JPH0244915B2 - - Google Patents

Info

Publication number
JPH0244915B2
JPH0244915B2 JP62161907A JP16190787A JPH0244915B2 JP H0244915 B2 JPH0244915 B2 JP H0244915B2 JP 62161907 A JP62161907 A JP 62161907A JP 16190787 A JP16190787 A JP 16190787A JP H0244915 B2 JPH0244915 B2 JP H0244915B2
Authority
JP
Japan
Prior art keywords
point
coloring
positive
electrolytic
rectangular wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62161907A
Other languages
Japanese (ja)
Other versions
JPS648297A (en
Inventor
Akira Hashimoto
Kyoshi Tada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Altemira Co Ltd
Original Assignee
Showa Aluminum Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Aluminum Corp filed Critical Showa Aluminum Corp
Priority to JP16190787A priority Critical patent/JPS648297A/en
Publication of JPS648297A publication Critical patent/JPS648297A/en
Publication of JPH0244915B2 publication Critical patent/JPH0244915B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Electrochemical Coating By Surface Reaction (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 この発明は、例えば住宅用サツシ、エクステリ
ヤ等の建築用材料に使用される着色アルミニウム
材を提供するためのアルミニウム材の電解着色方
法、即ちアルミニウム材を陽極酸化処理後、金属
塩を含む電解液中で二次電解処理し、アルミニウ
ム材の表面に特有の色調を生じさせる電解着色方
法に関する。 なおこの明細書において、アルミニウムの語は
その合金を含む意味で用いる。 従来の技術 かかるアルミニウム材の電解着色方法として
は、従来より、金属塩、ほう酸、アンモニウム塩
を含む電解液中で交流電解を行う交流電解着色法
(浅田法)や、金属塩やほう酸を含む電解液中で
アルミニウム材を陰極として直流電解を行う直流
電解着色法(住化法)、あるいはまた特に最近で
は、浅田法と同じく金属塩、ほう酸、アンモニウ
ム塩を含む電解液中で、正負を交互に繰返す矩形
波電圧を印加して電解処理を行ういわゆる矩形波
インバータ法などが知られている。 発明が解決しようとする問題点 しかしながら、交流電解着色法では、着色に時
間がかかるとか、アルミニウム材が複雑な形状の
押出形材等である場合には、材料の凸部の着色が
濃く凹部の着色が薄くなるとか、長尺アルミニウ
ム材の場合は端部の着色が濃くなる、というよう
な欠点があつた。一方、直流電解着色法の場合に
は、比較的短時間で着色が可能であるものの、電
解液中のアルカリ金属イオンに敏感で液管理が面
倒であり、また電解処理中に陽極酸化皮膜の局部
破壊によるスポーリングが発生し易いというよう
な欠点があつた。一方また矩形波インバータ法で
は、比較的良好なつきまわり性が得られるもの
の、つきまわり性の更なる向上を図るには限界が
あるとか、皮膜の着色に時間がかかるとか、同じ
くアルカリ金属イオンに敏感になり、スポーリン
グが発生し易いという欠点があつた。 この発明は以上の従来技術の欠点を解消し、均
一着色性(つきまわり性)の更なる向上、短時間
濃色化の実現、スポーリングの発生防止を併せて
可能とするアルミニウム材の電解着色方法の提供
を目的とするものである。 問題点を解決するための手段 上記目的を達成するために、この発明は、基本
的に矩形波インバータ法を採用するとともに、従
来の矩形波インバータ法におけるつきまわり性の
向上の限界が、電解液中にPH調整剤としてのアン
モニウム塩が含まれていることに起因している点
に鑑み、アンモニウム塩を含まない電解液を用い
た矩形波インバータ法を用いることを基本的前提
とするものである。そして、この前提のもとで、
発明者はつきまわり性のさらなる向上、スポーリ
ングの防止等を図るべく、種々実験と研究を繰返
した結果、正負ピーク電圧の絶対値、正負電圧の
通電時間、及びピーク電圧と矩形波周波数とを一
定の関係となすことで良好な結果が得られること
を知見し、この発明を完成するに至つたものであ
る。 即ちこの発明は、陽極酸化処理を施したアルミ
ニウム材に、実質的に金属塩とほう酸の水溶液か
らなる電解浴中で、正負を交互に繰返す矩形波電
圧を印加して二次電解処理を行うアルミニウム材
の電解着色方法において、前記矩形波の正負ピー
ク電圧の絶対値、及び正負電圧の通電時間をそれ
ぞれ等しく設定し、かつ正負ピーク電圧の絶対値
と矩形波周波数とを、添附図面に示すように、点
A(1Hz、15V)、点B(5Hz、17V)、点C(10Hz、
19V)、点D(50Hz、27V)、点E(60Hz、29V)、点
F(60Hz、33V)、点G(50Hz、31V)、点H(10Hz、
23V)、点I(5Hz、21V)、点J(1Hz、19V)で
囲まれる範囲内の値に設定して電解処理を行うこ
とを特徴とするアルミニウム材の電解着色方法を
要旨とする。 電解処理前にアルミニウム材に施す陽極酸化処
理の処理液、電解条件等は特に限定されないが、
一般的には硫酸法による処理が行われる。 二次電解着色処理に用いる電解液は、実質的
に、所期する色調との関係で選択したNi、Cu、
Se、Sn等の金属塩とほう酸とからなる溶液であ
り、PH調整剤としてのアンモニウム塩、例えば硫
酸アンモニウム等は含まない。これはアンモニウ
ム塩を含む電解液ではつきまわり性の向上に限界
があるからである。上記において、「実質的に」
とは、着色性能に影響を与えない他の成分例えば
Na+、K+等の含有を許容する趣旨である。電解
液の一例を挙げると、例えばNi塩を用いる場合
には、硫酸ニツケル20〜150g/、ホウ酸10〜
50g/の水溶液からなる電解液を好適に用いう
る。かかるNi塩を用いた場合、アルミニウム材
にはブロンズの色調が得られる。 二次電解処理において印加する電圧は、第1図
に示すように、正負を交互に繰返す矩形波電圧で
ある。かつこの発明では、所期の目的を達成する
ために、矩形波の正のピーク電圧の絶対値Vaと
負のピーク電圧の絶対値Vc(以下ピーク電圧の絶
対値を単にピーク電圧値と記す。)とが等しくな
ければならず、かつ正の電圧の通電時間taと負の
電圧の通電時間tcとが等しくなければならない。
さらにまた、短時間処理による良好な均一電着性
を得るために、上記Va=Vc、ta=tcの条件のも
とで正負ピーク電圧Va,Vcと矩形波周波数とを
第2図のグラフにおいて斜線で示す領域内の値に
設定することを要件とする。即ち、第2図に示す
グラフは横軸に対数目盛にて矩形波の周波数を採
る一方、縦軸は通常の直線目盛にてピーク電圧値
を表した片対数グラフであり、斜線で示す領域
は、1Hz、5Hz、10Hz、50Hz、60Hzの周波数にお
けるピーク電圧の上下限値に対応するA〜Jの各
点を直線で結ぶことにより形成されたものであ
る。ここで各点の座標を示すと、点A(1Hz、
15V)、点B(5Hz、17V)、点C(10Hz、19V)、点
D(50Hz、27V)、点E(60Hz、29V)、点F(60Hz、
33V)、点G(50Hz、31V)、点H(10Hz、23V)、点
I(5Hz、21V)、点J(1Hz、19V)である。 第2図から明らかな如く、均一着色、短時間処
理に適正なピーク電圧値の領域は電解処理電圧で
ある矩形波電圧の周波数に応じて変化し、周波数
が高くなると必要なピーク電圧値も高くなる。こ
のように周波数に応じて適正なピーク電圧値が遷
移する理由は次のように考えられる。即ち、本発
明に係る二次電解着色処理において、陰極は金属
の還元析出の役割を果たし、陽極は陰極側で破壊
されたアルミニウム材表面の陽極酸化処理皮膜中
のバリヤー層を補修生成する役割を果たすが、こ
の補修再生されたバリヤー層の特に緻密性、層厚
が均一着色性等に関与しているものと考えられ
る。そして再生成されたバリヤー層の緻密性は正
負電圧の通電時間ta,tcに依存し通電時間が長い
とき即ち周波数が低いときにより緻密な層とな
る。一方バリヤー層の層厚はピーク電圧値Va,
Vcに依存しピーク電圧値が高くなれば層厚は厚
くなる。従つて周波数が低いときには、バリヤー
層は層厚が薄くても緻密で安定したものとなる。
換言すれば、ピーク電圧が小さくても良好な均一
着色性、着色速度が得られる。逆に周波数が高く
なると通電時間が短くなるため、バリヤー層は緻
密性に欠けるものとなる。そこでピーク電圧値を
大にして層厚を厚くすることでこれを補い、バリ
ヤー層を安定なものとして均一着色性を確保する
のである。即ちピーク電圧値Va,Vcが、周波数
60Hzで29V未満、50Hzで27未満、10Hzで19V未
満、5Hzで17V未満では、バリヤー層が薄くて不
均一なものとなるため、均一着色性が低下し、着
色速度も遅くなる。また1Hzで15V未満ではNi
等の析出電圧下のため着色不能となる。一方、
Va,Vcが周波数1Hzで19Vを超え、5Hzで21V
を超え、10Hzで23Vを超え、50Hzで31Vを超え、
60Hzで33Vを超えるときは、バリヤー層が緻密す
ぎたり厚すぎるため却つて着色されにくいものと
なり、また着色速度が遅くなつたり、スポーリン
グが発生するという欠点を生ずる。 なお第2図に斜線で示す本発明領域内の数値で
あれば、ピーク電圧値と矩形波周波数とを任意の
値に設定できるが、周波数が低くなるほど直流電
解着色法に近づくためアルカリ金属イオンに敏感
になつてくる。従つて浴管理は面倒になるが、反
面ピーク電圧値が小さくて済む分電力費は安価と
なる。逆に周波数が高くなるほどアルカリ金属に
鈍感になり浴管理は容易となるが、大きなピーク
電圧を必要とするため電力費は高くつく。従つて
本発明の工業的な実施に際しては、浴管理の容易
性と電力費との兼合いで適宜ピーク電圧値、周波
数を設定すれば良い。 発明の効果 この発明は上述の次第で、陽極酸化処理したア
ルミニウム材に施す電解着色のための二次電解処
理を、実質的に金属塩とほう酸の水溶液からなる
電解浴中で、正負ピーク電圧値及び正負電圧の通
電時間をそれぞれ等しく設定し、かつピーク電圧
値と周波数とを一定の関係に設定した矩形波電圧
を印加して行うものであるから、短時間で濃淡の
ない一層優れた均一着色が可能となるとともに、
スポーリングの発生をも防止でき、美麗な外観色
調を呈するアルミニウム材を高効率で提供でき
る。その結果、建築用等の材料として使用される
アルミニウム材の商品価値を向上しうるものとな
る。 実施例 A1100合金からなるアルミニウム板(調質
H24)を複数枚用意した。そしてまず前処理とし
て、該アルミニウム板に硝酸脱脂、苛性エツチン
グ、硝酸中和を順次的に実施したのち、液温20±
1℃、濃度15%の硫酸溶液中で、電流1.1A/d
m2、電解時間35分の条件で陽極酸化処理を実施し
た。なお上記によりアルミニウム板表面に生成さ
れた陽極酸化皮膜の膜厚は約9μmであつた。 次いで上記のアルミニウム板に、矩形波インバ
ータ法による二次電解着色処理を実施した。二次
電解処理は、第3図に示すように、塩化ビニル樹
脂製の枠体1の一端にカーボン対極2を設置する
とともに、枠体の中間位置に上記アルミニウム供
試板3枚A,B,Cをカーボン対極と対向状に配
設した試験用セルを用い、このセルを、NiSO4
6H2O:50g/、H3BO3:30g/の水溶液か
らなりかつNa+、K+イオンを含有する電解液中
に浸漬したのち、電気的に短絡した前記3枚の供
試板とカーボン対極との間に矩形波電圧を印加し
た行つた。矩形波電圧は、正負ピーク電圧値及び
正負電圧の通電時間をそれぞれ等しく設定した条
件のもとで、ピーク電圧値と周波数を第1表に示
すように各種に変え、同表に示す処理時間で行つ
た。また前記試験用セルにおいて、カーボン対極
とアルミニウム供試板Aの対抗面との距離lは
200mm、各供試板の間隔は10mmとした。 そして金属着色処理を終えた3枚の供試板A,
B,Cにつき、色差計により各供試板両面のL値
(明度)を測定した。その結果を第1表に示す。 一方、上記と同じ試験用セル及び同一組成の電
解液を用い、交流15V、処理時間6分の条件によ
る従来の交流電解着色処理(No22)と、供試板
を陰極とする直流15Vの電圧を3分間印加しての
直流電解着色処理(No23)とを実施した。また、
電解液として、上記の電解液に(NH42SO4:30
g/を加えた水溶液を用いるとともに、電圧±
20V、周波数5Hzの矩形波電圧を印加しての矩形
波インバータ法による着色処理を実施した
(No24)。それらの結果も併せて第1表に示す。
INDUSTRIAL APPLICATION FIELD This invention relates to a method for electrolytically coloring aluminum materials to provide colored aluminum materials used for construction materials such as housing sashes and exteriors, that is, after anodizing aluminum materials, metal salts are applied to the aluminum materials. This invention relates to an electrolytic coloring method in which a secondary electrolytic treatment is performed in an electrolytic solution containing aluminum to produce a unique color tone on the surface of an aluminum material. In this specification, the term aluminum is used to include its alloys. Conventional Techniques Conventionally, methods for electrolytically coloring aluminum materials include the alternating current electrolytic coloring method (Asada method) in which alternating current electrolysis is carried out in an electrolytic solution containing metal salts, boric acid, and ammonium salts, and the electrolytic coloring method containing metal salts and boric acid. Direct current electrolytic coloring method (Sumika method), which performs direct current electrolysis in a liquid using an aluminum material as a cathode, or, more recently, the Asada method, which uses alternating positive and negative electrolytes in an electrolytic solution containing metal salts, boric acid, and ammonium salts. A so-called rectangular wave inverter method is known in which electrolytic treatment is performed by repeatedly applying a rectangular wave voltage. Problems to be Solved by the Invention However, with the AC electrolytic coloring method, coloring takes a long time, and when the aluminum material is an extruded shape with a complicated shape, the coloring of the convex parts of the material is dark and the coloring of the concave parts is dark. The disadvantages were that the coloring became lighter, and in the case of long aluminum materials, the coloring became darker at the ends. On the other hand, in the case of the direct current electrolytic coloring method, although coloring can be achieved in a relatively short time, it is sensitive to alkali metal ions in the electrolyte, making solution management troublesome. There was a drawback that spalling due to destruction was likely to occur. On the other hand, with the square wave inverter method, although relatively good throwing power can be obtained, there are limitations in further improving the throwing power, it takes time to color the film, and it is also sensitive to alkali metal ions. The problem was that spalling was more likely to occur. This invention solves the above-mentioned drawbacks of the conventional technology, and enables electrolytic coloring of aluminum materials that further improves uniform coloring (throwing ability), achieves deep coloring in a short time, and prevents spalling. The purpose is to provide a method. Means for Solving the Problems In order to achieve the above object, the present invention basically adopts a square wave inverter method, and also solves the problem that the limit of improving the throwing power in the conventional square wave inverter method is Considering that this is due to the fact that it contains ammonium salt as a PH regulator, the basic premise is to use a square wave inverter method using an electrolyte that does not contain ammonium salt. . And under this premise,
In order to further improve the throwing power and prevent spalling, the inventor repeatedly conducted various experiments and research, and as a result, determined the absolute values of the positive and negative peak voltages, the energization time of the positive and negative voltages, and the peak voltage and rectangular wave frequency. It was discovered that good results could be obtained by establishing a certain relationship, and this led to the completion of this invention. That is, this invention is an aluminum material subjected to a secondary electrolytic treatment by applying a rectangular wave voltage that alternates between positive and negative in an electrolytic bath consisting essentially of an aqueous solution of a metal salt and boric acid to an aluminum material that has been subjected to an anodizing treatment. In the electrolytic coloring method for materials, the absolute values of the positive and negative peak voltages of the rectangular wave and the energization times of the positive and negative voltages are respectively set equal, and the absolute values of the positive and negative peak voltages and the rectangular wave frequency are set as shown in the attached drawing. , point A (1Hz, 15V), point B (5Hz, 17V), point C (10Hz,
19V), point D (50Hz, 27V), point E (60Hz, 29V), point F (60Hz, 33V), point G (50Hz, 31V), point H (10Hz,
The gist of this paper is a method for electrolytically coloring aluminum material, which is characterized in that the electrolytic treatment is performed by setting the value within the range surrounded by point I (5 Hz, 21 V), point I (5 Hz, 21 V), and point J (1 Hz, 19 V). The treatment solution, electrolytic conditions, etc. for the anodizing treatment applied to the aluminum material before the electrolytic treatment are not particularly limited, but
Generally, treatment is performed using a sulfuric acid method. The electrolytic solution used in the secondary electrolytic coloring treatment is essentially made of Ni, Cu, or
It is a solution consisting of metal salts such as Se and Sn and boric acid, and does not contain ammonium salts such as ammonium sulfate as a PH regulator. This is because there is a limit to the improvement in throwing power with an electrolytic solution containing ammonium salt. In the above, "substantially"
and other ingredients that do not affect the coloring performance, e.g.
The purpose is to allow the inclusion of Na + , K + , etc. To give an example of an electrolytic solution, for example, when using Ni salt, 20 to 150 g of nickel sulfate and 10 to 150 g of boric acid are used.
An electrolytic solution consisting of 50 g/aqueous solution can be suitably used. When such Ni salt is used, the aluminum material has a bronze color tone. The voltage applied in the secondary electrolytic treatment is a rectangular wave voltage that alternates between positive and negative, as shown in FIG. In addition, in this invention, in order to achieve the intended purpose, the absolute value Va of the positive peak voltage of the rectangular wave and the absolute value Vc of the negative peak voltage (hereinafter, the absolute value of the peak voltage is simply referred to as the peak voltage value). ) must be equal, and the positive voltage conduction time ta and the negative voltage conduction time tc must be equal.
Furthermore, in order to obtain good uniform electrodeposition through short-time processing, the positive and negative peak voltages Va and Vc and the square wave frequency are plotted in the graph of Fig. 2 under the conditions of Va = Vc and ta = tc. It is required to set the value within the shaded area. In other words, the graph shown in Figure 2 is a semi-logarithmic graph in which the horizontal axis represents the frequency of the rectangular wave on a logarithmic scale, while the vertical axis represents the peak voltage value on a normal linear scale. , 1 Hz, 5 Hz, 10 Hz, 50 Hz, and 60 Hz. Here, the coordinates of each point are shown as point A (1Hz,
15V), point B (5Hz, 17V), point C (10Hz, 19V), point D (50Hz, 27V), point E (60Hz, 29V), point F (60Hz,
33V), point G (50Hz, 31V), point H (10Hz, 23V), point I (5Hz, 21V), and point J (1Hz, 19V). As is clear from Figure 2, the range of peak voltage values appropriate for uniform coloring and short-time processing changes depending on the frequency of the rectangular wave voltage that is the electrolytic treatment voltage, and as the frequency increases, the necessary peak voltage value also increases. Become. The reason why the appropriate peak voltage value changes depending on the frequency is considered as follows. That is, in the secondary electrolytic coloring treatment according to the present invention, the cathode plays the role of reducing and precipitating the metal, and the anode plays the role of repairing and forming the barrier layer in the anodized film on the surface of the aluminum material that has been destroyed on the cathode side. However, it is thought that the density and layer thickness of this repaired and regenerated barrier layer are responsible for the uniform coloring properties. The density of the regenerated barrier layer depends on the current application time ta and tc of positive and negative voltages, and the layer becomes denser when the current application time is long, that is, when the frequency is low. On the other hand, the layer thickness of the barrier layer is the peak voltage value Va,
Depending on Vc, the higher the peak voltage value, the thicker the layer thickness. Therefore, when the frequency is low, the barrier layer becomes dense and stable even if the layer thickness is thin.
In other words, good uniform coloring and coloring speed can be obtained even if the peak voltage is small. Conversely, as the frequency increases, the current application time becomes shorter, resulting in a barrier layer that lacks density. This is compensated for by increasing the peak voltage value and increasing the layer thickness to stabilize the barrier layer and ensure uniform coloration. In other words, the peak voltage values Va, Vc are the frequency
If the voltage is less than 29 V at 60 Hz, less than 27 at 50 Hz, less than 19 V at 10 Hz, and less than 17 V at 5 Hz, the barrier layer will be thin and non-uniform, resulting in poor uniform coloring and slow coloring speed. Also, below 15V at 1Hz, Ni
Coloring becomes impossible due to the deposition voltage. on the other hand,
Va, Vc exceeds 19V at frequency 1Hz, 21V at 5Hz
exceeds 23V at 10Hz, exceeds 31V at 50Hz,
When the voltage exceeds 33 V at 60 Hz, the barrier layer is too dense or too thick, so that it becomes difficult to color, and the coloring speed becomes slow and spalling occurs. Note that the peak voltage value and rectangular wave frequency can be set to arbitrary values as long as the values are within the area of the present invention indicated by diagonal lines in FIG. I'm becoming more sensitive. Therefore, bath management becomes troublesome, but on the other hand, since the peak voltage value is small, the power cost becomes low. On the other hand, the higher the frequency, the less sensitive it is to alkali metals, making bath management easier, but the higher the frequency, the higher the electricity cost because it requires a larger peak voltage. Therefore, when implementing the present invention industrially, the peak voltage value and frequency may be appropriately set in consideration of ease of bath management and power cost. Effects of the Invention As described above, the present invention performs a secondary electrolytic treatment for electrolytic coloring on an anodized aluminum material in an electrolytic bath consisting essentially of an aqueous solution of metal salts and boric acid, with positive and negative peak voltage values. Since the application is performed by applying a rectangular wave voltage in which the energization time of the positive and negative voltages are set equal, and the peak voltage value and frequency are set in a certain relationship, it is possible to achieve even better uniform coloring without shading in a short time. At the same time,
It is also possible to prevent the occurrence of spalling and to provide aluminum materials with a beautiful external color tone with high efficiency. As a result, the commercial value of aluminum materials used as building materials can be improved. Example Aluminum plate made of A1100 alloy (thermal treatment)
H24) were prepared. First, as a pretreatment, the aluminum plate was sequentially subjected to nitric acid degreasing, caustic etching, and nitric acid neutralization, and then subjected to a liquid temperature of 20±
Current 1.1A/d in 15% sulfuric acid solution at 1℃
The anodic oxidation treatment was carried out under conditions of m 2 and electrolysis time of 35 minutes. The thickness of the anodic oxide film formed on the surface of the aluminum plate as described above was about 9 μm. Next, the above aluminum plate was subjected to a secondary electrolytic coloring treatment using a square wave inverter method. In the secondary electrolytic treatment, as shown in Fig. 3, a carbon counter electrode 2 is installed at one end of a frame 1 made of vinyl chloride resin, and the three aluminum test plates A, B, Using a test cell in which C was placed facing a carbon counter electrode, this cell was heated with NiSO4 .
After being immersed in an electrolytic solution consisting of an aqueous solution of 6H 2 O: 50 g/, H 3 BO 3 : 30 g/ and containing Na + and K + ions, the three test plates and carbon were electrically short-circuited. A square wave voltage was applied between the electrode and the counter electrode. The square wave voltage was calculated by changing the peak voltage value and frequency to various values as shown in Table 1, under the conditions that the positive and negative peak voltage values and the energization times of the positive and negative voltages were set equal, respectively, and the processing time shown in the table. I went. In addition, in the test cell, the distance l between the carbon counter electrode and the opposing surface of aluminum sample plate A is
200 mm, and the interval between each test plate was 10 mm. Three test plates A, which have undergone metal coloring treatment,
For B and C, the L value (lightness) of both sides of each test plate was measured using a color difference meter. The results are shown in Table 1. On the other hand, using the same test cell and electrolytic solution of the same composition as above, the conventional AC electrolytic coloring treatment (No. 22) was performed under the conditions of 15 V AC and 6 minutes of treatment time, and the voltage of 15 V DC was applied using the test plate as the cathode. Direct current electrolytic coloring treatment (No. 23) was carried out by applying voltage for 3 minutes. Also,
Add (NH 4 ) 2 SO 4 to the above electrolyte as an electrolyte: 30
Using an aqueous solution to which g/ is added, the voltage ±
Coloring treatment was carried out using a rectangular wave inverter method by applying a rectangular wave voltage of 20 V and a frequency of 5 Hz (No. 24). The results are also shown in Table 1.

【表】【table】

【表】 と反対側の面を示す。
(注2) △LはL値の最大値と最小値の差である。
上記結果から、本発明実施品は△Lの値が小さ
く、従つて短時間処理にてアルミニウム材への濃
淡のない均一着色が可能であり、またスポーリン
グも発生しないものであることを確認しえた。
[Table] Shows the opposite side.
(Note 2) △L is the difference between the maximum and minimum L value.
From the above results, it was confirmed that the product of the present invention has a small value of △L, therefore it is possible to uniformly color the aluminum material without shading in a short time, and it also does not cause spalling. I got it.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明に係る電解処理において印加
する矩形波電圧の波形図、第2図は矩形波電圧の
ピーク電圧値と周波数との関係を示すグラフ、第
3図は実施例で用いた試験用セルの斜視図であ
る。 Va……正のピーク電圧値、Vc……負のピーク
電圧値、ta……正の電圧の通電時間、tc……負の
電圧の通電時間。
Fig. 1 is a waveform diagram of the rectangular wave voltage applied in the electrolytic treatment according to the present invention, Fig. 2 is a graph showing the relationship between the peak voltage value of the rectangular wave voltage and frequency, and Fig. 3 is a test used in the example. FIG. Va...Positive peak voltage value, Vc...Negative peak voltage value, ta...Positive voltage energization time, tc...Negative voltage energization time.

Claims (1)

【特許請求の範囲】[Claims] 1 陽極酸化処理を施したアルミニウム材に、実
質的に金属塩とほう酸の水溶液からなる電解浴中
で、正負を交互に繰返す矩形波電圧を印加して二
次電解処理を行うアルミニウム材の電解着色方法
において、前記矩形波の正負ピーク電圧の絶対
値、及び正負電圧の通電時間をそれぞれ等しく設
定し、かつ正負ピーク電圧の絶対値と矩形波周波
数とを、添附図面に示すように、点A(1Hz、
15V)、点B(5Hz、17V)、点C(10Hz、19V)、点
D(50Hz、27V)、点E(60Hz、29V)、点F(60Hz、
33V)、点G(50Hz、31V)、点H(10Hz、23V)、点
I(5Hz、21V)、点J(1Hz、19V)で囲まれる
範囲内の値に設定して電解処理を行うことを特徴
とするアルミニウム材の電解着色方法。
1 Electrolytic coloring of aluminum materials that undergoes secondary electrolytic treatment by applying a rectangular wave voltage that alternates between positive and negative in an electrolytic bath consisting essentially of an aqueous solution of metal salts and boric acid to anodized aluminum materials. In the method, the absolute values of the positive and negative peak voltages of the rectangular wave and the energization times of the positive and negative voltages are respectively set equal, and the absolute values of the positive and negative peak voltages and the rectangular wave frequency are set at point A (as shown in the attached drawing). 1Hz,
15V), point B (5Hz, 17V), point C (10Hz, 19V), point D (50Hz, 27V), point E (60Hz, 29V), point F (60Hz,
33V), point G (50Hz, 31V), point H (10Hz, 23V), point I (5Hz, 21V), and point J (1Hz, 19V) to perform electrolytic treatment. A method for electrolytically coloring aluminum materials.
JP16190787A 1987-06-29 1987-06-29 Method for electrolytically coloring aluminum material Granted JPS648297A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16190787A JPS648297A (en) 1987-06-29 1987-06-29 Method for electrolytically coloring aluminum material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16190787A JPS648297A (en) 1987-06-29 1987-06-29 Method for electrolytically coloring aluminum material

Publications (2)

Publication Number Publication Date
JPS648297A JPS648297A (en) 1989-01-12
JPH0244915B2 true JPH0244915B2 (en) 1990-10-05

Family

ID=15744286

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16190787A Granted JPS648297A (en) 1987-06-29 1987-06-29 Method for electrolytically coloring aluminum material

Country Status (1)

Country Link
JP (1) JPS648297A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0553408U (en) * 1991-12-27 1993-07-20 ヤンマー農機株式会社 Steering device for mobile agricultural machinery

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4931614A (en) * 1972-07-25 1974-03-22

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4931614A (en) * 1972-07-25 1974-03-22

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0553408U (en) * 1991-12-27 1993-07-20 ヤンマー農機株式会社 Steering device for mobile agricultural machinery

Also Published As

Publication number Publication date
JPS648297A (en) 1989-01-12

Similar Documents

Publication Publication Date Title
US4042468A (en) Process for electrolytically coloring aluminum and aluminum alloys
WO1986004618A1 (en) Process for forming composite aluminum film
US3704209A (en) Method for electrochemical coloring of aluminum and alloys
CA1124674A (en) Electrolytically coloured anodized aluminium panels for solar energy absorption
US3554881A (en) Electrochemical process for the surface treatment of titanium,alloys thereof and other analogous metals
US3915813A (en) Method for electrolytically coloring aluminum articles
CN85103365A (en) The aluminum or aluminum alloy method to produce white film on surface
US4798656A (en) Process for electrolytically dyeing an anodic oxide layer on aluminum or aluminum alloys
JPS6014838B2 (en) Method of forming colored streaks on aluminum surface
CA1153980A (en) Method of producing colour-anodized aluminium articles
JPH0244915B2 (en)
EP0182479B1 (en) Nickel sulphate colouring process for anodized aluminium
US3788956A (en) Electrolytic coloring of anodized aluminum
US4431489A (en) Coloring process for anodized aluminum products
GB1131558A (en) Method of electroplating nickel on an aluminium article
NO141614B (en) PROCEDURE FOR CONTINUOUS, ELECTROLYTIC INCORPORATION OF A PRANODISED ALUMINUM COUNTRY
Balasubramanian et al. Influence of addition agents for ac anodizing in sulphuric acid electrolytes
US3330744A (en) Anodic treatment of zinc and zinc-base alloys and product thereof
US3920527A (en) Self-regulating plating bath and method for electrodepositing chromium
US3751350A (en) Process for coloring an aluminum anodic oxide film
John et al. Studies on anodizing of aluminium in alkaline electrolyte using alternating current
JP2000355795A (en) Surface treatment of aluminum and aluminum alloy
EP0239944B1 (en) Method for electrolytic coloring of aluminum or aluminum alloys
JP2931176B2 (en) Colored film formed on aluminum material surface and electrolytic coloring method
ES482021A1 (en) Coating system.

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees