JPH0245374B2 - - Google Patents

Info

Publication number
JPH0245374B2
JPH0245374B2 JP54164262A JP16426279A JPH0245374B2 JP H0245374 B2 JPH0245374 B2 JP H0245374B2 JP 54164262 A JP54164262 A JP 54164262A JP 16426279 A JP16426279 A JP 16426279A JP H0245374 B2 JPH0245374 B2 JP H0245374B2
Authority
JP
Japan
Prior art keywords
inverter
circuit
input
pulse
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP54164262A
Other languages
Japanese (ja)
Other versions
JPS5686528A (en
Inventor
Fusao Tsubokura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP16426279A priority Critical patent/JPS5686528A/en
Publication of JPS5686528A publication Critical patent/JPS5686528A/en
Publication of JPH0245374B2 publication Critical patent/JPH0245374B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K3/00Circuits for generating electric pulses; Monostable, bistable or multistable circuits
    • H03K3/02Generators characterised by the type of circuit or by the means used for producing pulses
    • H03K3/353Generators characterised by the type of circuit or by the means used for producing pulses by the use, as active elements, of field-effect transistors with internal or external positive feedback
    • H03K3/354Astable circuits

Landscapes

  • Logic Circuits (AREA)

Description

【発明の詳細な説明】 本発明はパルス回路に関し、特に相補型絶縁ゲ
ート電界効果トランジスタ回路(以下
CMOSFET回路という)を含むパルス回路に関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to pulse circuits, and more particularly to complementary insulated gate field effect transistor circuits (hereinafter referred to as complementary insulated gate field effect transistor circuits).
Regarding pulse circuits including CMOSFET circuits.

CMOSFET回路は、低消費電力、雑音余裕度
が大きい、動作範囲が広い等の特徴があり、広く
一般に使われている。
CMOSFET circuits have characteristics such as low power consumption, high noise margin, and wide operating range, and are widely used.

CMOSFET回路の入力部分に抵抗R及び容量
Cからなる充電回路又は放電回路を接続して、ワ
ンシヨツト回路、遅延回路等の入力信号に対して
所定の時間軸操作を行なうパルス回路を作ること
が出来る。従来、この様な回路では、その時定数
分、入力波形はなまり、そのなまりは、CMOS
回路において、消費電力の増大を招く原因とな
る。今、CMOSインバータ回路の消費電力につ
いて第1図及び第2図を用いて述べる。入力IN
がVDDレベルのときは、PチヤネルMOSFET1
が非導通(以下OFFと記す)、Nチヤネル
MOSFET2は導通(以下ONと記す)するが、
出力に負荷をとらない限り、電流は、VDDより
VSSへは流れない。又入力がVSSレベルのときは、
PチヤネルMOSFET1がONし、Nチヤネル
MOSFET2はOFFして、出力に負荷をとらない
限り電流はVDDよりVSSへは流れない。このよう
に入力が、安定している状態では、わずかに逆バ
イヤスのPNジヤンクシヨンの漏洩電流やゲート
表面の汚れなどによるゲート漏洩電流のみとな
り、ナノアンペア・オーダーの電流しか流れな
い。入力レベルが変化する場合について考えてみ
ると、負荷としてつながつた負荷容量を充放電す
る電流と、スイツチング時にPチヤネル
MOSFETとNチヤネルMOSFETが同時にON状
態になつたときにVDDよりVSSへ流れる電流(貫
通電流)とがある。
By connecting a charging circuit or a discharging circuit consisting of a resistor R and a capacitor C to the input portion of the CMOSFET circuit, a pulse circuit that performs a predetermined time axis operation on the input signal of a one-shot circuit, a delay circuit, etc. can be created. Conventionally, in such a circuit, the input waveform is rounded by the time constant, and the rounding is similar to that of CMOS
This causes an increase in power consumption in the circuit. Now, the power consumption of the CMOS inverter circuit will be described using FIGS. 1 and 2. Input IN
When is at V DD level, P channel MOSFET1
is non-conducting (hereinafter referred to as OFF), N channel
MOSFET2 conducts (hereinafter referred to as ON), but
Unless the output is loaded, the current will be less than V DD .
Does not flow to V SS . Also, when the input is at V SS level,
P-channel MOSFET1 turns on, and N-channel MOSFET1 turns on.
MOSFET2 is turned off and current will not flow from V DD to V SS unless a load is applied to the output. When the input is stable in this way, there is only a slight leakage current from the reverse-biased PN junction and gate leakage current due to dirt on the gate surface, and only a current on the order of nanoamperes flows. Considering the case where the input level changes, the current that charges and discharges the load capacitance connected as a load, and the P channel current that changes during switching.
There is a current (through current) that flows from V DD to V SS when the MOSFET and N-channel MOSFET are turned on at the same time.

充放電時の消費電力Pdynは、入力がデユーテ
イ50%の方形波であるとすれば、CL・VDD 2・f0
なり負荷容量CL、電源電圧VDDが一定なら、周波
数f0に比例して大きくなる。
The power consumption Pdyn during charging and discharging is, if the input is a square wave with a duty of 50%, C L · V DD 2 · f 0 , and if the load capacitance C L and the power supply voltage V DD are constant, the frequency is f 0 . becomes proportionally larger.

又、PチヤネルMOSFETとNチヤネル
MOSFETが同時に導通状態になりVDDからVSS
流れる電流は、各トランジスタのON時のインピ
ーダンスによつて異なる。
Also, P channel MOSFET and N channel
The current flowing from V DD to V SS when the MOSFETs become conductive at the same time differs depending on the impedance of each transistor when it is ON.

よつて全消費電力は PD=Pdyo+PQ+PS となる。但し、Pdyoは動作時消費電力、PQは静消
費電力、PSはスイツチング時の消費電力である。
しかし、スイツチング時の消費電力PSは各トラン
ジスタのON抵抗によつて変わる。実際入力レベ
ルVINがVDD―|VTP|<VINのとき(但しVTPはP
チヤネルMOSFETの閾値電圧)、Pチヤネル
MOSFETはOFF状態で、VDDよりVSSへ流れる電
流は、ほとんど流れず、又VIN<VTNのときも
(但しVTNはNチヤネルMOSFETの閾値電圧)N
チヤネルMOSFETはOFF状態で、VDDよりVSS
流れる電流はほとんど流れない。しかし入力レベ
ルVTN<VIN<VDD−|VTP|のときは、すなわち
入力電圧VINがNチヤネルMOSFETの閾値電圧
VTNを越えると、徐々に電流が流れはじめ、さら
に入力電圧が上昇してVDD/2付近(論理閾値電
圧)では、両方のトランジスタがONした状態と
なり貫流電流は最大となり、さらに入力電圧が上
昇するとPチヤネルMOSFETがOFFしはじめて
電流は減少する。この様子は、第2図、第3図に
示す。この様に入力波形がなまつていると、Pチ
ヤネルMOSFET、NチヤネルMOSFETが共に
ONしている時間が長くなり消費電力は大きくな
るという欠点がある。
Therefore, the total power consumption is P D = P dyo + P Q + P S. However, P dyo is power consumption during operation, P Q is static power consumption, and P S is power consumption during switching.
However, the power consumption P S during switching varies depending on the ON resistance of each transistor. When the actual input level V IN is V DD - | V TP | < V IN (however, V TP is P
channel MOSFET threshold voltage), P channel
When the MOSFET is in the OFF state, almost no current flows from V DD to V SS , and even when V IN < V TN (where V TN is the threshold voltage of the N-channel MOSFET), N
The channel MOSFET is in the OFF state, and almost no current flows from V DD to V SS . However, when the input level V TN < V IN < V DD − | V TP |, that is, the input voltage V IN is equal to the threshold voltage of the N-channel MOSFET.
When V TN is exceeded, the current gradually begins to flow, and the input voltage further increases until around V DD /2 (logical threshold voltage), where both transistors are turned on and the through current reaches its maximum, and the input voltage further increases. When the current rises, the P-channel MOSFET begins to turn off and the current decreases. This situation is shown in FIGS. 2 and 3. If the input waveform is sluggish like this, both the P-channel MOSFET and N-channel MOSFET
The drawback is that it stays on for a long time and consumes a lot of power.

このためMOSFET回路においては入力として
立上り時間、立下り時間の小さい波形が望ましい
が、回路構成上、RC回路を入力に接続する回路
では、スイツチング時の消費電力は増大して
CMOSFET回路の特徴である低消費電力が損な
われる。
For this reason, waveforms with short rise and fall times are desirable for input in MOSFET circuits, but due to the circuit configuration, power consumption during switching increases in circuits that connect an RC circuit to the input.
The low power consumption characteristic of CMOSFET circuits is lost.

本発明は、RC回路を入力側に接続したCMOS
インバータを含み、入力信号に対して所定の時間
軸操作を行なうパルス回路のスイツチング時の消
費電力の低減を目的とする。
The present invention is a CMOS device with an RC circuit connected to the input side.
The purpose is to reduce power consumption during switching of a pulse circuit that includes an inverter and performs a predetermined time base operation on an input signal.

本発明によれば、時定数手段を有する充電回路
または放電回路を入力側に接続した相補型絶縁ゲ
ート電界効果トランジスタからなるインバータを
もち、その入力端がフローテイング状態とならな
いような論理回路の出力端に接続され、入力信号
に応答して前記時定数手段で決まる所定幅のパル
ス信号を発生するパルス回路において、出力段の
インバータのパルス出力をゲートにうけ、前記出
力段のインバータのパルス出力のパルス幅が確定
した後オン状態となる電界効果トランジスタを前
記出力段インバータの入力端と電源との間に接続
したことを特徴とするパルス回路が得られる。
According to the present invention, the output of a logic circuit has an inverter made of complementary insulated gate field effect transistors connected to the input side of a charging circuit or a discharging circuit having a time constant means, and whose input terminal is not in a floating state. In a pulse circuit that is connected to the terminal and generates a pulse signal of a predetermined width determined by the time constant means in response to an input signal, the pulse output of the output stage inverter is received at the gate, and the pulse output of the output stage inverter is connected to the gate. There is obtained a pulse circuit characterized in that a field effect transistor that turns on after the pulse width is determined is connected between the input terminal of the output stage inverter and the power supply.

以下、図面を参照して本発明を詳細に説明す
る。
Hereinafter, the present invention will be explained in detail with reference to the drawings.

第4図は従来のワンシヨツト回路の一代表例を
示す回路接続図で、各点の動作波形を第5図に示
す。第5図においてCMOSインバータ4の入力
波形6に注目すると、電圧波形がインバータ4の
論理閾値電圧を越えるとインバータ4の出力は
“L”レベルとなる。しかし、コンデンサCの充
電はまだ行なわれており、インバータ4を構成す
る両方のFETがON状態の間は貫流電流は流れ続
け、入力電圧6がVDDレベルになつて完全にOFF
となる。論理閾値電圧を越えて以降は図示のよう
にRC時定数で充電を続ける必要はなく、電圧レ
ベルを急激にVDDレベルに引きあけることができ
ればCMOSインバータの貫通電流を減らすこと
ができる。
FIG. 4 is a circuit connection diagram showing a typical example of a conventional one-shot circuit, and FIG. 5 shows operating waveforms at each point. In FIG. 5, paying attention to the input waveform 6 of the CMOS inverter 4, when the voltage waveform exceeds the logical threshold voltage of the inverter 4, the output of the inverter 4 becomes "L" level. However, capacitor C is still being charged, and while both FETs that make up inverter 4 are in the ON state, the through current continues to flow, and when input voltage 6 reaches the V DD level, it is completely turned OFF.
becomes. After the logic threshold voltage is exceeded, there is no need to continue charging with the RC time constant as shown in the figure, and if the voltage level can be suddenly raised to the V DD level, the through current of the CMOS inverter can be reduced.

第6図は本発明の一実施例を示す回路接続図
で、RC時定数回路とインバータ4の入力側との
間にPチヤネルMOSFET7をプルアツプ抵抗と
して接続したもので、PチヤネルMOSFET7の
ソース、ドレイン及びゲートはそれぞれインバー
タの入力、電源電圧VDDおよびインバータ4の出
力に接続されている。その他は第4図に示した従
来のワンシヨツト回路と同じである。今入力IN
が“L”から“H”に変化すると否定論理和回路
(NOR回路)3の出力は“H”から“L”に変化
し、インバータ4の入力側電位は“H”から
“L”に変化したのちRCできまる時定数で充電の
ため上昇しはじめる。出力OUTは“L”から
“H”に変化するが、インバータ4の入力側電位
がインバータ4の論理閾値に達した時点で“L”
レベルになる。するとPチヤネルMOSFET7が
導通しはじめる結果としてインバータ4の入力側
電位は速やかにVDDにプルアツプされ、インバー
タ4の貫通電流も亦速やかに減少する。第7図に
各点の動作波形を示す。第7図において点線はP
チヤネルMOSFET7を接続しない場合の波形で
ある。貫通電流IDDは入力INの立上り時間が短い
ものとすればINの立上り時にはわずかの時間し
か流れず、結局のところワンシヨツト回路の貫通
電流による消費電力は本発明の適用により約半分
に低減される。
FIG. 6 is a circuit connection diagram showing one embodiment of the present invention, in which a P-channel MOSFET 7 is connected as a pull-up resistor between the RC time constant circuit and the input side of the inverter 4. and the gate are connected to the input of the inverter, the power supply voltage V DD and the output of the inverter 4, respectively. The other features are the same as the conventional one-shot circuit shown in FIG. Now input IN
changes from “L” to “H”, the output of the NOR circuit (NOR circuit) 3 changes from “H” to “L”, and the input side potential of the inverter 4 changes from “H” to “L”. After that, it starts to rise due to charging with a time constant determined by RC. The output OUT changes from "L" to "H", but it becomes "L" when the input side potential of the inverter 4 reaches the logic threshold of the inverter 4.
become the level. Then, the P-channel MOSFET 7 begins to conduct, and as a result, the input side potential of the inverter 4 is quickly pulled up to VDD , and the through current of the inverter 4 also rapidly decreases. FIG. 7 shows the operating waveforms at each point. In Figure 7, the dotted line is P
This is a waveform when channel MOSFET 7 is not connected. If the rise time of input IN is short, the through current I DD will flow for only a short time when IN rises, and after all, the power consumption due to through current in a one-shot circuit can be reduced by approximately half by applying the present invention. .

第8図は本発明の他の実施例である単安定マル
チバイブレータの回路接続図で、入力信号の立下
りと共にCMOSインバータ8の入力9も立下り
“L”になる。インバータ8の出力10は“H”
になりPチヤンネルMOSFET11はオフとな
る。この状態でC1が充電され、インバータ8の
論理閾値を超えるまで充電されるとインバータ8
の出力10は“L”に変化しPチヤンネル
MOSFET11がオンする。この結果インバータ
8の入力電位が高速にVDDにプルアツプされる。
インバータ8の出力10が“H”の期間に逆流防
止ダイオード12を介して容量C2に充電された
電荷はインバータ8の出力10が“L”になると
共に抵抗R2を介して放電されCMOSインバータ
13の入力電位14が論理閾値以下になつたとこ
ろでOUTは“L”から“H”になり、Nチヤネ
ルMOSFET15が導通しはじめて入力電位14
をVSSにプルダウンする。こうしてCMOSインバ
ータ8及び13の貫通電流による消費電力はそれ
ぞれPチヤネルMOSFET11のプルアツプ作用
及びNチヤネルMOSFET15のプルダウン作用
により大略従来の半分に低減される。第9図は各
点の動作波形を示す図で、点線はプルアツプ又は
プルダウンなしの場合の波形である。なお、IDD
は電源間に流れる電流である。
FIG. 8 is a circuit connection diagram of a monostable multivibrator which is another embodiment of the present invention, in which the input 9 of the CMOS inverter 8 also falls and becomes "L" as the input signal falls. Output 10 of inverter 8 is “H”
As a result, the P channel MOSFET 11 is turned off. In this state, C1 is charged, and when it is charged until it exceeds the logic threshold of inverter 8, inverter 8
Output 10 changes to “L” and becomes P channel.
MOSFET11 turns on. As a result, the input potential of inverter 8 is quickly pulled up to VDD .
While the output 10 of the inverter 8 is "H", the charge charged in the capacitor C2 via the reverse current prevention diode 12 is discharged via the resistor R2 when the output 10 of the inverter 8 becomes "L", and is transferred to the CMOS inverter. When the input potential 14 of 13 becomes below the logic threshold, OUT changes from "L" to "H", and the N-channel MOSFET 15 begins to conduct and the input potential 14
Pull down to V SS . In this way, the power consumption due to the through current of the CMOS inverters 8 and 13 is reduced to approximately half of the conventional power consumption due to the pull-up action of the P-channel MOSFET 11 and the pull-down action of the N-channel MOSFET 15, respectively. FIG. 9 is a diagram showing operating waveforms at each point, and the dotted line is the waveform when there is no pull-up or pull-down. Furthermore, IDD
is the current flowing between the power supplies.

以上説明したように本発明によれば、MOSイ
ンバータの入力側にRC時定数回路を接続して、
入力信号に対して所定の時間軸操作を行なうパル
ス回路において、CMOSインバータを構成する
FETの双方が導通する時間を必要最小限に押え
ることができ、パルス回路の消費電力低減に著し
い効果がある。
As explained above, according to the present invention, an RC time constant circuit is connected to the input side of a MOS inverter,
A CMOS inverter is configured in a pulse circuit that performs a specified time axis operation on an input signal.
The time during which both FETs are conductive can be kept to the necessary minimum, which has a significant effect on reducing the power consumption of pulse circuits.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はCMOSインバータの回路接続図、第
2図はCMOSインバータの入出力特性曲線(実
線)並びに貫通電流IDDと入力電圧VINの関係を示
す図、第3図a及びbはそれぞれCMOSインバ
ータの入力電圧VINの時間的変化の例および貫通
電流IDDの時間的変化を示す図、第4図は従来の
ワンシヨツト回路を示す回路接続図、第5図は第
4図の回路の各点の動作波形を示す図、第6図及
び第7図はそれぞれ本発明の一実施例を示す回路
接続図及び各点の動作波形を示す図、第8図及び
第9図はそれぞれ本発明の他の実施例を示す回路
接続図及び各点の動作波形を示す図である。 1…PチヤネルMOSFET、2…Nチヤネル
MOSFET、3…否定論理和回路、4,8,13
…CMOSインバータ、5…4の出力、6…4の
入力、7,11…PチヤネルMOSFET、9…8
の入力、10…8の出力、12…ダイオード、1
4…13の入力、15…NチヤネルMOSFET、
VDD…高電位電源、VSS…低電位電源、IN…入力
端子、OUT…出力端子。
Figure 1 is a circuit connection diagram of a CMOS inverter, Figure 2 is a diagram showing the input/output characteristic curve (solid line) of a CMOS inverter, and the relationship between through current I DD and input voltage V IN , and Figures 3 a and b are CMOS A diagram showing an example of the temporal change in the input voltage V IN of the inverter and a temporal change in the through current I DD . Figure 4 is a circuit connection diagram showing a conventional one-shot circuit. Figure 5 shows each of the circuits in Figure 4. Figures 6 and 7 are circuit connection diagrams showing an embodiment of the present invention and diagrams showing operation waveforms at each point, and Figures 8 and 9 are diagrams showing operation waveforms at each point, respectively. FIG. 7 is a circuit connection diagram showing another embodiment and a diagram showing operation waveforms at each point. 1...P channel MOSFET, 2...N channel
MOSFET, 3...NOR circuit, 4, 8, 13
...CMOS inverter, 5...4 output, 6...4 input, 7, 11...P channel MOSFET, 9...8
input, 10...output of 8, 12...diode, 1
4...13 inputs, 15...N-channel MOSFET,
V DD ...High potential power supply, V SS ...Low potential power supply, IN...Input terminal, OUT...Output terminal.

Claims (1)

【特許請求の範囲】[Claims] 1 時定数手段を有する充電回路または放電回路
を入力側に接続した相補型絶縁ゲート電界効果ト
ランジスタからなるインバータをもち、その入力
端がフローテイング状態とならないような論理回
路の出力端に接続され、入力信号に応答して前記
時定数手段で決まる所定幅のパルス信号を発生す
るパルス回路において、出力段のインバータのパ
ルス出力をゲートにうけ、前記出力段のインバー
タのパルス出力のパルス幅が確定した後オン状態
となる電界効果トランジスタを前記出力段インバ
ータの入力端と電源との間に接続したことを特徴
とするパルス回路。
1. An inverter consisting of a complementary insulated gate field effect transistor whose input side is connected to a charging circuit or a discharging circuit having a time constant means, and whose input terminal is connected to the output terminal of a logic circuit such that it is not in a floating state, In a pulse circuit that generates a pulse signal with a predetermined width determined by the time constant means in response to an input signal, the pulse output of the inverter in the output stage is received at a gate, and the pulse width of the pulse output of the inverter in the output stage is determined. 1. A pulse circuit characterized in that a field effect transistor that is later turned on is connected between an input terminal of the output stage inverter and a power source.
JP16426279A 1979-12-18 1979-12-18 Pulse circuit Granted JPS5686528A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16426279A JPS5686528A (en) 1979-12-18 1979-12-18 Pulse circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16426279A JPS5686528A (en) 1979-12-18 1979-12-18 Pulse circuit

Publications (2)

Publication Number Publication Date
JPS5686528A JPS5686528A (en) 1981-07-14
JPH0245374B2 true JPH0245374B2 (en) 1990-10-09

Family

ID=15789739

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16426279A Granted JPS5686528A (en) 1979-12-18 1979-12-18 Pulse circuit

Country Status (1)

Country Link
JP (1) JPS5686528A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0425980U (en) * 1990-06-12 1992-03-02

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0638573B2 (en) * 1984-08-13 1994-05-18 株式会社日立製作所 Semiconductor integrated circuit device
JPH0546350Y2 (en) * 1985-02-13 1993-12-03
JP3499766B2 (en) 1998-12-21 2004-02-23 Necエレクトロニクス株式会社 PLL lock determination circuit

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5191654A (en) * 1975-02-07 1976-08-11
JPS53117932A (en) * 1977-03-25 1978-10-14 Hitachi Ltd Input circuit

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5191654A (en) * 1975-02-07 1976-08-11
JPS53117932A (en) * 1977-03-25 1978-10-14 Hitachi Ltd Input circuit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0425980U (en) * 1990-06-12 1992-03-02

Also Published As

Publication number Publication date
JPS5686528A (en) 1981-07-14

Similar Documents

Publication Publication Date Title
US4300065A (en) Power on reset circuit
JP2996301B2 (en) Load and time adaptive current supply drive circuit
US4633107A (en) CMOS power-up reset circuit for gate arrays and standard cells
JPH07118635B2 (en) Integrated circuit with input inverting device with dynamic hysteresis means
JPH0720060B2 (en) Output circuit device
JPH0572771B2 (en)
US5212412A (en) Power on reset circuit having hysteresis inverters
JPH04229714A (en) Integrated circuit having buffer
US5621342A (en) Low-power CMOS driver circuit capable of operating at high frequencies
US4703201A (en) CMOS Schmitt trigger
US4529895A (en) Active high before open three state integrated circuit output stage
US5210449A (en) Edge triggered tri-state output buffer
EP0035345B1 (en) A power-on reset circuit
JP2724331B2 (en) TTL output driver gate configuration
US5254885A (en) Bi-CMOS logic circuit with feedback
US5818264A (en) Dynamic circuit having improved noise immunity and method therefor
JPH0245374B2 (en)
US5321314A (en) Signal line pulse enhancing circuit for integrated circuits
US4546276A (en) Full output voltage driver circuit using bootstrap capacitor and controlled delay circuitry
US4525640A (en) High performance and gate having an &#34;natural&#34; or zero threshold transistor for providing a faster rise time for the output
US6075382A (en) Buffer for integrated circuit pads
JP2601978B2 (en) CMOS receiver circuit for converting TTL input signal level
JPS58103230A (en) Switching circuit
JP3271269B2 (en) Output drive circuit
JPH0128543B2 (en)