JPH0245687A - Power reducing device for water injection compressor - Google Patents

Power reducing device for water injection compressor

Info

Publication number
JPH0245687A
JPH0245687A JP19343988A JP19343988A JPH0245687A JP H0245687 A JPH0245687 A JP H0245687A JP 19343988 A JP19343988 A JP 19343988A JP 19343988 A JP19343988 A JP 19343988A JP H0245687 A JPH0245687 A JP H0245687A
Authority
JP
Japan
Prior art keywords
water
compressor
temperature
load operation
working space
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19343988A
Other languages
Japanese (ja)
Other versions
JP2651846B2 (en
Inventor
Masayoshi Terao
寺尾 正義
Toru Kanbayashi
徹 神林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokuetsu Industries Co Ltd
Original Assignee
Hokuetsu Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokuetsu Industries Co Ltd filed Critical Hokuetsu Industries Co Ltd
Priority to JP63193439A priority Critical patent/JP2651846B2/en
Publication of JPH0245687A publication Critical patent/JPH0245687A/en
Application granted granted Critical
Publication of JP2651846B2 publication Critical patent/JP2651846B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

PURPOSE:To contrive the reduction of driving power by increasing a temperature to be held to a fixed degree so as to prevent the temperature from decreasing of injection water into a compressor main unit when it is in no-load operation. CONSTITUTION:After a transfer to no-load operation in a compressor 1, when a temperature of circulating water decreases to a predetermined degree, a water temperature detecting switch TH operates, and receiving its signal, a fan motor 15 for a heat exchanger 11 is stopped. Simultaneously in a compressor main unit 1, a negative pressure is generated in a suction port 13 by closing a suction air passage with an unloader 16, increasing a pressure difference from a delivery port 17 and a leakage amount of compressed air between each acting space 5, and by heat generation by recompression of the leakage air and by heat receiving or the like from each sliding part, water holds its temperature in the vicinity of a degree in the time of full-load operation, being injected into the compressor main unit and repeating circulation.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、コンプレッサ本体の作用空間内に水を噴射し
、該作用空間内の冷却と密封を行うようにした水噴射コ
ンプレッサの動力軽減装置に関する。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention provides a water injection system that injects water into the working space of a compressor body to cool and seal the working space. This invention relates to a compressor power reduction device.

(従来の技術) 従来、コンプレッサ本体の作用空間内に水を注入又は噴
射し作用空間内の冷却・密封を行う型式のものとしては
実開昭58−102794号公報に示すスクリュー式コ
ンプレッサが公知である。
(Prior Art) Conventionally, a screw type compressor shown in Japanese Utility Model Application Publication No. 102794/1983 has been known as a type of compressor that cools and seals the working space by injecting or injecting water into the working space of the compressor body. be.

このコンプレッサは、第6図に示すようにシリンダケー
シング2内におす・めす一対のスクリュロータ3を収納
し、同期歯車4によって前記ロータの噛合隙間を保持し
ながら回転させ、圧縮作用を行わせると共に、作用空間
5内には第7図に示ず水循環系統から圧送された水を噴
射し、前記作用空間内の冷却と密封を行うもので、その
基本構造は従来の油冷式コンプレッサとはヌ゛同じであ
る。
As shown in FIG. 6, this compressor houses a pair of male and female screw rotors 3 in a cylinder casing 2, and rotates the rotors while maintaining a meshing gap with a synchronous gear 4 to perform a compression action and , water pumped from a water circulation system (not shown in Fig. 7) is injected into the working space 5 to cool and seal the working space, and its basic structure is different from that of a conventional oil-cooled compressor.゛It's the same.

そして、その水循環系統は第7図に示すようにコンプレ
ッサ本体lから吐出された気液混合状態の圧縮空気をレ
シーバタンク6内に内蔵するセバレータフによって空気
と水とに分離し、空気は送気管8を介して消費側に供給
すると共に、水は下方の水槽9に一旦貯溜し、そこから
給水管lO熱交換器11.給水管12を経てコンプレッ
サ本体の作用空間5内若しくは投入口13内に圧送する
ようになっている。
As shown in FIG. 7, the water circulation system separates the compressed air in a gas-liquid mixed state discharged from the compressor body 1 into air and water by a separator tough built in the receiver tank 6, and the air is passed through the air supply pipe 8. At the same time, the water is temporarily stored in the lower water tank 9, and from there is passed through the water supply pipe lO heat exchanger 11. The water is fed under pressure through a water supply pipe 12 into the working space 5 of the compressor body or into the input port 13.

