JPH0245052B2 - - Google Patents

Info

Publication number
JPH0245052B2
JPH0245052B2 JP55153283A JP15328380A JPH0245052B2 JP H0245052 B2 JPH0245052 B2 JP H0245052B2 JP 55153283 A JP55153283 A JP 55153283A JP 15328380 A JP15328380 A JP 15328380A JP H0245052 B2 JPH0245052 B2 JP H0245052B2
Authority
JP
Japan
Prior art keywords
friction material
semi
fibers
clutch
finished
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP55153283A
Other languages
Japanese (ja)
Other versions
JPS5776330A (en
Inventor
Toshiaki Sakabe
Hisami Tsujio
Yasuhiro Matsumoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Chemical Co Ltd
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Aisin Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd, Aisin Chemical Co Ltd filed Critical Aisin Seiki Co Ltd
Priority to JP15328380A priority Critical patent/JPS5776330A/en
Priority to GB8129826A priority patent/GB2086494B/en
Priority to DE19813140461 priority patent/DE3140461C2/en
Publication of JPS5776330A publication Critical patent/JPS5776330A/en
Publication of JPH0245052B2 publication Critical patent/JPH0245052B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D69/00Friction linings; Attachment thereof; Selection of coacting friction substances or surfaces
    • F16D69/02Composition of linings ; Methods of manufacturing
    • F16D69/025Compositions based on an organic binder
    • F16D69/026Compositions based on an organic binder containing fibres
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D69/00Friction linings; Attachment thereof; Selection of coacting friction substances or surfaces
    • F16D69/02Composition of linings ; Methods of manufacturing
    • F16D69/021Composition of linings ; Methods of manufacturing containing asbestos
    • F16D69/022Composition of linings ; Methods of manufacturing containing asbestos in the form of fibres

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Braking Arrangements (AREA)
  • Mechanical Operated Clutches (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は車輌に供する乾式クラツチフエーシ
ング(以下単に摩擦材という)の製造方法に関す
る。 従来、この種の摩擦材は石綿繊維を基材とし、
スパイラルウーブン法が良く用いられてきた。 しかし、この摩擦材は人体に害を及ぼす石綿繊
維を基材としている為に、その製造工程に於て作
業環境の悪化、ひいては作業者に悪影響をもたら
すという弊害を伴う。そこでこの製造技術を利用
してスチール繊維を基材とした摩擦材が提供され
ている。 しかし、スチール繊維は錆が発生しやすく、こ
の種の摩擦材は係合時に相手材にくつつき、クラ
ツチ等の機能を損う欠点を有する。 一方、前記スチール繊維の欠点をもたない天燃
の有機繊維や一般の有機合成繊維を基材とした摩
擦材が提供されたが、耐熱性が低く且つ機械的強
度が低い為に実用化されずには至つていない。 そこで本発明者等はセミモールド法を適用し、
耐熱性の高いガラス繊維、フエノール繊維及び炭
素繊維等からなる群の1もしくはそれ以上の繊維
を基材とする摩擦材を提供した。しかし、この種
の摩擦材は加圧加熱成形時に硬度を高く成形する
と、ジヤダーが発生し、逆に低く成形するとクラ
ツチの切れ不良を生起しやすい欠点を有する。 そこでこの発明の目的は、ジヤダーの発生及び
クラツチの切れ不良を共に防止できる摩擦材の製
造方法を提供することである。 まず、このジヤダーとクラツチの切れ不良を改
良した製造方法を提供するに当り、これら不具合
の要因を求明してみる。クラツチの切れ不良現象
はクラツチペダルを踏んでプレツシヤープレート
の荷重をなくしてもフライホイールとクラツチデ
イスクの摩擦面に負圧が発生し、クラツチデイス
クがフライホイールとつれ回りし、クラツチが切
れない即ちシフトできない現象が発生する。そこ
で通常クラツチデイスクの中央部にデイスクスプ
リングを配置して、このスプリングによつてプレ
ツシヤープレート側に摩擦材を付勢し、前記負圧
に対処している。この付勢力はクラツチデイスク
の外周面によく働き内周面に働きにくい。したが
つて、この際、摩擦材の硬度が低いとどうしても
切れ不良が発生し、硬度が高いとジヤダーが発生
しやすく、従来の摩擦材の製造方法では両者を満
足させる摩擦材は得にくい。 そこで本発明者等はほぼ均一の厚みにループ状
に巻き取つた摩擦材半製品を加圧加熱成形する
際、第1図示に於て金型の摩擦材の内周側に位置
する面に凸部2を設け、金型の該摩擦材の内周側
の面圧を外周側の面圧に比べて高く成形すること
によつて、内周側の硬度が外周側のそれに比して
高い摩擦材半製品を得た。こうして得られた、第
2図示の摩擦材半製品を少くとも片側aだけ研摩
することによりジヤダーを防止し、且つクラツチ
の切れ不良を防止した摩擦材が得られるのであ
る。 この発明の摩擦材の製造方法は、前記加圧加熱
成形工程及び研摩工程を除いて従来のセミモール
ド法の適用が好ましい。このセミモールド法と
は、結合剤に熱硬化性樹脂特にフエノール樹脂と
ゴムを併用する方法で用途に応じて摩擦特性調整
剤即ち銅粉及び亜鉛粉等の金属粉や無機及び有機
充填剤を使用する。その工程は概略、繊維基材を
収束させたものをフエノール樹脂溶液に含浸、乾
燥、ゴム調合液に含浸及びループ状に巻き取り、
加圧加熱成形、加熱処理、放冷後研摩して摩擦材
完成品を得る工程よりなる。前記フエノール樹脂
溶液やゴム調合液は適当な溶剤でその固形分を調
整した溶液あり、前記摩擦特性調整剤を適宜添加
したものを使用するとよい。 この加圧加熱成形して得られる半製品は第2図
示の如き形状を有している。図から明らかな如く
摩擦材の内周側bは外周側l1に比して高い面圧で
成形される為硬度が高く成形されている。第2図
示の寸法a及びbはジヤダー特性及びクラツチの
切れ不良を改良するのに重要な要因となるので、
a寸法は成形品の厚みtに対して10%以下、即ち
a/t=0.1以下とする。又bは成形品の巾lに
対して35%以下、即ちb/l=0.35以下とする。
ほぼ平均厚みにてループ状に巻き取つた半製品
を、第1図示の金型2に示す凸形状にて、前記半
製品の内周側3のみを片側a寸法だけ、摩擦材の
外周部に比し小さい寸法にするのであるが、この
2の凸形状突起部は成形寸法に鑑みて定めるべき
である。この加圧加熱時に使用する圧縮成形機等
の成形条件は周知の条件で良く特に制限を設けな
いが、成形温度160−170℃、面圧90−110Kg/cm2
位が好ましい。 次に加圧加熱した成形品は第1図示の如く、片
側aの寸法を有して外周側とに段差を差している
が、摩擦材を得る為には外周側を少くとも片側a
寸法だけ研摩して摩擦材の厚みを均一にしなくて
はならない。 次に、この発明の方法に供する基材となる繊維
群は300℃で耐熱性を有する繊維群から選定する
のが好ましく、具体的にはガラス繊維、フエノー
ル繊維、炭素繊維等である。この耐熱性という用
語の意味する所は、300℃で繊維の減量や収縮現
象を伴わず、熱に安定であることを意味する。ま
た、上記繊維群の単繊維は12μ以下が好ましく、
使用時はこの単繊維を数百本収束し、ストランド
等の必要な繊維加工した後さらにかさ高加工して
使用すると最も好ましい。 (実施例) 6μの繊維を有するEガラス単繊維を収束させ
ストランド等の諸繊維加工した後、この繊維にか
さ高加工を施した。 この繊維を固形分15%にメタノールで調合した
フエノール系樹脂液に含浸させた後、120℃でメ
タノールが十分に揮発する迄約1時間乾燥させた
後、予めSBRに硫黄と促進剤CZと、亜鉛華とカ
ーボンブラツクと炭酸カルシウムと硫酸バリウム
とケイソー土と銅粉をゴムローラで混練したもの
をトルエンでゴム分を溶解させて粘度を10000−
20000C.P.Sに調整したコーテイング槽に含浸させ
ゴムをコートする。この時同時に前記繊維に真鍮
線を巻きつける。その後、十分に風乾させ巻取機
にてループ状に巻き取つた後、165℃、100Kg/cm2
にセツトした圧縮成形機を用いて3分間加圧加熱
成形する。この時最初数回ガス抜きを行う。得ら
れた成形品は第2図示にてt=4.7mm、a=0.5mm
であつた。この成形品を加熱炉で150℃で6時間
と200℃で3時間と250℃で3時間連続加熱処理
し、摩擦面の表裏両面を研摩して均一な厚み
(t)3.5mmの摩擦材を得た。 (比較例) 加圧加熱工程に於て、3.7mmの均一な厚みに加
圧加熱成形し、この成形品の摩擦面の両面を研摩
して均一な3.5mmの厚みの摩擦材とした以外は実
施例と同様にして、摩擦材を得た。 以上、実施例及び比較例にて得られた摩擦材の
外周側、中央部、内周側の硬度と低面圧時の引き
ずりトルク(TL)を測定した。その結果を下表
1に示す。
The present invention relates to a method of manufacturing a dry clutch facing (hereinafter simply referred to as a friction material) for use in a vehicle. Traditionally, this type of friction material was based on asbestos fiber,
The spiral woven method has been frequently used. However, since this friction material is based on asbestos fibers that are harmful to the human body, it has the disadvantage of deteriorating the working environment during its manufacturing process and having an adverse effect on workers. Therefore, friction materials based on steel fibers have been provided using this manufacturing technology. However, steel fibers are susceptible to rust, and this type of friction material has the disadvantage that it sticks to the mating material when engaged, impairing the functions of the clutch and the like. On the other hand, friction materials based on natural organic fibers or general organic synthetic fibers, which do not have the drawbacks of steel fibers, have been provided, but they have not been put into practical use because of their low heat resistance and mechanical strength. I haven't reached that point yet. Therefore, the present inventors applied the semi-mold method,
Provided is a friction material whose base material is one or more fibers from the group consisting of glass fibers, phenol fibers, carbon fibers, etc., which have high heat resistance. However, this type of friction material has the disadvantage that if it is molded to a high degree of hardness during pressure and heat molding, it will cause jaggedness, and if it is molded to a low degree of hardness, it will tend to cause poor clutch disengagement. SUMMARY OF THE INVENTION It is therefore an object of the present invention to provide a method for manufacturing a friction material that can prevent both the occurrence of jitter and poor clutch disengagement. First, in order to provide a manufacturing method that improves the disengagement defects of the gear wheel and clutch, we will first try to find out the causes of these defects. The problem of clutch disengagement is that even if the load on the pressure plate is removed by depressing the clutch pedal, negative pressure is generated on the friction surface between the flywheel and the clutch disk, causing the clutch disk to rotate with the flywheel and the clutch not disengaging. In other words, a phenomenon occurs in which the shift cannot be performed. Therefore, a disk spring is usually disposed in the center of the clutch disk, and this spring urges the friction material toward the pressure plate to cope with the negative pressure. This biasing force works well on the outer circumferential surface of the clutch disk and is difficult to act on the inner circumferential surface. Therefore, in this case, if the hardness of the friction material is low, poor cutting inevitably occurs, and if the hardness is high, jaggedness is likely to occur, and it is difficult to obtain a friction material that satisfies both conditions using conventional friction material manufacturing methods. Therefore, when pressurizing and heating molding a semi-finished friction material wound into a loop shape to a substantially uniform thickness, the inventors of the present invention discovered that the surface of the mold having a convex surface located on the inner circumferential side of the friction material as shown in the first figure. Part 2 is provided, and the surface pressure on the inner circumferential side of the friction material of the mold is higher than that on the outer circumferential side, so that the hardness of the inner circumferential side is higher than that on the outer circumferential side. A semi-finished product was obtained. By polishing at least one side (a) of the thus obtained semi-finished friction material shown in the second figure, a friction material which prevents jaggedness and prevents poor clutch disengagement can be obtained. In the method for manufacturing the friction material of the present invention, it is preferable to apply the conventional semi-molding method except for the pressure-heat molding step and the polishing step. This semi-molding method is a method in which a thermosetting resin, especially a phenolic resin, and rubber are used as a binder, and depending on the application, frictional property modifiers, such as metal powders such as copper powder and zinc powder, and inorganic and organic fillers are used. do. The process is roughly: impregnating the fiber base material into a phenol resin solution, drying it, impregnating it with a rubber compound and winding it into a loop shape.
The process consists of pressure molding, heat treatment, cooling, and then polishing to obtain a finished friction material. The above-mentioned phenolic resin solution and rubber mixture may be solutions whose solid content is adjusted with a suitable solvent, and it is preferable to use solutions to which the above-mentioned frictional property modifiers have been appropriately added. The semi-finished product obtained by this pressurized and heated molding has a shape as shown in the second figure. As is clear from the figure, the inner peripheral side b of the friction material is molded with a higher surface pressure than the outer peripheral side l1 , so it is molded with high hardness. Dimensions a and b shown in the second diagram are important factors for improving the jamder characteristics and poor clutch disengagement.
