JPH0245939A - Schottky barrier type field effect transistor - Google Patents

Schottky barrier type field effect transistor

Info

Publication number
JPH0245939A
JPH0245939A JP63196914A JP19691488A JPH0245939A JP H0245939 A JPH0245939 A JP H0245939A JP 63196914 A JP63196914 A JP 63196914A JP 19691488 A JP19691488 A JP 19691488A JP H0245939 A JPH0245939 A JP H0245939A
Authority
JP
Japan
Prior art keywords
active layer
gate electrode
layer
side wall
effect transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63196914A
Other languages
Japanese (ja)
Inventor
Takashi Kurose
黒瀬 尚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP63196914A priority Critical patent/JPH0245939A/en
Publication of JPH0245939A publication Critical patent/JPH0245939A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent increase of series resistance constituents from a drain electrode io a source electrode by providing a gate electrode with an insulation film at the side wall on an active layer and providing a high-concentration layer at the same depth as the active layer being adjacent to the active layer and the side wall. CONSTITUTION:An active layer 2 is formed by implanting Si<+> ion of a GaAs substrate 1 and the active layer 2 is activated by annealing. A gate electrode 3 is formed on the active layer 2 and an insulation film 4 is formed over the entire surface. A photoresist 5 is formed on the substrate 1 other than the area on the active layer 2 and the insulation film 4 is eliminated by the RIE method to allow a side wall 4a of insulation film to remain at the side part of the gate electrode 3. The active layer 2 is etched away with the photoresist 5, the gate electrode 3, and the side wall 4a as masks and the photoresist 5 is eliminated. Then, a high-concentration layer 6 is allowed to grow being adjacent to the active layer 2 and the side wall 4.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は、ショットキ障壁型電界効果トランジスタに関
し、特に短チャンネル効果をなくシ之ショットキ障壁型
電界効果トランジスタに関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to a Schottky barrier field effect transistor, and more particularly to a Schottky barrier field effect transistor free of short channel effects.

(ロ)従来の技術 一般に、ショットキ障壁型電界効果トランジスタCME
S FET)においては、ゲート長を短縮するに従って
、活性層下に備えられた高抵抗層へリーク電流が流れる
、いわゆる短チャンネル効果が発生するという問題があ
った。
(b) Conventional technology In general, Schottky barrier field effect transistor CME
SFET) has a problem in that as the gate length is shortened, a leakage current flows into a high resistance layer provided below the active layer, which is the so-called short channel effect.

そこで、この短チャンネル効果をなくすことのできる構
造として、第4図に示す如く側壁利用セルファラインf
in  選択成長構造が提案されている(例えば、In
t、Symp、GaAs  and Re1ated 
Compounds、Japan、1985  F2O
5〜510参照。)。
Therefore, as a structure that can eliminate this short channel effect, as shown in Fig. 4, a self-line f
In selective growth structures have been proposed (e.g., In
t, Symp, GaAs and Re1ated
Compounds, Japan, 1985 F2O
See 5-510. ).

この構造は、イオン注入法によシ形成した活性層り上に
グー)N極にを形成し、このゲート電極暖の側部に形成
した絶縁膜(財)を利用して自己整合的にゲート電極−
に隣接した半導体基板1411表面に有機金属気相成長
(MOCVD)法等を用りて高濃度層−を選択的に形成
することにより得られる。
In this structure, a N-pole is formed on the active layer formed by ion implantation, and the gate is self-aligned using an insulating film formed on the side of the gate electrode. Electrode-
This can be obtained by selectively forming a high concentration layer on the surface of the semiconductor substrate 1411 adjacent to the semiconductor substrate 1411 using a metal organic chemical vapor deposition (MOCVD) method or the like.

(ハ)発明が解決しようとする課題 しかしながら、上述の構造では、ドレイン電極−からソ
ース電極(ロ)への電流の径路が長くなシ直列抵抗成分
が増大するという問題が生じる。
(c) Problems to be Solved by the Invention However, in the above-described structure, a problem arises in that the series resistance component increases due to the long current path from the drain electrode to the source electrode (b).

本発明は上述の事情に鑑み為されたものであり、短チャ
ンネル効果をなくすも、直列抵抗成分が増加することの
な匹ショットキ障壁FJ[界効果トランジスタを提供し
ようとするものである。
The present invention has been made in view of the above-mentioned circumstances, and aims to provide a Schottky barrier FJ [field effect transistor] which eliminates the short channel effect but does not increase the series resistance component.

に)課題を解決するための手段 本発明は半絶縁性基板に形成された活性層と、この活性
層上に設けられたゲートtl極と、該ゲート電極の両側
かつ前記活性層上に形成された絶縁膜より成る側壁と、
前記活性層及び前記側壁に隣接し、かつ前記活性層と略
同一の深さに形成された高1度層ね該高1度層上に設け
られたオーミック電極と、を備えて成ることを特徴とす
るショットと、この活性層上に設けられたゲー)![と
、前記活性層に隣接し、かつ前記活性層と略同一の深さ
に形成された、耐熱オーミック金属とオーミック領域よ
り成る高濃度層と、を備えて成ることを特徴とするショ
ットキ障壁型電界効果トランジスタである。
B) Means for Solving the Problems The present invention comprises an active layer formed on a semi-insulating substrate, a gate tl electrode provided on the active layer, and a gate tl electrode formed on both sides of the gate electrode and on the active layer. a side wall made of an insulating film;
A high 1 degree layer adjacent to the active layer and the side wall and formed at substantially the same depth as the active layer, and an ohmic electrode provided on the high 1 degree layer. and the game provided on this active layer)! and a high concentration layer made of a heat-resistant ohmic metal and an ohmic region, which is formed adjacent to the active layer and at approximately the same depth as the active layer. It is a field effect transistor.

(ホ)作 用 本発明によれば、高濃度層は活性層と略同一の深さに形
成されているので、短チャンネル効果はなく、また、高
濃度層は活性層に隣接して形成されているので直列抵抗
は小さい。
(E) Effect According to the present invention, the high concentration layer is formed at approximately the same depth as the active layer, so there is no short channel effect, and the high concentration layer is formed adjacent to the active layer. series resistance is small.

(へ)実施例 本発明の一実施例の作製方法を第1図(a)乃至(1)
K基づいて説明する。
(f) Example A manufacturing method of an example of the present invention is shown in FIGS. 1(a) to (1).
The explanation will be based on K.

半絶縁性GaAs基板(11に注入イオンs t’;注
入エネルギー40KeV、注入f5 x 10 ”cc
−’の条件でイオン注入し、厚さ500〜700Xの活
性層(2)を選択的に形成する。続いてSiN膜を用い
たキャップアニール法により、アニール(850°C,
5秒)し、活性層(2)の活性化を行なう(第1図(a
))。
Semi-insulating GaAs substrate (11 implanted ions s t'; implantation energy 40KeV, implantation f5 x 10"cc
Ion implantation is performed under the conditions of -' to selectively form an active layer (2) with a thickness of 500 to 700X. Next, annealing (850°C,
5 seconds) to activate the active layer (2) (see Figure 1(a)
)).

活性層(2)上にゲート長l1lL4μmのW8i等の
高融点金属から成るゲート電極(31を形成し、次いで
、全面にプラズマCVD法等によりsiow等の絶縁膜
(4)を形成する(第1図(b])。
A gate electrode (31) made of a high melting point metal such as W8i and having a gate length of 4 μm is formed on the active layer (2), and then an insulating film (4) such as SiOW is formed on the entire surface by plasma CVD method or the like (first Figure (b]).

活性層(21上以外の基板(11上に7オトレジスト(
5)を形成し、RIE法により絶縁膜(4)を除去する
(@1図(C))。すると、ゲート電極(31の側部に
@α2μmの側壁(4a)が形成される。
Active layer (substrate other than 21 (7 photoresist on 11)
5) is formed, and the insulating film (4) is removed by RIE method (@1 (C)). Then, a side wall (4a) of @α2 μm is formed on the side of the gate electrode (31).

フォトレジスト(5)、ゲート電極(3)及びIl!i
I壁(4a)をマスクとしてB CRプラズマCVD法
等によシ活性層(2)をエツチングし、エツチング部(
8)を形成する。その後、フォトレジスト(51ヲ除去
し、表面をHC/等によシ清浄化する(第1図(d))
Photoresist (5), gate electrode (3) and Il! i
Using the I wall (4a) as a mask, the active layer (2) is etched by BCR plasma CVD method or the like, and the etched portion (
8). After that, the photoresist (51) is removed and the surface is cleaned with HC/etc. (Fig. 1(d))
.

エツチング部(8)上にMOCVD法等により高1sr
ate++約1s o o Xa長サすル< v、 1
図(e) >。
High 1sr on the etching part (8) by MOCVD method etc.
ate++ approx. 1s o o Xa length < v, 1
Figure (e)>.

このとき、高濃度層(6)を活性層(2)だけでなく側
壁(4a)にも隣接させることによシ、オーミック接合
に必要な厚さを得ることができる。
At this time, by placing the high concentration layer (6) adjacent not only to the active layer (2) but also to the side wall (4a), the thickness necessary for ohmic contact can be obtained.

最後に、高濃度層(6)上にAu、Ni、Au+Qe等
より成るオーミック電極(7)を形成し、該オーミック
電極+71を合金化する(第1図の)。
Finally, an ohmic electrode (7) made of Au, Ni, Au+Qe, etc. is formed on the high concentration layer (6), and the ohmic electrode +71 is alloyed (as shown in FIG. 1).

上述の手j[で作製したMES FETは、高濃度層(
6)の活性層(2)下へのはみ出し部分が無く、しかも
、該高濃度層(6)は活性層+21と横方向に連続した
構造となっている。
The MES FET fabricated by the above-mentioned method has a high concentration layer (
There is no protruding portion below the active layer (2) of 6), and the high concentration layer (6) has a structure that is continuous with the active layer +21 in the lateral direction.

次に、本発明の他の実施例の作製方法を第2図(a)乃
至(e)に基づいて説明する。
Next, a manufacturing method of another embodiment of the present invention will be explained based on FIGS. 2(a) to (e).

半絶縁性GaAs基板(111に注入イオンS i”、
注入xネルdf −40Key、 注入量s x 1o
12ts−’o条件でイオン注入し、厚さ5oO〜70
0Xの活性層α2を選択的に形成する(第2図(a))
Semi-insulating GaAs substrate (111 implanted ions Si”,
Injection x channel df -40Key, injection amount s x 1o
Ion implantation was performed under 12ts-'o conditions, and the thickness was 5oO~70
0X active layer α2 is selectively formed (FIG. 2(a))
.

活性層tiz上にゲート長α4μmのWSi等の高融点
金属から成るゲート電極u3を形成し、次いて゛全面に
プラズマCVD法等にょ夛SiO2等の絶縁膜■を形成
する(第2図ら))。
A gate electrode u3 made of a high-melting point metal such as WSi and having a gate length α4 μm is formed on the active layer tiz, and then an insulating film (2) of SiO2 or the like is formed on the entire surface by plasma CVD or the like (see FIG. 2).

活性層a3上以外の基板αD上に7オトレジス)(15
を形成し、RIE法によ)絶縁膜(14]を除去する(
第2図(C))。すると、ゲート電極αJの側部に幅α
2μ病の側壁(14a)が形成される。
7 otres resists on the substrate αD other than on the active layer a3
is formed, and the insulating film (14) is removed (by RIE method).
Figure 2 (C)). Then, a width α is formed on the side of the gate electrode αJ.
A lateral wall (14a) of 2μ disease is formed.

フォトレジスト(151,ゲート電極flat及び側壁
(141)をマスクとしてECRプラズマRIB法等に
より活性層(121をエツチングし、エツチング[18
1を形成し、その後フォトレジスト(t51を除去し、
表面をHC/等により清浄化する(第2図(d))。こ
のときのエツチング深さは活性層α2の深さよプもやや
浅くする。
Using the photoresist (151, gate electrode flat and sidewalls (141) as a mask, the active layer (121) is etched by ECR plasma RIB method, etc., and etching [18
1, then remove the photoresist (t51,
The surface is cleaned with HC/etc. (FIG. 2(d)). The etching depth at this time is also slightly shallower than the depth of the active layer α2.

エツチング部tt8上にW、Mo、In、Ge或いはW
、Ni、NiI2、Ni等の耐熱オーミック金属aηを
形成し、続いてSiN膜を用いたキャップアニール法に
よシアニール(850℃、5秒)し、活性層α2の活性
化及び耐熱オーミック電極惺eの合金化を行なう(1g
2図(C))。この耐熱オーミック金属a″71は80
0“C以上の高温熱処理を施してもコンタクト抵抗が増
加しない金属である。耐熱オー建ツク金属aηの合金化
によるオーミック領域(1!]は活性層(121の深さ
と略一致し、また、高濃度層αGは耐熱オーミック電極
(lF3とオーミック領域σ9で構成される。
W, Mo, In, Ge or W on the etching part tt8
A heat-resistant ohmic metal aη such as Ni, NiI2, Ni, etc. is formed, followed by cyannealing (850°C, 5 seconds) using a cap annealing method using a SiN film to activate the active layer α2 and form a heat-resistant ohmic electrode. (1g
Figure 2 (C)). This heat-resistant ohmic metal a″71 is 80
It is a metal whose contact resistance does not increase even when subjected to high-temperature heat treatment of 0"C or more.The ohmic region (1!) formed by alloying the heat-resistant oak building metal aη approximately corresponds to the depth of the active layer (121), and The high concentration layer αG is composed of a heat-resistant ohmic electrode (lF3) and an ohmic region σ9.

尚1本実症例では、耐熱オーミック金属anを基板用表
面よりも突出するよう形成したが、幕開II表面と面一
あるいは基板u1表面よりも下になるよう形成してもよ
く、この場合側壁(14a)を形成する必要はない。
In this actual case, the heat-resistant ohmic metal an was formed to protrude beyond the substrate surface, but it may be formed flush with the Makukai II surface or below the substrate u1 surface, in which case the sidewall There is no need to form (14a).

また、耐熱オーミック金属(Leを用いることによ)、
第1図に示した実施例に比しアニールの工程を省くこと
ができる。
In addition, heat-resistant ohmic metal (by using Le),
Compared to the embodiment shown in FIG. 1, the annealing step can be omitted.

上述の手順で作製したMFiS FETは、高−度71
(1Gの活性層α2下へのはみ出し部分が無く、シかも
、該高濃度層tteは活性層a2と横方向に連続した構
造となっている。
The MFiS FET fabricated by the above procedure has a high degree of 71
(Although there is no protruding portion below the active layer α2 of 1G, the high concentration layer tte has a structure that is continuous with the active layer a2 in the lateral direction.

次に、本発明の構造をg/D Mg3 PETに適用し
た場合について、第3図に基づいて説明する。
Next, a case where the structure of the present invention is applied to g/D Mg3 PET will be explained based on FIG. 3.

E/D MFiS FBTはエンハンスメント型FgT
とデイプリージョン型FFmTで構成され、通常エンハ
ンスメント型FITがスイッチング素子として、デイプ
リージョン型FF1Tが負荷として機能すると見做され
る。
E/D MFiS FBT is enhancement type FgT
It is generally assumed that the enhancement type FIT functions as a switching element and the depletion type FF1T functions as a load.

従って、ここではスイッチング素子であるエンハンスメ
ント型FETK本発明を適用した。
Therefore, the enhancement type FETK of the present invention, which is a switching element, was therefore applied here.

第う図において、C11は半絶縁性GaAs基板、のは
エンハンスメント型FFmTの活性層、■はデイプリー
ジョン型FETの活性層(デイプリージョン型を実現す
るために活性層のよりも深く形成されている。)、l、
!4はゲート電極、■は側壁、(至)は高濃度層、面は
オーミック電極であシ、作製方法及び材料は第1図の実
施例と同様である。
In the figure, C11 is a semi-insulating GaAs substrate, C is an active layer of an enhancement type FFmT, and ■ is an active layer of a depletion type FET (which is formed deeper than the active layer to realize a depletion type). ), l,
! 4 is a gate electrode, ■ is a side wall, (to) is a high concentration layer, and the surface is an ohmic electrode.The manufacturing method and materials are the same as those in the embodiment shown in FIG.

尚、高温層のを第2図に示した耐熱性オーミック金属を
用いて実現してもよい。
Incidentally, the high-temperature layer may be realized using a heat-resistant ohmic metal as shown in FIG.

このB/D MBS FETにおけるエンハンスメント
型FETは、高濃度層四の活性層32下へのはみ出し部
分が無く、しかも、該高濃度層のは活性層のと横方向に
連続した構造となっている。
The enhancement type FET in this B/D MBS FET has no protruding portion of the high concentration layer 4 below the active layer 32, and moreover, the high concentration layer has a structure that is continuous with the active layer in the lateral direction. .

(ト)発明の効果 本発明は以上の説明から明らかな如く、直列抵抗を増大
させることなく短チャンネル効果をなくすことができ、
ショットキ障壁型電界効果トランジスタの性能向上を図
ることができる。
(G) Effects of the Invention As is clear from the above description, the present invention can eliminate the short channel effect without increasing the series resistance.
The performance of the Schottky barrier field effect transistor can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)乃至(7)は本発明の一実施例の工程説明
図、第2図(a)乃至(e)は本発明の他の実施例の工
程説明図、第5図はE/D MES FETの断面図、
第4図は従来のMES FETの断面図である。 111(111(211−・・半絶縁性基板、 121
G2)eJ・・・活性層、(31[13C1!4・・・
ゲート電極、  (4a)(14a)の・・・側壁、 
(6)αe四・・・高濃度層。
FIGS. 1(a) to (7) are process explanatory diagrams of one embodiment of the present invention, FIGS. 2(a) to (e) are process explanatory diagrams of another embodiment of the present invention, and FIG. /D Cross-sectional view of MES FET,
FIG. 4 is a cross-sectional view of a conventional MES FET. 111 (111 (211-... semi-insulating substrate, 121
G2) eJ...active layer, (31[13C1!4...
Gate electrode, (4a) (14a)...side wall,
(6) αe4...high concentration layer.

Claims (1)

【特許請求の範囲】 1、半絶縁性基板に形成された活性層と、この活性層上
に設けられたゲート電極と、該ゲート電極の両側かつ前
記活性層上に形成された絶縁膜より成る側壁と、前記活
性層及び前記側壁に隣接し、かつ前記活性層と略同一の
深さに形成された高濃度層と、該高濃度層上に設けられ
たオーミック電極と、を備えて成ることを特徴とするシ
ヨツトキ障壁型電界効果トランジスタ。 2、半絶縁性基板に形成された活性層と、この活性層上
に設けられたゲート電極と、前記活性層に隣接し、かつ
前記活性層と略同一の深さに形成された、耐熱オーミッ
ク金属とオーミック領域より成る高濃度層と、を備えて
成ることを特徴とするシヨツトキ障壁型電界効果トラン
ジスタ。
[Claims] 1. Consisting of an active layer formed on a semi-insulating substrate, a gate electrode provided on this active layer, and an insulating film formed on both sides of the gate electrode and on the active layer. comprising a sidewall, a high concentration layer formed adjacent to the active layer and the sidewall and at approximately the same depth as the active layer, and an ohmic electrode provided on the high concentration layer. A short-barrier field effect transistor characterized by: 2. An active layer formed on a semi-insulating substrate, a gate electrode provided on this active layer, and a heat-resistant ohmic layer formed adjacent to the active layer and at approximately the same depth as the active layer. 1. A Schottky barrier field effect transistor comprising: a highly doped layer consisting of a metal and an ohmic region.
JP63196914A 1988-08-05 1988-08-05 Schottky barrier type field effect transistor Pending JPH0245939A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63196914A JPH0245939A (en) 1988-08-05 1988-08-05 Schottky barrier type field effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63196914A JPH0245939A (en) 1988-08-05 1988-08-05 Schottky barrier type field effect transistor

Publications (1)

Publication Number Publication Date
JPH0245939A true JPH0245939A (en) 1990-02-15

Family

ID=16365762

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63196914A Pending JPH0245939A (en) 1988-08-05 1988-08-05 Schottky barrier type field effect transistor

Country Status (1)

Country Link
JP (1) JPH0245939A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05138321A (en) * 1991-11-22 1993-06-01 Sumitomo Metal Ind Ltd Light rolling reduction method for cast slab in continuous casting

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05138321A (en) * 1991-11-22 1993-06-01 Sumitomo Metal Ind Ltd Light rolling reduction method for cast slab in continuous casting

Similar Documents

Publication Publication Date Title
KR20120062346A (en) Method of manufacturing high frequency device structures
JP2009076673A (en) Field-effect transistor using group iii nitride semiconductor
JPH0245939A (en) Schottky barrier type field effect transistor
JPS63227059A (en) Semiconductor device and manufacture thereof
JP3653652B2 (en) Semiconductor device
JPS62122170A (en) Mis transistor and manufacture thereof
JPS6236874A (en) Semiconductor device
JPS59111372A (en) Manufacture of semiconductor device
JPS6261370A (en) Gaas field effect semiconductor device
JPS62190768A (en) Semiconductor device
JPS61114582A (en) Semiconductor device
JPS6360566A (en) Semiconductor device
JPS63157474A (en) Manufacture of semiconductor device
JPS58123778A (en) Schottky gate field-effect transistor and its manufacture
JPH08203923A (en) Semiconductor element and manufacture thereof
JPH03220730A (en) Manufacture of semiconductor integrated circuit device
JPS63142872A (en) Manufacture of self-alignment type field-effect transistor
JPS61251077A (en) Manufacture of compound semiconductor device
JPS62145779A (en) Field effect transistor
JPH0340438A (en) Manufacture of field-effect transistor
JPH0797591B2 (en) Field effect transistor and method of manufacturing the same
JPS62122276A (en) Manufacture of compound semiconductor device
JPH0445544A (en) Field-effect transistor and manufacture thereof
JPH03116936A (en) Compound semiconductor device
JPS60103678A (en) Semiconductor device