なお、14は熱交換器11用冷却ファン、15はファン
モータである。
Note that 14 is a cooling fan for the heat exchanger 11, and 15 is a fan motor.

このように、水噴射コンプレッサは前記油冷式コンプレ
ッサと比べ作用空間5内の冷却・密封媒体として油の代
りに水を用いる為、吐出空気中に油を全く含有しないか
ら食品衛生、医薬等多方面にわたって使用されている。
In this way, compared to the oil-cooled compressor, the water injection compressor uses water instead of oil as the cooling and sealing medium in the working space 5, and therefore contains no oil in the discharged air, making it suitable for many applications such as food hygiene and pharmaceuticals. It is used in many areas.

(発明が解決しようとする課題) 水噴射コンプレッサは、コンプレ・ンサ本体内に注入す
る水の温度が低い程吸入作用空間内の昇温を抑制する為
体積効率が向上するので、前記水温を可久的に低く抑え
るように設計されている。
(Problem to be Solved by the Invention) A water injection compressor improves volumetric efficiency because the lower the temperature of the water injected into the compressor body, the lower the temperature rise in the suction action space. It is designed to keep it low for a long time.

ところが、前述したように全負荷運転時の注入水温を低
く抑えるように設定すると、アンローダ16によって吸
入空気通路が閉塞された所謂無負荷運転時には、前記注
入水温が全負荷運転時に比べ大きく低下する為、コンプ
レッサの駆動動力は全負荷運転時に比べさほど低下しな
い。
However, if the injection water temperature is set to be kept low during full load operation as described above, during so-called no-load operation when the intake air passage is blocked by the unloader 16, the injection water temperature will be significantly lower than during full load operation. , the driving power of the compressor does not decrease much compared to when operating at full load.

換言すると、無負荷運転時にはコンプレッサ本体への注
入水温を所定温度まで昇温させ保持することにより駆動
動力を軽減できることを本発明者らは発見した。
In other words, the inventors have discovered that during no-load operation, driving power can be reduced by increasing and maintaining the temperature of the water injected into the compressor body to a predetermined temperature.

これは、無負荷運転時前記注入水温の昇温によって、コ
ンプレッサ本体内の吸入側作用空間内の水蒸気分圧が上
昇し、これによりその上昇分だけ前記吸入側作用空間内
における負圧が緩和され、吐出口側との圧力差を縮小し
各作用空間間からの漏洩圧縮空気量が減少することに伴
い、その再圧縮動力が減少すること及び前記水蒸気分圧
の上昇により前記作用空間内における水蒸気の比率が高
くなること等によるものである。
This is because during no-load operation, the water vapor partial pressure in the suction side working space within the compressor body increases due to the temperature rise of the injected water, and as a result, the negative pressure in the suction side working space is alleviated by the increased amount. As the pressure difference with the discharge port side is reduced and the amount of compressed air leaking from between the working spaces is reduced, the recompression power is reduced and the water vapor partial pressure is increased, causing the water vapor in the working spaces to decrease. This is due to factors such as an increase in the ratio of

水噴射コンプレッサは以上の問題を存するものであるが
、さきにも説明したように無負荷運転時は圧縮機本体内
での圧縮作用が停止し発熱量が減少するにもかかわらず
、ファンモータは継続して運転され、循環水の冷却作用
を行っている。
Water injection compressors have the above problems, but as explained earlier, during no-load operation, the compression action within the compressor body stops and the amount of heat generated decreases, but the fan motor It is operated continuously and performs the cooling effect of circulating water.

