the process is improved. (C) uses a 5ift insulating film instead of a compound semiconductor as the constituent material of the upper cladding layer, and has a refractive index of 5iO = (1,4) and a Zn5
Light is confined due to the difference in refractive index of e.

また光導波路層、クラッド層の組み合わせとしては、Z
n5e−ZnS系のみでなく、下表の様な組み合わせで
光導波路を形成することができる。形成方法は該当元素
の有機化合物を用いたMOCVD法による。
In addition, as a combination of optical waveguide layer and cladding layer, Z
Optical waveguides can be formed using not only the n5e-ZnS system but also the combinations shown in the table below. The formation method is based on the MOCVD method using an organic compound of the relevant element.

第4図は本発明の光導波路の応用例である。第1図では
出力側導波路の分岐の角度θを同じにしていた(θ1=
02)、この場合、伝搬損失がないとすると1という入
力光に対して、それぞれの導波路の出力光は共に0,5
であった。しかし第4図(a)の様に01≠02とする
と、2つの出力側導波路の出力光の比はもはやlではな
くなる。θ3、θ2の値を変えることにより、入力光に
対する片側の導波路からの出力の比をOから1の任意の
値に設定することができる。また、片側の出力側導波路
のみを用いれば光フィルターとして作用する。
FIG. 4 shows an application example of the optical waveguide of the present invention. In Figure 1, the angle θ of the branching of the output side waveguide was kept the same (θ1=
02), in this case, assuming that there is no propagation loss, for an input light of 1, the output light of each waveguide is both 0 and 5.
Met. However, if 01≠02 as shown in FIG. 4(a), the ratio of the output lights of the two output waveguides is no longer l. By changing the values of θ3 and θ2, the ratio of the output from one waveguide to the input light can be set to any value between 0 and 1. Furthermore, if only one output side waveguide is used, it functions as an optical filter.

第4図(b)は本発明の分岐型光導波路を2°個以上組
み合わせたもので、入力光■、■、■が光導波路中で分
光、結合を繰り返し、出力光■、■、■となって得られ
ることを模式的にあられしたものである。
Figure 4(b) shows a combination of two or more branched optical waveguides according to the present invention, in which the input lights ■, ■, ■ are repeatedly separated and combined in the optical waveguide, and the output lights ■, ■, ■. This is a schematic representation of what can be obtained.

〔発明の効果] 以上述べた様に本発明の分岐型光導波路は下記の効果を
有する。
[Effects of the Invention] As described above, the branched optical waveguide of the present invention has the following effects.

(1)光導波路がエネルギーギャップの大きなII−V
T族化合物半導体層により形成されているため、導波光
の短波長化が可能となる。またII−VI族化合物半導
体の有する、ワイド・エネルギーギャップゆえに従来と
同じ波長領域の光(1μm帯、1.3μm帯)を導波し
た場合も光導波路における吸収損失は従来に比べ大幅に
低(押さえられる。
(1) II-V optical waveguide with large energy gap
Since it is formed of a T group compound semiconductor layer, it is possible to shorten the wavelength of guided light. Furthermore, due to the wide energy gap of II-VI compound semiconductors, even when light in the same wavelength range as conventional ones (1 μm band, 1.3 μm band) is guided, the absorption loss in the optical waveguide is significantly lower than that of conventional ones ( Being held down.

本発明の分岐型光導波路は600nmという短波長光に
対しても極めて低い伝搬損失で導波することができる。
The branched optical waveguide of the present invention can guide even light with a short wavelength of 600 nm with extremely low propagation loss.

(2)光導波路を選択成長により形成するので、成長後
エツチング、あるいは拡散等の工程を行う必要がなく、
このことは後工程における膜質の低下、あるいは表面荒
れを未然に防ぐことができ、その結果散乱損失を小さく
することが可能である。
(2) Since the optical waveguide is formed by selective growth, there is no need to perform processes such as etching or diffusion after growth.
This can prevent deterioration in film quality or surface roughness in subsequent steps, and as a result, it is possible to reduce scattering loss.

(3)出射側光導波路の角度を変えることにより入射光
を任意の割合で2方向以上に分波できる。
(3) By changing the angle of the output side optical waveguide, the incident light can be split into two or more directions at an arbitrary ratio.

また出射側導波路のうち片側のみを利用すると、光フィ
ルターになる。
Also, if only one side of the output waveguide is used, it becomes an optical filter.

(4)MOCVD法を光導波路の成長手段として用いる
ので、膜厚の制御柱、再現性が向上する。
(4) Since the MOCVD method is used as a means for growing the optical waveguide, control of film thickness and reproducibility are improved.

また他の成長方法に比ベウェハの大面積化が可能となり
、大量生産に適している。
Furthermore, compared to other growth methods, it is possible to increase the area of the wafer, making it suitable for mass production.

(5)工程が極めて簡単かつ短いので、歩留りが向上す
る。特に半導体レーザ等、他のデバイスと同一基板上に
モノリシックアレイを形成する場合簡略なプロセス、高
い歩留りは有利な条件で、このことはモノシリシック化
に対して高いポテンシャルを有することを示している。
(5) Since the process is extremely simple and short, the yield is improved. In particular, when forming a monolithic array on the same substrate as other devices such as a semiconductor laser, a simple process and high yield are advantageous conditions, and this indicates that it has high potential for monolithic fabrication.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)(b)は本発明の一実施例を示す分岐型光
導波路の上面及び断面図。 第2図(a)〜(c)は本発明の製造工程を示す断面図
。 第3図(a)〜(c)は本発明の他の実施例を示す断面
図。 第4図(a)(b)は本発明の応用例を示す上面図。 第5図(a)(b)は従来例を示す分岐型光導波路の上
面図及び断面図。 23・・・GaAa光導波路層 24・・・入力光 25・・・出力光 出願人 セイコーエプソン株式会社 代理人 弁理士 上 柳 雅 誉(他1名)・基板 ・下側クラッド層 ・光導波路層 ・上側クラッド層 ・マスク(S i Ox膜) ・上側クラッド層(SiO− ・GaAs基板 ・AlGaAsクラッド層 膜) (久) ハ′ (υ) (b) (b) A′ (C/) (へン (lx、) (ω (久) (1o)
FIGS. 1(a) and 1(b) are top and cross-sectional views of a branched optical waveguide showing an embodiment of the present invention. FIGS. 2(a) to 2(c) are cross-sectional views showing the manufacturing process of the present invention. FIGS. 3(a) to 3(c) are sectional views showing other embodiments of the present invention. FIGS. 4(a) and 4(b) are top views showing an application example of the present invention. FIGS. 5(a) and 5(b) are a top view and a sectional view of a branched optical waveguide showing a conventional example. 23...GaAa optical waveguide layer 24...Input light 25...Output light Applicant Seiko Epson Co., Ltd. agent Patent attorney Masayoshi Kamiyanagi (1 other person), substrate, lower cladding layer, optical waveguide layer・Upper cladding layer・Mask (S i Ox film) ・Upper cladding layer (SiO− ・GaAs substrate ・AlGaAs cladding layer film) (ku) Ha′ (υ) (b) (b) A′ (C/) (to (lx,) (ω (ku) (1o)

Claims (1)

【特許請求の範囲】[Claims] 光導波路が1ヵ所以上で分岐又は合流している分岐型光
導波路において、該光導波路は基板上に少なくともII−
VI族化合物半導体よりなるクラッド層と、該クラッド層
よりも屈折率が大きなII−VI族化合物半導体よりなる光
導波路層を有し、上記各層のうち少なくとも1層は選択
エピキシャル成長したことを特徴とする分岐型光導波路
In a branched optical waveguide in which optical waveguides branch or merge at one or more locations, the optical waveguide has at least II-
It has a cladding layer made of a group VI compound semiconductor, and an optical waveguide layer made of a group II-VI compound semiconductor having a higher refractive index than the cladding layer, and at least one of the layers is selectively epitaxially grown. Branch type optical waveguide.
JP22192288A 1988-09-05 1988-09-05 Branch type optical waveguide Pending JPH0269703A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22192288A JPH0269703A (en) 1988-09-05 1988-09-05 Branch type optical waveguide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22192288A JPH0269703A (en) 1988-09-05 1988-09-05 Branch type optical waveguide

Publications (1)

Publication Number Publication Date
JPH0269703A true JPH0269703A (en) 1990-03-08

Family

ID=16774258

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22192288A Pending JPH0269703A (en) 1988-09-05 1988-09-05 Branch type optical waveguide

Country Status (1)

Country Link
JP (1) JPH0269703A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0980244A (en) * 1995-07-12 1997-03-28 Nippon Telegr & Teleph Corp <Ntt> Branch and confluence optical waveguide
JP2007153445A (en) * 2005-11-11 2007-06-21 Furukawa Mfg Co Ltd Feeder of bagged meat part

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0980244A (en) * 1995-07-12 1997-03-28 Nippon Telegr & Teleph Corp <Ntt> Branch and confluence optical waveguide
JP2007153445A (en) * 2005-11-11 2007-06-21 Furukawa Mfg Co Ltd Feeder of bagged meat part

Similar Documents

Publication Publication Date Title
JPH08107251A (en) Manufacture of reflection digital tuning laser
JPH0864906A (en) Manufacture of semiconductor device
JP2000101187A (en) Manufacture of optical semiconductor device
JP2001148531A (en) Optical semiconductor device
JPH08274295A (en) Manufacture of optical semiconductor device
JPH0269703A (en) Branch type optical waveguide
JPH0936487A (en) Fabrication of semiconductor device
JPS60100489A (en) Semiconductor laser
JP2682482B2 (en) Method for manufacturing compound semiconductor integrated circuit
JPH08139404A (en) Semiconductor laser
JPH08330665A (en) Manufacture of optical semiconductor laser
JPH05226781A (en) Production of semiconductor light emitting element
JPH02251933A (en) Branch type optical waveguide
US6275515B1 (en) Semiconductor laser device and method of producing the same
JPH0331815A (en) Interference type optical switch
JPH02251934A (en) Branch type optical wave guide
JPH02251936A (en) Reflection type optical switch
JPH02251935A (en) Reflection type optical switch
JPH0331814A (en) Interference type optical switch
KR20000019294A (en) Method for manufacturing spot-size converter laser diode
JPH0271575A (en) Optical integrated circuit
JP3787792B2 (en) Manufacturing method of semiconductor device
JPH01186693A (en) Semiconductor device and manufacture thereof
JPH02281231A (en) Optical switch
JPH09186391A (en) Compound semiconductor device and manufacture thereof