The dimension a shall be 10% or less of the thickness t of the molded product, that is, a/t = 0.1 or less. Also, b should be 35% or less of the width 1 of the molded product, that is, b/l = 0.35 or less.
A semi-finished product wound into a loop with approximately average thickness is molded into a convex shape as shown in the mold 2 shown in the first diagram, and only the inner circumferential side 3 of the semi-finished product is placed on the outer circumference of the friction material by a dimension a on one side. These two convex-shaped protrusions should be determined in consideration of the molding dimensions, although they are made smaller in size. The molding conditions of the compression molding machine used during this pressurization and heating are well-known conditions and there are no particular restrictions, but the molding temperature is 160-170℃, the surface pressure is 90-110Kg/cm 2
Preferably. Next, as shown in the first figure, the molded product that has been pressurized and heated has a dimension of A on one side and a step on the outer circumference, but in order to obtain a friction material, at least one side of the outer circumference should be A.
The thickness of the friction material must be made uniform by sanding the dimensions. Next, the fiber group serving as the base material to be subjected to the method of the present invention is preferably selected from a group of fibers having heat resistance at 300°C, and specific examples include glass fiber, phenol fiber, and carbon fiber. The term heat resistance means that the fiber is stable to heat at 300°C without any loss of fiber or shrinkage phenomenon. Further, the single fiber of the above fiber group is preferably 12μ or less,
When in use, it is most preferable to condense several hundred of these single fibers, process them into necessary fibers such as strands, and then process them to make them bulky. (Example) After converging E-glass single fibers having a fiber size of 6 μm and processing various fibers such as strands, the fibers were subjected to bulk processing. After impregnating this fiber with a phenolic resin solution prepared with methanol at a solid content of 15%, it was dried at 120°C for about 1 hour until the methanol was sufficiently volatilized. Zinc white, carbon black, calcium carbonate, barium sulfate, diatomaceous earth, and copper powder are kneaded with a rubber roller, and the rubber content is dissolved in toluene to reduce the viscosity to 10,000.
Impregnate and coat with rubber in a coating tank adjusted to 20000C.PS. At the same time, a brass wire is wound around the fiber. After that, it was thoroughly air-dried and wound into a loop shape using a winding machine, then heated to 165℃ and 100Kg/cm 2.
Press and heat mold for 3 minutes using a compression molding machine set to . At this time, vent the gas several times at first. The obtained molded product has t = 4.7 mm and a = 0.5 mm as shown in the second diagram.
It was hot. This molded product was continuously heat-treated in a heating furnace at 150°C for 6 hours, 200°C for 3 hours, and 250°C for 3 hours, and both the front and back of the friction surface were polished to obtain a friction material with a uniform thickness (t) of 3.5 mm. Obtained. (Comparative example) In the pressure and heating process, the friction material was pressurized and heated to a uniform thickness of 3.7 mm, and both sides of the friction surface of this molded product were polished to obtain a friction material with a uniform thickness of 3.5 mm. A friction material was obtained in the same manner as in the example. As described above, the hardness of the outer circumferential side, central part, and inner circumferential side of the friction materials obtained in Examples and Comparative Examples and the drag torque (T L ) at low surface pressure were measured. The results are shown in Table 1 below.

【表】 上記引きずりトルクとは、クラツチデイスクを
モータにて回転し、固定したフライホイールに低
荷重(2Kg)で押しつけ、そのときの引きずりト
ルクを測定する。このトルクが大きい程切れ不良
が起りやすい。 以上、表1から明らかな如く、本発明方法で得
られた摩擦材(実施例)は引きずりトルクが従来
品(比較例)に比べて小さく、切れ不良が著しく
改善されており、又、摩擦材の硬度も内周側硬度
のみが高く形成されているので、ジヤダー特性も
著るしく改善された摩擦材の製造方法を提供して
いる。 又、実車テストに於ても本発明方法で得られた
摩擦材はジヤダー特性に優れ、且つクラツチの切
れ不良を伴なわず、良好な摩擦特性を備えてい
た。
[Table] The above drag torque is measured by rotating the clutch disc with a motor, pressing it against a fixed flywheel with a low load (2 kg), and measuring the drag torque at that time. The larger this torque is, the more likely cutting defects will occur. As is clear from Table 1, the drag torque of the friction material obtained by the method of the present invention (Example) is smaller than that of the conventional product (Comparative example), and cutting defects are significantly improved. As for the hardness, only the hardness on the inner circumferential side is made high, so that a method for manufacturing a friction material with significantly improved jadder properties is provided. In addition, in actual vehicle tests, the friction material obtained by the method of the present invention had excellent friction characteristics and was free from poor clutch disengagement.

【図面の簡単な説明】[Brief explanation of drawings]

第1図示は加圧加熱成形時に使用する金型の一
実施態様を示す部分断面図であり、第2図示は加
圧加熱して得られる摩擦材半製品の部分断面図で
ある。
The first illustration is a partial cross-sectional view showing an embodiment of a mold used during pressure-heat molding, and the second illustration is a partial cross-sectional view of a semi-finished friction material obtained by pressure-heating.

Claims (1)

【特許請求の範囲】[Claims] 1 ほぼ均一な厚みを有し、ループ状に巻きとら
れた乾式クラツチフエーシング半製品を金型で加
圧加熱成形する工程に於て、金型の該クラツチフ
エーシングの両内周側に位置する面に凸部を設
け、両内周面と両外周面との間に傾斜部を設け、
該半製品の両内周側の厚みとを外周側の厚みに比
べて薄肉に加圧加熱成形した後、直後か又は加熱
処理した後、両面を研磨して均一な厚みに仕上げ
る工程を設けることを特徴とする乾式クラツチフ
エーシングの製造方法。
1. In the process of pressurizing and heating semi-finished semi-finished clutch facings, which have an approximately uniform thickness and are wound into a loop shape, in a mold, A convex portion is provided on the surface to be attached, and an inclined portion is provided between both inner circumferential surfaces and both outer circumferential surfaces,
Immediately after pressurizing and heating forming the semi-finished product so that the thickness of both inner circumferential sides is thinner than the thickness of the outer circumferential side, or immediately after heat treatment, a step of polishing both sides to a uniform thickness is provided. A method for manufacturing a dry clutch facing characterized by:
JP15328380A 1980-10-30 1980-10-30 Manufacturing method of dry-type clutch facing Granted JPS5776330A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP15328380A JPS5776330A (en) 1980-10-30 1980-10-30 Manufacturing method of dry-type clutch facing
GB8129826A GB2086494B (en) 1980-10-30 1981-10-02 Clutch facings
DE19813140461 DE3140461C2 (en) 1980-10-30 1981-10-12 Method of manufacturing a dry clutch disc

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15328380A JPS5776330A (en) 1980-10-30 1980-10-30 Manufacturing method of dry-type clutch facing

Publications (2)

Publication Number Publication Date
JPS5776330A JPS5776330A (en) 1982-05-13
JPH0245052B2 true JPH0245052B2 (en) 1990-10-08

Family

ID=15559079

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15328380A Granted JPS5776330A (en) 1980-10-30 1980-10-30 Manufacturing method of dry-type clutch facing

Country Status (3)

Country Link
JP (1) JPS5776330A (en)
DE (1) DE3140461C2 (en)
GB (1) GB2086494B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE37548E1 (en) 1991-08-12 2002-02-19 Bill J. Hays Clutch design and manufacture
US5184704A (en) * 1991-08-12 1993-02-09 Hays Bill J Clutch design and manufacture

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5442569A (en) * 1977-09-09 1979-04-04 Toyota Motor Corp Anti-noise pad for disc brake
JPS54163259A (en) * 1978-06-14 1979-12-25 Aisin Seiki Clutch facing

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5442569A (en) * 1977-09-09 1979-04-04 Toyota Motor Corp Anti-noise pad for disc brake
JPS54163259A (en) * 1978-06-14 1979-12-25 Aisin Seiki Clutch facing

Also Published As

Publication number Publication date
DE3140461C2 (en) 1983-12-22
JPS5776330A (en) 1982-05-13
GB2086494A (en) 1982-05-12
GB2086494B (en) 1984-03-28
DE3140461A1 (en) 1982-05-27

Similar Documents

Publication Publication Date Title
US4045608A (en) Friction facing with porous sheet base
US2790206A (en) Method for curing friction compositions
US4197352A (en) Composite friction assemblies and methods of making such assemblies
JPS60221431A (en) Non-asbestos clutch facing material
JPS6145083B2 (en)
US3885006A (en) Composite friction articles and methods of making same
US4411851A (en) Method for making friction material without asbestos fibers including repeated pressing and degassing steps
JPH0245052B2 (en)
US3713934A (en) Method of producing friction facings
JPS6023774B2 (en) Friction material
US4385682A (en) Motor vehicle clutch facing and friction property modifier therefor
US1766932A (en) Hardened cellular or fibrous friction elements and method of producing same
US4187133A (en) Method for manufacturing a clutch facing
JPH0221458B2 (en)
JP3008218B2 (en) Non-asbestos-based friction material molded product
JP2000143827A (en) Nonasbestine friction material
JP2991970B2 (en) Friction material
JP2000178538A (en) Friction material composition and friction material made by using the composition
JP3228096B2 (en) Manufacturing method of friction material
US1766934A (en) Hardened cellular or fibrous friction elements and method of producing same
GB2126594A (en) Dry friction composition
JPS58217524A (en) Production of friction plate
JPH04306288A (en) Non-asbestos friction material
JPS6367436A (en) Friction material composite
JPS6361027A (en) Production of friction material