したがって、本発明は以上の問題に鑑み、水噴射コンプ
レッサの無負荷運転時コンプレッサ本体内への注入水温
が低下しないよう一定温度に昇温・保持することによっ
てその駆動動力の軽減を図ることを目的とする。
Therefore, in view of the above problems, an object of the present invention is to reduce the driving power of a water injection compressor by increasing and maintaining the temperature at a constant temperature so that the temperature of the water injected into the compressor body does not drop during no-load operation of the water injection compressor. shall be.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) 本発明は、上記目的達成のため、 (1)  コンプレッサの作用空間内に熱交換器通過後
の水を注入して作用空間内の冷却・密封を行う水噴射コ
ンプレッサにおいて、前記水の循環系統中には水温検知
スイフチを設けると共に、無9.荷運転時、前記水温検
知スイッチからの信号により前記コンプレッサの作用空
間内を循環する水温を、全負荷運転時の水温近傍に保持
又は昇温する制御手段を設けたこと。そしてそのための
具体的手段として熱交換器の外部冷却媒体の通過を停止
させること、又はコンプレッサの作用空間内に注入する
水量を絞り弁によって制限することによって成すこと、
あるいは熱交換器通過後の給水管管路をバイパス弁を介
してバイパス管で連通せしめることによって成すことを
特徴とする。
(Means for Solving the Problems) In order to achieve the above objects, the present invention provides: (1) Water injection that cools and seals the working space by injecting water after passing through the heat exchanger into the working space of the compressor. In the compressor, a water temperature detection switch is provided in the water circulation system, and 9. A control means is provided for maintaining or increasing the temperature of water circulating in the working space of the compressor at a temperature close to the water temperature during full load operation based on a signal from the water temperature detection switch during load operation. As a specific means for this purpose, stopping the passage of the external cooling medium through the heat exchanger or restricting the amount of water injected into the working space of the compressor using a throttle valve;
Alternatively, it is characterized in that the water supply pipe line after passing through the heat exchanger is made to communicate with a bypass pipe via a bypass valve.

(作  用) 上記構成によれば、コンプレッサが無負荷運転に移行後
、WI環環水跡所定温度まで低下すると水温検知スイッ
チTHが作動し、その信号を受けて熱交換器ll用ファ
ンモータ15が停止する。
(Function) According to the above configuration, after the compressor shifts to no-load operation, when the water temperature drops to a predetermined temperature of the WI ring water, the water temperature detection switch TH is activated, and in response to the signal, the fan motor 15 for the heat exchanger 11 is activated. stops.

同時に、コンプレッサ本体1においてはアンローダ16
による吸入空気通路の閉塞により吸入口13内は負圧と
なり、吐出口17との圧力差が増大し、各作用空間間の
漏洩圧縮空気の量が増え、その再圧縮による発熱及び各
摺動部分からの受熱等によりコンプレッサ本体内に注入
される水の温度は全負荷運転時の水温近傍の温度に保持
され循環を繰り返す。
At the same time, the unloader 16 in the compressor body 1
Due to the blockage of the intake air passage, the inside of the suction port 13 becomes negative pressure, the pressure difference with the discharge port 17 increases, the amount of compressed air leaking between each working space increases, and the recompression causes heat generation and each sliding part. The temperature of the water injected into the compressor body is maintained at a temperature near the water temperature during full load operation, and the circulation is repeated.

このとき、吸入側作用空間内においては、前記水温の昇
温又は保持により水蒸気分圧が上昇するので、その上昇
した分だけ負圧が相殺されて緩和し、各作用空間と吐出
口17側との圧力差を縮小する。よって各作用空間間の
漏洩圧縮空気量が減少すると共に、前記作用空間内にお
ける水蒸気の比率が増すことにより、その再圧縮動力が
減少し該無負荷運転時における駆動動力を軽減する。
At this time, in the suction side working space, the water vapor partial pressure increases due to the water temperature being raised or maintained, so the negative pressure is offset and relaxed by the increased amount, and the pressure between each working space and the discharge port 17 side increases. reduce the pressure difference. Therefore, the amount of compressed air leaking between each working space is reduced, and the ratio of water vapor in the working spaces is increased, so that the recompression power is reduced and the driving power during the no-load operation is reduced.

(第1実施例) 以下、本発明の第1実施例を第1図及び第2図に基づき
説明する。
(First Embodiment) Hereinafter, a first embodiment of the present invention will be described based on FIGS. 1 and 2.

なお、従来例で説明した部位と同一箇所は同一符号をも
って説明し、その詳細説明は省略する。
Note that the same parts as those described in the conventional example will be described using the same reference numerals, and detailed description thereof will be omitted.

lはコンプレッサ本体で、吸入口13上方にはアンロー
ダ16が装着されると共に、該吸入口と連通して負圧検
知用の圧力スイッチvSが設けられている。
1 is a compressor main body, and an unloader 16 is mounted above the suction port 13, and a pressure switch vS for detecting negative pressure is provided in communication with the suction port.

他方、送気管8途中には圧力スイッチPS−1が設けら
れると共に、レシーバタンク6側にも圧力スイッチPS
−2が接続し、その下方の水槽9には水温検知スイッチ
THが配設されている。
On the other hand, a pressure switch PS-1 is provided in the middle of the air supply pipe 8, and a pressure switch PS-1 is also provided on the side of the receiver tank 6.
-2 is connected, and a water temperature detection switch TH is provided in the water tank 9 below it.

また、レシーバタンク6の空気出口21には該タンク内
圧パージ用の電磁弁S■及びパージ弁22が接続する一
方、熱交換器11前面にはファンモータ15が配置され
、無負荷運転時には前記水温検知スイッチTHからの信
号によりON、OFFされる。
Further, the air outlet 21 of the receiver tank 6 is connected to a solenoid valve S for purging the internal pressure of the tank and a purge valve 22, while a fan motor 15 is disposed in front of the heat exchanger 11, and during no-load operation, the water temperature is It is turned on and off by a signal from the detection switch TH.

そして、これら各電気機器の制御回路は第2図に示すよ
うに電H已に対しファンモータ15.コンプレッサ駆動
用メインモータ23が各々並列に接続すると共に、該電
源の一方からは前述の圧カスインチPS−1,VS、P
S−2,各々が直列に接続し、パージ用電磁弁Svの動
作用リレー55を介して他方の電源に接続している。
As shown in FIG. 2, the control circuits for each of these electrical devices include fan motor 15. The main motors 23 for driving the compressors are connected in parallel, and one of the power supplies is connected to the pressure gas inches PS-1, VS, P
S-2, each connected in series and connected to the other power source via the operating relay 55 of the purge solenoid valve Sv.

さらに、前記圧力スイッチVS、PS−2間からはリレ
ー55と並列にファンモータ15発停用リレー60が接
続し、その常閉接点6Qbはファンモータ用電磁接触器
50Fに接続すると共に、前記常閉接点60bと並列に
水温検知スイッチTHが接続され、またリレー55の常
閉接点55bはパージ用電磁弁SVとそれぞれ接続して
いる。
Furthermore, a relay 60 for starting and stopping the fan motor 15 is connected in parallel with the relay 55 between the pressure switches VS and PS-2, and its normally closed contact 6Qb is connected to the fan motor electromagnetic contactor 50F. A water temperature detection switch TH is connected in parallel to the closed contact 60b, and the normally closed contact 55b of the relay 55 is connected to the purge solenoid valve SV.

ここで、圧力スイッチPS−1は送気管8内圧力が一定
圧力(6,3kgf/cd)以上のときにONLそれ以
下のときにOFFとなり、また圧カスインチVSはアン
ローダ16の吸入通路が閉のときに吸入口13内の負圧
によってON、前記通路が開のときはOFFとなる。
Here, the pressure switch PS-1 turns OFF when the internal pressure of the air supply pipe 8 is above a certain pressure (6.3 kgf/cd) and below it, and the pressure switch VS turns OFF when the suction passage of the unloader 16 is closed. It is turned ON by the negative pressure in the suction port 13, and turned OFF when the passage is open.

さらに、圧力スイッチPS−2はレシーバタンク6内圧
が一定圧力(1、2kg f / cd )以下のとき
にON、それよりも若干高い圧力(1、5kg f /
 c+J )でOFFとなるように設定され、また、水
温検知スイッチTHは所定水温以上のときにON、それ
以下のときはOFFとなる。
Furthermore, the pressure switch PS-2 is turned ON when the internal pressure of the receiver tank 6 is below a certain pressure (1, 2 kg f/cd), and is turned on when the pressure is slightly higher than that (1, 5 kg f/cd).
c+J), and the water temperature detection switch TH is set to be turned OFF when the water temperature is above a predetermined water temperature, and turned OFF when the water temperature is lower than that.

なお、40はファンモータ15及びメインモタ23始動
用リレーで40aはその常開接点、52はメインモータ
用電磁接触器、PB−3は停止スイッチ、PB−Rは始
動スイッチである。
In addition, 40 is a relay for starting the fan motor 15 and the main motor 23, 40a is its normally open contact, 52 is an electromagnetic contactor for the main motor, PB-3 is a stop switch, and PB-R is a start switch.

次いで動作について説明する。Next, the operation will be explained.

始動スイッチPB−RをONすると、リレー40の常開
接点40aが閉成し、ファンモータ15及びメインモー
タ23が運転されレシーバクンクロ内圧は徐々に昇圧し
圧力スイッチPS−2ON後消費側に圧縮空気の供給を
開始する。そして、消費側での圧縮空気の消費が停止す
ると圧力スイッチps−iがONとなり、後アンローダ
16が動作し吸入空気通路を閉じる。
When the start switch PB-R is turned on, the normally open contact 40a of the relay 40 is closed, the fan motor 15 and the main motor 23 are operated, and the internal pressure of the receiver is gradually increased and compressed to the consumption side after the pressure switch PS-2 is turned on. Start supplying air. Then, when the consumption of compressed air on the consumption side stops, the pressure switch ps-i is turned on, and the rear unloader 16 operates to close the intake air passage.

これにより、吸入口13内は急速に負圧となり圧力スイ
ッチ■SがONしてリレー55の常開接点55bを開成
し電磁弁S■への通電を絶つので、パージ弁23が開き
レシーバタンク内圧を所定圧力まで開放しその状態を維
持する。
As a result, the inside of the suction port 13 rapidly becomes negative pressure, and the pressure switch S is turned on, opening the normally open contact 55b of the relay 55 and cutting off the power to the solenoid valve S, which opens the purge valve 23 and pressure inside the receiver tank. is released to a predetermined pressure and maintained at that state.

同時に、リレー60も通電されその常閉接点60bは開
成するのでファンモータ15は停止状態となる。
At the same time, the relay 60 is also energized and its normally closed contact 60b is opened, so that the fan motor 15 is in a stopped state.

このとき、循環水温が所定温度以下であれば水温検知ス
イッチTHの接点は開となっており、前記ファンモータ
15は停止状態のま盲運転を継続する。
At this time, if the circulating water temperature is below a predetermined temperature, the contact of the water temperature detection switch TH is open, and the fan motor 15 continues to operate blindly in a stopped state.

他方、コンプレッサ本体内では前記ファンモータの停止
により循環水温は従来例に比し高い温度で循環し運転さ
れるので、吸入口13側作用空間内は適度の水蒸気分圧
を保持すると共に、該作用空間内をはじめとする各作用
空間内においては前記注入水及び圧縮空気及び水蒸気等
を気液混合状態に圧縮し吐出口17側に排出する。
On the other hand, in the compressor main body, the circulating water temperature is circulated and operated at a higher temperature than in the conventional example due to the stop of the fan motor, so that an appropriate water vapor partial pressure is maintained in the working space on the side of the suction port 13, and the working space is maintained. In each working space including the space, the injected water, compressed air, water vapor, etc. are compressed into a gas-liquid mixed state and discharged to the discharge port 17 side.

このときのコンプレッサの駆動動力は第3図中線Aで示
した値まで軽減される。
At this time, the driving power of the compressor is reduced to the value shown by line A in FIG.

そして、この状態でコンプレッサの運転を継続すると、
コンプレッサ本体l内における圧縮空気の再圧縮による
発熱及び各摺動部分からの受熱等によりwi環水温は次
第に昇温する。そして所定温度に達すると水温検知スイ
ッチTHの接点が閉となってファンモータ15を運転し
水の冷却作用を開始し以降この操り返しを行う。
If the compressor continues to operate in this state,
The wi ring water temperature gradually rises due to heat generation due to recompression of the compressed air within the compressor body 1 and heat received from each sliding portion. When the predetermined temperature is reached, the contact point of the water temperature detection switch TH closes to operate the fan motor 15 to start cooling the water, and this operation is repeated thereafter.

本発明は、以上のように構成され作用するものであるが
、仮に従来装置の如く無負荷運転中も継続してファンモ
ータ15を運転し続けた場合、その駆動動力は第3図中
線Bの如く線Aに対し大きく上まわることとなる。
The present invention is configured and operates as described above, but if the fan motor 15 were to continue to operate even during no-load operation as in the conventional device, the driving power would be equal to the line B in Fig. 3. It will greatly exceed line A as shown in FIG.

実験によれば、無負荷運転時におけるV&環水温の差に
よる駆動動力の差はコンプレ・ノサ本体の型式によって
も若干異るが、循環水温10°Cの温度差に対し概ね4
〜7%で、これは第4図に示す如くある温度範囲でほぼ
一比例する。
According to experiments, the difference in driving power due to the difference in V and circulating water temperature during no-load operation varies slightly depending on the model of the compressor/nosa main body, but it is approximately 4°C for a temperature difference of 10°C in circulating water temperature.
~7%, which is approximately linear over a certain temperature range as shown in FIG.

また、前記熱交換器13は空冷式として説明したが、こ
れを水冷式としてもよく、その場合、外部冷却媒体であ
る水の供給手段はファン14.ファンモータ15に代え
ポンプ及び該ポンプモータとすればよい。また、図示は
してないが給水管IO又は12途中に空圧又は電磁式の
絞り弁を設け、無負荷運転時作用空間内に注入する水の
1環量を制限するようにしても同様の効果が得られる。
Although the heat exchanger 13 has been described as an air-cooled type, it may also be a water-cooled type. In that case, the means for supplying water as an external cooling medium is the fan 14. The fan motor 15 may be replaced with a pump and the pump motor. Also, although not shown, a pneumatic or electromagnetic throttle valve may be installed in the middle of the water supply pipe IO or 12 to limit the amount of water injected into the working space during no-load operation. Effects can be obtained.

(第2実施例) 第5図は本発明の第2実施例を示すもので、第1実施例
で説明した無負荷運転時冷却ファンを0N−OFFする
構成に代えて、冷却水循環系統中の配管途中にバイパス
弁を設け、冷却水温度が所定温度以下のときには熱交換
器を通過することなく循環するように構成したもので、
この場合前記冷却ファンのON−0FFは行わない。
(Second Embodiment) Fig. 5 shows a second embodiment of the present invention.Instead of the configuration in which the cooling fan is turned off during no-load operation as described in the first embodiment, A bypass valve is installed in the middle of the piping, and when the cooling water temperature is below a predetermined temperature, it is configured to circulate without passing through the heat exchanger.
In this case, the cooling fan is not turned on and off.

以下、第1実施例と異なる部分についてのみ説明する。Hereinafter, only the parts different from the first embodiment will be explained.

即ち、本第2実施例は第1実施例で説明した第2図中リ
レー60とその常閉接点60b及び水温検知スイッチT
 Hを削除する。
That is, the second embodiment has the relay 60 in FIG. 2, its normally closed contact 60b, and water temperature detection switch T described in the first embodiment.
Delete H.

そして、回に示すように熱交換器11通過前の給水管1
0途中に水温に応じて弁を開閉する感温ペレット(図示
せず)内蔵のバイパス弁30を配設し、前記循環水温が
所定温度以下のときには前記給水管10とバイパス管路
31を連通せしめ、熱交換器11を通過することなく直
接コンプレッサ本体に導入し、前記水温が所定温度以上
のときには前記バイパス管路を閉じ給水管lOと熱交換
器11とを連通せしめて所定の熱交換作用を行った後、
給水管12を介してコンプレッサ本体内に注水するよう
に構成されている。
Then, as shown in 2, the water supply pipe 1 before passing through the heat exchanger 11
A bypass valve 30 with a built-in thermosensitive pellet (not shown) that opens and closes the valve depending on the water temperature is disposed midway through the water supply pipe 10 and the bypass pipe 31 when the circulating water temperature is below a predetermined temperature. , the water is directly introduced into the compressor main body without passing through the heat exchanger 11, and when the water temperature is higher than a predetermined temperature, the bypass pipe is closed and the water supply pipe lO and the heat exchanger 11 are communicated to perform a predetermined heat exchange action. After going,
It is configured to inject water into the compressor main body via the water supply pipe 12.

即ら、コンプレッサ本体の運転状態の如何に係りなく単
に水温の状況に応じて前記バイパス管路を開閉し、これ
によりコンプレッサ本体1内に注入する水の温度を常時
一定範囲に保持する。
That is, regardless of the operating state of the compressor main body, the bypass pipe is simply opened or closed depending on the water temperature, thereby constantly maintaining the temperature of the water injected into the compressor main body 1 within a constant range.

以上により、第1実施例で説明したと同じ作用により無
負荷運転時の駆動動力の軽減が成される。
As described above, the driving power during no-load operation is reduced by the same effect as explained in the first embodiment.

(発明の効果) 以上説明したように、本発明は水噴射コンプレッサの無
負荷運転時績コンプレッサ本体内をWi環する水の温度
を全負荷運転時の水温近傍の温度に保持して循環を繰返
すようにしたので、従来のように無負荷運転時循環冷却
水の過度の冷却によって駆動動力が増加することもなく
、安定した駆動動力の軽減が図れるので省エネ効果も大
きい。
(Effects of the Invention) As explained above, the present invention maintains the temperature of the water circulating in the compressor body during no-load operation of a water injection compressor at a temperature close to the water temperature during full-load operation, and repeats the circulation. As a result, the driving power does not increase due to excessive cooling of the circulating cooling water during no-load operation as in the conventional case, and the driving power can be stably reduced, resulting in a large energy-saving effect.

特に、第1実施例においては無負荷運転時ファンモータ
の停止に伴う消費電力の節減効果も加わるので、全体と
して使用電力料金も安くさらに経済的である。
In particular, in the first embodiment, since the effect of reducing power consumption due to the stoppage of the fan motor during no-load operation is also added, the power consumption rate as a whole is lower and more economical.

また、本発明は単にスクリュコンプレッサに限らずヘー
ンコンブレンサ等他の型式の水噴射コンブ1/ノサに対
しても適用できるものである。
Further, the present invention is applicable not only to screw compressors but also to other types of water injection combustors such as Hoehn compressors.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明第1実施例の詳細図、第2図はその電気
制御回路の詳細図、第3図は無負荷運転時における動力
軽減効果を示す説明図、第4図は循環水温と無負荷運転
時における駆動動力との関係を示す説明図、第5図は第
2実施例の詳細図第6図は従来の水噴射コンプレッサ本
体の断面図第7図はその配管系統図である。 1、、、、コンプレッサ本体 3.、、、スクリュロー
タ5、、、、作用空間     6.、、、レシーバタ
ンク10、 、 、 、給水管      11.、、
、熱交換器12、、、、給水管      1’5.、
、、ファンモータ30、、、、バイパス弁    31
.、、、バイパス管路弔 図 (KWI 図
Fig. 1 is a detailed diagram of the first embodiment of the present invention, Fig. 2 is a detailed diagram of its electric control circuit, Fig. 3 is an explanatory diagram showing the power reduction effect during no-load operation, and Fig. 4 is a diagram showing the circulating water temperature. FIG. 5 is a detailed view of the second embodiment; FIG. 6 is a sectional view of a conventional water injection compressor main body; and FIG. 7 is a piping system diagram thereof. 1. Compressor body 3. , , Screw rotor 5 , , Action space 6. , , Receiver tank 10 , , Water supply pipe 11. ,,
, heat exchanger 12, , water supply pipe 1'5. ,
,,fan motor 30,,,bypass valve 31
.. ,,, Bypass pipe funeral diagram (KWI diagram)

Claims (4)

【特許請求の範囲】[Claims] (1)コンプレッサの作用空間内に熱交換器通過後の水
を注入して作用空間内の冷却・密封を行う水噴射コンプ
レッサにおいて、前記水の循環系統中には水温検知スイ
ッチを設けると共に、無負荷運転時、前記水温検知スイ
ッチからの信号により前記コンプレッサの作用空間内を
循環する水温を全負荷運転時の水温近傍に保持又は昇温
する制御手段を設けたことを特徴とする水噴射コンプレ
ッサの動力軽減装置。
(1) In a water injection compressor that cools and seals the working space by injecting water that has passed through a heat exchanger into the working space of the compressor, a water temperature detection switch is provided in the water circulation system, and a water temperature detection switch is provided in the water circulation system. A water injection compressor, characterized in that, during load operation, a control means is provided for maintaining or increasing the temperature of the water circulating in the working space of the compressor near the water temperature during full load operation in response to a signal from the water temperature detection switch. Power reduction device.
(2)前記無負荷運転時における水温の制御は、水循環
系統中に配設した熱交換器を通過する外部冷却媒体の停
止によって成すことを特徴とする請求項1記載の水噴射
コンプレッサの動力軽減装置。
(2) Power reduction of the water injection compressor according to claim 1, characterized in that the water temperature during the no-load operation is controlled by stopping an external cooling medium passing through a heat exchanger disposed in the water circulation system. Device.
(3)前記無負荷運転時における水温の制御は、水循環
系統中の給水管途中に設けた絞り弁によって循環水量を
制限することによって成すことを特徴とする請求項1記
載の水噴射コンプレッサの動力軽減装置。
(3) The power of the water injection compressor according to claim 1, wherein the water temperature during the no-load operation is controlled by limiting the amount of circulating water using a throttle valve provided in the middle of a water supply pipe in the water circulation system. mitigation device.
(4)コンプレッサの作用空間内に熱交換器通過後の水
を注入して作用空間内の冷却・密封を行う水噴射コンプ
レッサにおいて、前記熱交換器通過前の給水管管路には
バイパス弁を設け、該管路内の水温が所定温度以下のと
きには前記熱交換器通過前後の給水管管路を前記バイパ
ス弁を介してバイパス管で連通せしめるように構成した
ことを特徴とする水噴射コンプレッサの動力軽減装置。
(4) In a water injection compressor that cools and seals the working space by injecting water that has passed through a heat exchanger into the working space of the compressor, a bypass valve is installed in the water supply pipe line before passing through the heat exchanger. A water injection compressor, characterized in that the water supply pipes before and after passing through the heat exchanger are connected by a bypass pipe via the bypass valve when the water temperature in the pipe is below a predetermined temperature. Power reduction device.
JP63193439A 1988-08-04 1988-08-04 Power reduction device for water injection compressor Expired - Fee Related JP2651846B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63193439A JP2651846B2 (en) 1988-08-04 1988-08-04 Power reduction device for water injection compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63193439A JP2651846B2 (en) 1988-08-04 1988-08-04 Power reduction device for water injection compressor

Publications (2)

Publication Number Publication Date
JPH0245687A true JPH0245687A (en) 1990-02-15
JP2651846B2 JP2651846B2 (en) 1997-09-10

Family

ID=16308007

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63193439A Expired - Fee Related JP2651846B2 (en) 1988-08-04 1988-08-04 Power reduction device for water injection compressor

Country Status (1)

Country Link
JP (1) JP2651846B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5593046A (en) * 1994-05-09 1997-01-14 Nikko Kogyo Kabushiki Kaisha Collapsible housing frame
JP2003529721A (en) * 2000-03-30 2003-10-07 スベンスカ・ロツタア・マスキナア・アクチボラグ Method for controlling bacterial growth in a circulation system equipped with a compressor
US7819261B2 (en) 2005-01-14 2010-10-26 Nix, Inc. Width-adjustable board storage frame and assembly method for the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4774351B2 (en) * 2006-10-16 2011-09-14 株式会社日立産機システム Water jet compressor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58129090U (en) * 1982-02-25 1983-09-01 三井精機工業株式会社 Antifreeze device for water injection compressor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58129090U (en) * 1982-02-25 1983-09-01 三井精機工業株式会社 Antifreeze device for water injection compressor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5593046A (en) * 1994-05-09 1997-01-14 Nikko Kogyo Kabushiki Kaisha Collapsible housing frame
JP2003529721A (en) * 2000-03-30 2003-10-07 スベンスカ・ロツタア・マスキナア・アクチボラグ Method for controlling bacterial growth in a circulation system equipped with a compressor
JP4982023B2 (en) * 2000-03-30 2012-07-25 スベンスカ・ロツタア・マスキナア・アクチボラグ Method for inhibiting bacterial growth in a circulation system with a compressor
US7819261B2 (en) 2005-01-14 2010-10-26 Nix, Inc. Width-adjustable board storage frame and assembly method for the same

Also Published As

Publication number Publication date
JP2651846B2 (en) 1997-09-10

Similar Documents

Publication Publication Date Title
US3961862A (en) Compressor control system
US8485789B2 (en) Capacity modulated scroll compressor system and method
US6385981B1 (en) Capacity control of refrigeration systems
US3788776A (en) Compressor unloading control
CN101317045B (en) Variable impulse-duration system with pressure regulating valve
US3260444A (en) Compressor control system
JPH0388989A (en) Screw compression device and its rotor control device and operation control device
CN113597511A (en) Compressor system and control method thereof
CN111613814A (en) Fuel cell system and hydrogen circulation pump
JPH0245687A (en) Power reducing device for water injection compressor
US5201648A (en) Screw compressor mechanical oil shutoff arrangement
CN113758035A (en) Refrigerating system
JP3384225B2 (en) Oil-cooled screw compressor and operating method thereof
US4812110A (en) Oil-free screw compressor with bypass of cooled discharged gas
JP2008128085A (en) Oil cooled screw compressor and load reducing method for oil cooled screw compressor
JP2010185458A (en) Method of operating screw compressor
JP2007085360A (en) Method for operating screw compressor
JP3914713B2 (en) Screw compressor operating method and screw compressor
JPH1151502A (en) Turbo refrigerating machine
JPH10132401A (en) Control for multi-stage refrigerant compressor
JP3965706B2 (en) Air compressor
JPH0551076B2 (en)
JP3009255B2 (en) Suction throttle valve for oiled screw compressor
JP4608289B2 (en) Operation control method of screw compressor
JP4549825B2 (en) Oil-free compressor speed control method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees