JPH0245736Y2 - - Google Patents

Info

Publication number
JPH0245736Y2
JPH0245736Y2 JP1982149226U JP14922682U JPH0245736Y2 JP H0245736 Y2 JPH0245736 Y2 JP H0245736Y2 JP 1982149226 U JP1982149226 U JP 1982149226U JP 14922682 U JP14922682 U JP 14922682U JP H0245736 Y2 JPH0245736 Y2 JP H0245736Y2
Authority
JP
Japan
Prior art keywords
heat exchanger
expansion valve
electric expansion
heating
outdoor heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1982149226U
Other languages
Japanese (ja)
Other versions
JPS5954062U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP14922682U priority Critical patent/JPS5954062U/en
Publication of JPS5954062U publication Critical patent/JPS5954062U/en
Application granted granted Critical
Publication of JPH0245736Y2 publication Critical patent/JPH0245736Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Air Conditioning Control Device (AREA)

Description

【考案の詳細な説明】 〔考案の技術分野〕 この考案は、電導式膨張弁を用いて冷暖房運転
可能な冷凍サイクルを構成してなる空気調和装置
の改善に関する。
[Detailed Description of the Invention] [Technical Field of the Invention] This invention relates to an improvement in an air conditioner comprising a refrigeration cycle capable of cooling and heating operation using an electrically conductive expansion valve.

〔考案の技術的背景とその問題点〕[Technical background of the invention and its problems]

近時、空気調和装置にあつては、多様な信号媒
体にて冷凍サイクル制御を行うことができるもの
として、電動式膨張弁を用いて冷暖房運転可能な
冷凍サイクルを構成するようにしたものが開発さ
れている。
Recently, air conditioners have been developed that use electric expansion valves to configure a refrigeration cycle capable of heating and cooling operation, allowing the refrigeration cycle to be controlled using a variety of signal media. has been done.

これは、第1図で示すように、冷暖切換え用の
四方弁aを備える冷凍サイクルbの室内側熱交換
器cと室外側熱交換機dとの間に、制御部eによ
り絞り動作が制御される電動式膨張弁fを配して
構成されるもので、温度検知器gを通じて制御部
eに入力される温度情報で冷房,暖房運転を所期
に制御するようにしている。
As shown in Fig. 1, the throttling operation is controlled by the controller e between the indoor heat exchanger c and the outdoor heat exchanger d of the refrigeration cycle b, which is equipped with a four-way valve a for switching between cooling and heating. The cooling and heating operations are controlled according to the temperature information inputted to the control unit e through the temperature sensor g.

ところで、冷暖房可能な空気調和装置では、暖
房運転において室外側熱交換器dに生じる霜を取
り除くために、暖房運転時、冷房運転に換えて霜
を取る、いわゆる除霜運転が行なわれている。
By the way, in an air conditioner capable of cooling and heating, in order to remove frost generated on the outdoor heat exchanger d during the heating operation, a so-called defrosting operation is performed in place of the cooling operation during the heating operation.

そして、この除霜運転にあたつて電動式膨張弁
fを採用したものでは、通常、第2図で示すよう
に、電動式膨張弁fのほぼ同一のままに暖房運転
時、除霜運転に入るようにした制御が採られる。
When an electric expansion valve f is used for this defrosting operation, normally, as shown in Fig. 2, the electric expansion valve f remains almost the same during heating operation and defrosting operation. Control is adopted to allow the user to enter.

ところが、このような同一開度で暖房運転から
除霜運転に切換える技術では、除霜運転が行なわ
れても、第3図に示すように、室内側熱交換器d
内に暖房運転時における液相冷媒が多量に存在し
て熱容量がきわめて大くなつているとともに、液
相冷媒にて室外側熱交換機dの内面を大きく覆つ
て、除霜の熱交換性能を低下させてしまう不都合
がある。このため、室外側熱交換機dにおける除
霜に供する温度上昇は遅く、除霜時間の長期化が
余儀なくされるものであつた。
However, with this technique of switching from heating operation to defrosting operation at the same opening degree, even when defrosting operation is performed, as shown in Fig. 3, the indoor heat exchanger d
During heating operation, a large amount of liquid phase refrigerant exists inside the outdoor heat exchanger d, resulting in an extremely large heat capacity, and the liquid phase refrigerant largely covers the inner surface of the outdoor heat exchanger d, reducing the heat exchange performance for defrosting. There is an inconvenience in letting it happen. For this reason, the temperature rise for defrosting in the outdoor heat exchanger d is slow, and the defrosting time is unavoidably prolonged.

〔考案の目的〕[Purpose of invention]

この考案は上記事情に着目してなされたもの
で、その目的とするところは、除霜時間の短縮化
を図ることがきる空気調和装置を提供することに
ある。
This invention was made in view of the above-mentioned circumstances, and its purpose is to provide an air conditioner that can shorten the defrosting time.

〔考案の概要〕[Summary of the idea]

この考案は電動式膨張弁を制御部で、除霜運転
に入る直前の暖房運転の一定時間、暖房運転の絞
り開度より小に絞り開度制御することにより、室
外側熱交換機内に存在する液相冷媒が減少化した
状態で除霜運転に入るようにして、熱交換性能を
飛躍的に高めて、早い温度上昇により除霜時間を
短縮しようとするものである。
This invention uses the control unit to control the throttle opening of the electric expansion valve to be smaller than the throttle opening of the heating operation for a certain period of time during the heating operation immediately before starting the defrosting operation. The purpose is to start defrosting operation in a state where the amount of liquid phase refrigerant is reduced, thereby dramatically increasing heat exchange performance and shortening the defrosting time by increasing the temperature quickly.

〔考案の実施例〕[Example of idea]

以下、この考案を図面に示す実施例にもとづい
て説明する。第4図はこの考案の一実施例を示
し、図中1は圧縮器、2は四方弁、3は室外側熱
交換器、4は室内側熱交換器である。そして、こ
れら各機器は冷媒循環路5で順次連結される。ま
た室外側熱交換機3と室内側熱交換器4との間に
は、電動式膨張弁6が設けられ、冷暖房運転可能
な冷凍サイクル7を構成している。なお、7aは
電動式膨張弁6に対して並列に設けた冷房用のキ
ヤピラリーチユーブを示す。一方、図中は8は電
動式膨張弁6を制御する制御部を示す。そして、
この制御部8の出力側は電動式膨張弁6に信号線
9aを介して接続されるとともに、制御部8の入
力側は圧力機1の出口側に設けた温度検知器10
に信号線9bを介して接続され、温度検知器10
から制御部8に入力される冷凍サイクルの温度に
もとづき電動式膨張弁6を所期に絞り制御するよ
うになつている。ここで、電動式膨張弁6につい
て説明すれば、これはたとえば第5図で示すよう
に、2つの入出管11a,11bを弁ポート部1
2を介して連通した弁本体13を設け、この弁本
体13内にダイヤフラム14で弁ポート部12に
対し開閉自在に支持された弁棒15を内装すると
ともに、弁本体12の頭部側にボール16b、進
退自在に螺合されたドライバー16cおよびダイ
ヤフラム14を介して弁棒15を進退動作させる
ステツピングモータ16を順に設けて構成される
ものが採用されていて、制御部8から信号が出力
されることにより、ステツピングモータ16の出
力軸16aのステツピング回転でドライバー回転
でドライバー16cおよびボール16bを進退動
させて、ダイヤフラム14、弁棒15を通じ、弁
ポート部12を所要の流通面積に開けたり、閉じ
たりすることができるようになつている。
This invention will be explained below based on embodiments shown in the drawings. FIG. 4 shows an embodiment of this invention, in which 1 is a compressor, 2 is a four-way valve, 3 is an outdoor heat exchanger, and 4 is an indoor heat exchanger. Each of these devices is sequentially connected through a refrigerant circulation path 5. Moreover, an electric expansion valve 6 is provided between the outdoor heat exchanger 3 and the indoor heat exchanger 4, and constitutes a refrigeration cycle 7 capable of air-conditioning/heating operation. Note that 7a indicates a cooling capillary reach tube provided in parallel to the electric expansion valve 6. On the other hand, in the figure, 8 indicates a control section that controls the electric expansion valve 6. and,
The output side of this control section 8 is connected to the electric expansion valve 6 via a signal line 9a, and the input side of the control section 8 is connected to a temperature sensor 10 provided on the outlet side of the pressure machine 1.
is connected to the temperature sensor 10 via the signal line 9b.
Based on the temperature of the refrigeration cycle that is input to the control unit 8 from the controller 8, the electric expansion valve 6 is controlled to be throttled as desired. Here, to explain the electric expansion valve 6, for example, as shown in FIG.
A valve body 13 is provided which communicates with the valve body 13 through the valve body 13, and a valve stem 15 supported by a diaphragm 14 so as to be openable and closable with respect to the valve port portion 12 is installed inside the valve body 13, and a ball is provided on the head side of the valve body 12. 16b, a driver 16c screwed together so as to be freely advanced and retractable, and a stepping motor 16 that moves the valve stem 15 forward and backward through the diaphragm 14 are installed in this order, and a signal is output from the control section 8. By doing so, the stepping rotation of the output shaft 16a of the stepping motor 16 causes the driver 16c and the ball 16b to advance and retreat by rotating the driver, thereby opening the valve port portion 12 to a required flow area through the diaphragm 14 and the valve stem 15. , and can be closed.

また制御部8は、暖房運転から除霜運転に切換
わるとき、その除霜運転に入る直前の暖房運転に
おいて、一定時間の間、電動式膨張弁6の絞り開
度を暖房運転状態の絞り開度より小さい、たとえ
ば最小開度となるように設定されている。
In addition, when switching from heating operation to defrosting operation, the control unit 8 controls the throttle opening of the electric expansion valve 6 for a certain period of time in the heating operation immediately before entering the defrosting operation. For example, the opening degree is set to be smaller than the minimum opening degree.

つぎにこのように構成された空気調和装置の作
用について説明する。
Next, the operation of the air conditioner configured as described above will be explained.

暖房を行うときには、四方弁2を暖房側に切換
えて圧縮機1を運転することにより、圧縮機1、
四方弁2、室内側熱交換器4、電動式膨張弁6、
室外側熱交換器3を順に冷媒が破線で示すように
流れる暖房サイクルが構成され、暖房が行なわれ
ることになる。なお、冷房を行なうときには、四
方弁2を冷房側に切換えて圧縮機1を運転すれ
ば、実線で示す冷房サイクルの構成により、冷房
が行われるものである。
When performing heating, the four-way valve 2 is switched to the heating side and the compressor 1 is operated.
four-way valve 2, indoor heat exchanger 4, electric expansion valve 6,
A heating cycle is configured in which the refrigerant sequentially flows through the outdoor heat exchanger 3 as shown by the broken line, and heating is performed. Note that when performing cooling, if the four-way valve 2 is switched to the cooling side and the compressor 1 is operated, cooling will be performed according to the configuration of the cooling cycle shown by the solid line.

そして、この暖房運転において室外側熱交換器
3に霜つきを生じ、この霜を解消すべく除霜運転
を行なうときには、霜の発生とともに四方弁2が
冷房側へ切換わつて除霜運転が入ることになる。
この除霜運転の切換え時、従来では電動式膨張弁
6の絞り開度がほぼ同一のままで暖房運転から除
霜運転に切換わり、室外側熱交換器3内に多量に
存在する冷相冷媒で除霜運転の熱交換性能を低下
せしめ、除霜時間に長い時間を要したが、この考
案では、第6図で示すように、除霜運転に入る直
前の暖房運転の一定時間、電動式膨張弁6が制御
部8の指令で暖房運転の状態のときの絞り開度よ
り、絞られ(絞り開度小)て、ある一定時間、た
とえば最小開度のもとで暖房運転が行なわれ、そ
の後除霜運転に入る。しかして、除霜運転に入る
直前の室外側熱交換器3では、第7図に示すよう
に、室外側熱交換器3内に存在する液相冷媒が減
少化されると共に、圧縮機の吐出温度が上昇す
る。かくして、室外熱交換器3内の冷媒が減少化
した状態で通常より高温の吐出温度の冷媒によつ
て除霜運転に入ることになり室外側熱交換器3で
は早い温度上昇を呈した効率の良い高い熱交換性
能が得られる。したがつて、除霜時間を短縮する
ことができるものである。実験によれば、第8図
で示すように、除霜に入つてのちの室外側熱交換
器3の温度変化は、従来の電動式膨張弁6の制御
による温度上昇推移Aに比べ、この考案の除霜運
転に入る直前に電動式膨張弁6を絞る制御による
温度上昇推移Bが、明らかに早い温度上昇を示す
ものであつた。
During this heating operation, frost builds up on the outdoor heat exchanger 3, and when a defrosting operation is performed to eliminate this frost, the four-way valve 2 switches to the cooling side as frost occurs, and the defrosting operation begins. It turns out.
When this defrosting operation is switched, conventionally the heating operation is switched to the defrosting operation while the throttle opening of the electric expansion valve 6 remains almost the same, and the cold phase refrigerant that exists in a large amount in the outdoor heat exchanger 3 is used. However, as shown in Figure 6, this design lowers the heat exchange performance during defrosting operation and requires a long time for defrosting.However, in this invention, as shown in Figure 6, the electric The expansion valve 6 is throttled (throttle opening is smaller) than the throttle opening when in the heating operation state according to a command from the control unit 8, and the heating operation is performed for a certain period of time, for example, at the minimum opening. After that, defrosting operation begins. Therefore, in the outdoor heat exchanger 3 immediately before starting the defrosting operation, as shown in FIG. 7, the liquid phase refrigerant present in the outdoor heat exchanger 3 is reduced, and the Temperature rises. In this way, with the refrigerant in the outdoor heat exchanger 3 being reduced, defrosting operation is started using the refrigerant with a discharge temperature higher than usual, and the efficiency of the outdoor heat exchanger 3 is reduced due to the rapid temperature rise. Good high heat exchange performance can be obtained. Therefore, the defrosting time can be shortened. According to the experiment, as shown in FIG. 8, the temperature change of the outdoor heat exchanger 3 after defrosting started was found to be higher than the temperature rise transition A caused by the conventional electric expansion valve 6 control. The temperature rise transition B caused by the control of throttling the electric expansion valve 6 immediately before starting the defrosting operation clearly showed a rapid temperature rise.

また、この考案を上述した実施例では、冷房用
のキヤピラリチユーブを付加した電動式膨張弁を
備えた冷凍サイクルに適用したが単独で冷房,暖
房時の絞り動作を行なう可逆式の電動式膨張弁を
備える冷凍サイクルにも適用できることはいうま
でもない。
In addition, in the above-mentioned embodiment, this invention was applied to a refrigeration cycle equipped with an electrically operated expansion valve with an additional capillary tube for cooling, but a reversible electrically operated expansion valve that independently performs throttling operation during cooling and heating is also applicable. Needless to say, the present invention can also be applied to a refrigeration cycle equipped with a valve.

また、上述した実施例では、たんに冷凍サイク
ルの温度で電動式翻張弁を動作させて冷暖房サイ
クルを制御するようにしたが、第10図で示すよ
うに、制御部8の回路内に、抵抗器20およびキ
ヤパシター21で構成される時定数回路22を設
ければ、抵抗器20とキヤパシター21との容量
変化により、電動式膨張弁6の応答性を任意に設
定することができるもので、冷凍サイクル状態の
周期的変動を防止して、冷凍能力の低下を回避す
ることができるものである。
Furthermore, in the above-described embodiment, the electric tension valve is simply operated based on the temperature of the refrigeration cycle to control the heating and cooling cycle, but as shown in FIG. By providing a time constant circuit 22 composed of a resistor 20 and a capacitor 21, the responsiveness of the electric expansion valve 6 can be set arbitrarily by changing the capacitance of the resistor 20 and capacitor 21. It is possible to prevent periodic fluctuations in the refrigeration cycle state and avoid a decrease in refrigeration capacity.

〔考案の効果〕[Effect of idea]

以上説明したようにこの考案によれば、除霜運
転に入る直前の暖房運転における一定時間、電動
式膨張弁の絞り開度を小に、絞り開度制御したか
ら、室外側熱交換器内に存在する液相冷媒が減少
化した浄態で通常より高温の吐出温度の冷媒によ
つて除霜運転に入ることになり、除霜運転時にお
ける室外側熱交換器としては飛躍的に熱交換性能
が高められることになる。
As explained above, according to this invention, the aperture opening of the electric expansion valve is controlled to be small for a certain period of time during the heating operation immediately before starting the defrosting operation. Defrosting operation begins with a refrigerant with a discharge temperature higher than usual in a purified state in which the existing liquid phase refrigerant is reduced, and the heat exchange performance as an outdoor heat exchanger during defrosting operation is dramatically improved. will be increased.

したがつて、早い温度上昇で霜つきを解消する
ことができるようになり、除霜時間を短縮化する
ことができるものである。
Therefore, it becomes possible to eliminate frost formation by quickly increasing the temperature, and the defrosting time can be shortened.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の電動式膨張弁を採用した空気調
和装置を示す構成図、第2図はその暖房運転から
除霜運転に切換わるときの電動式膨張弁の開度状
況を示す線図、第3図はその除霜運転に入る前の
室外側熱交換器内における冷媒の存在状況を示す
断面図、第4図はこの考案の一実施例の空気調和
装置を示す構成図、第5図はその電動式膨張弁の
構造を示す断面図、第6図は除霜運転に入る直前
における電動式膨張弁の開度状況を示す線図、第
7図はその除霜運転前の室外側熱交換器内におけ
る冷媒の存在状況を示す断面図、第8図は除霜運
転時における室外側熱交換器の温度上昇推移を従
来の温度上昇推移と対比して示した線図、第9図
はこの考案の他の実施例の空気調和装置を示す構
成図である。 3……室外側熱交換器、4……室内側熱交換
器、6……電動式膨張弁、8……制御部、10…
…温度検知器。
Fig. 1 is a configuration diagram showing an air conditioner employing a conventional electric expansion valve, and Fig. 2 is a diagram showing the opening degree of the electric expansion valve when switching from heating operation to defrosting operation. Fig. 3 is a sectional view showing the presence of refrigerant in the outdoor heat exchanger before starting the defrosting operation, Fig. 4 is a configuration diagram showing an air conditioner according to an embodiment of this invention, and Fig. 5 Figure 6 is a cross-sectional view showing the structure of the electric expansion valve, Figure 6 is a line diagram showing the opening status of the electric expansion valve just before starting defrosting operation, and Figure 7 is the outdoor heat before defrosting operation. Figure 8 is a cross-sectional view showing the presence of refrigerant in the exchanger, Figure 8 is a diagram showing the temperature rise transition of the outdoor heat exchanger during defrosting operation in comparison with the conventional temperature rise transition, and Figure 9 is a diagram showing the temperature rise transition of the outdoor heat exchanger during defrosting operation. It is a block diagram which shows the air conditioner of another Example of this invention. 3...Outdoor heat exchanger, 4...Indoor heat exchanger, 6...Electric expansion valve, 8...Control unit, 10...
...temperature detector.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 室外側熱交換器と室内側熱交換器との間に電動
式膨張弁を設けて構成される冷暖房運転可能な冷
凍サイクルと、除霜運転に入る直前の暖房運転
時、電動式膨張弁の絞り開度を暖房運転の開度に
比べ一定時間小さくする手段とを具備したことを
特徴とする空気調和装置。
A refrigeration cycle capable of air-conditioning and heating is configured by installing an electric expansion valve between an outdoor heat exchanger and an indoor heat exchanger, and the electric expansion valve is throttled during heating operation just before starting defrosting operation. An air conditioner characterized by comprising means for reducing the opening degree for a certain period of time compared to the opening degree for heating operation.
JP14922682U 1982-10-01 1982-10-01 air conditioner Granted JPS5954062U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14922682U JPS5954062U (en) 1982-10-01 1982-10-01 air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14922682U JPS5954062U (en) 1982-10-01 1982-10-01 air conditioner

Publications (2)

Publication Number Publication Date
JPS5954062U JPS5954062U (en) 1984-04-09
JPH0245736Y2 true JPH0245736Y2 (en) 1990-12-04

Family

ID=30331319

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14922682U Granted JPS5954062U (en) 1982-10-01 1982-10-01 air conditioner

Country Status (1)

Country Link
JP (1) JPS5954062U (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018008108A1 (en) * 2016-07-06 2019-02-28 三菱電機株式会社 Refrigeration cycle equipment

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5377606B2 (en) * 2011-09-16 2013-12-25 三菱電機株式会社 Frost detection device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5332912B2 (en) * 1975-03-24 1978-09-11
JPS5760100Y2 (en) * 1976-08-19 1982-12-22

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018008108A1 (en) * 2016-07-06 2019-02-28 三菱電機株式会社 Refrigeration cycle equipment

Also Published As

Publication number Publication date
JPS5954062U (en) 1984-04-09

Similar Documents

Publication Publication Date Title
JP3356551B2 (en) Air conditioner
JPS59170653A (en) air conditioner
JPH0529830B2 (en)
ES2311191T3 (en) AIR CONDITIONING WITH VARIABLE CAPACITY COMPRESSOR AND SAME CONTROL METHOD.
JPH0245736Y2 (en)
KR20040003707A (en) Method for controlling compressor frequency for airconditioner
JPS63105337A (en) Air-conditioning machine
JP4232567B2 (en) Refrigeration cycle equipment
JP2004069191A (en) Control method of air conditioner
JPH04174B2 (en)
JPH10267359A (en) Air conditioner
JPH07294021A (en) Heat pump type cooling and dehumidifying device
JPS6130127Y2 (en)
JPS5927145A (en) air conditioner
JP2006064257A (en) Air conditioning indoor unit and refrigeration equipment
JPS60114669A (en) Air conditioner
JP3195991B2 (en) Multi-room air conditioning system
JPH07248141A (en) Air conditioner control device
JPH0354274B2 (en)
JPS629812B2 (en)
JPH025317Y2 (en)
JP2870928B2 (en) Air flow control method for air conditioner
JPS6315718Y2 (en)
KR100858533B1 (en) Upper and lower position control device and control method of air conditioner
KR100300581B1 (en) Cold and heat cycle controll method