JPH0244715A - Device for manufacturing superlattice structure - Google Patents

Device for manufacturing superlattice structure

Info

Publication number
JPH0244715A
JPH0244715A JP19657588A JP19657588A JPH0244715A JP H0244715 A JPH0244715 A JP H0244715A JP 19657588 A JP19657588 A JP 19657588A JP 19657588 A JP19657588 A JP 19657588A JP H0244715 A JPH0244715 A JP H0244715A
Authority
JP
Japan
Prior art keywords
substrate
ion
superlattice
ions
superlattice structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19657588A
Other languages
Japanese (ja)
Inventor
Teruto Onishi
照人 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP19657588A priority Critical patent/JPH0244715A/en
Publication of JPH0244715A publication Critical patent/JPH0244715A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To continuously form a superlattice structure without using a shutter mechanism by providing a plurality of ion beam line and reciprocating a substrate in parallel at a predetermined speed. CONSTITUTION:Ions generated from ion sources 1, 2 are drawn by applying a high electric field to form an ion beam, the generation of the beam is suppressed by einshell lenses 4-6 for converging the beam, impurity ions are removed by a mass separator 3, and the beam is then introduced to a deceleration lens 7. The energy of the beam is controlled by an electric field in the lens 7 to regulate the energy to be deposited. Then, when a substrate is moved leftward, metal tantalum is deposited, and the surface is oxidized by oxygen ions. When it is then moved rightward, the metal tantalum is formed on the oxide film. Thus, part of a plurality of ion beams are continuously applied without shielding them with a shutter to form a superlattice film.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は半導体等の超格子構造を持つデバイスの製造装
置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an apparatus for manufacturing devices having a superlattice structure such as semiconductors.

従来の技術 従来の技術としては第4図のようなMBE装置がある。Conventional technology As a conventional technique, there is an MBE apparatus as shown in FIG.

1,2は超格子構成成分の原子をそれぞれ発生させるた
めの蒸発源(例:E−ガン、にセル)であり、3はシャ
ッターで、4が基板である。以上のように構成されたM
BE装置では、1.2の蒸発源からできくる原子を3の
シャッターでON、OFFすることにより、一方の原子
を基板4に堆積している時はもう一方の原子はシャッタ
ー3で遮断し、次の層を堆積するときは、その逆の動作
をさせることで超格子構造を作製している。
1 and 2 are evaporation sources (eg, E-gun, cell) for respectively generating atoms of the superlattice components, 3 is a shutter, and 4 is a substrate. M configured as above
In the BE device, the atoms produced from the evaporation source 1.2 are turned on and off by the shutter 3, and when one atom is being deposited on the substrate 4, the other atom is blocked by the shutter 3. When depositing the next layer, the process is reversed to create a superlattice structure.

発明が解決しようとする課題 しかしながら上記のような構成では、シャッターと基板
の間の距離に応じて、原子が基板に達するまでのタイム
ラグが生じ、精度のあるコントロールが困難である。ま
た、シャッターが閉じている間も原子を蒸発させている
ため、無駄が多く、チャンバーを汚しやすいという欠点
を有していた。
Problems to be Solved by the Invention However, with the above configuration, there is a time lag for atoms to reach the substrate depending on the distance between the shutter and the substrate, making precise control difficult. Furthermore, since atoms are evaporated even while the shutter is closed, there is a lot of waste, and the chamber is easily contaminated.

本発明はかかる点に鑑み、シャッター機構を用いず、連
続的に超格子構造を形成する超格子構造製造装置及びそ
の方法を提供することを目的とする。
In view of this, an object of the present invention is to provide a superlattice structure manufacturing apparatus and method for continuously forming a superlattice structure without using a shutter mechanism.

課題を解決するための手段 本発明は、複数のイオンビームラインを持ち、基板を一
定速度で平行に往復運動させ、このとき、イオンビーム
は基板の移動方向に沿って離れた位置に連続して入射す
る超格子製造装置である。
Means for Solving the Problems The present invention has a plurality of ion beam lines, reciprocates the substrate in parallel at a constant speed, and at this time, the ion beam is continuously moved to distant positions along the direction of movement of the substrate. This is an incident superlattice manufacturing device.

作用 本発明は前記した構成により、2つのイオンビームライ
ンの間を基板が一定速度で移動していくために、ビーム
を出しながら超格子構造を作成することができ、シャッ
ター等を用いビームを止める必要がない。また、イオン
ビームを用いることで原子の発散がおさえられチャンバ
ー内の汚染が減少する。
Effect of the Invention With the above-described configuration, the present invention allows the substrate to move between two ion beam lines at a constant speed, making it possible to create a superlattice structure while emitting the beam, and stopping the beam using a shutter or the like. There's no need. Additionally, the use of an ion beam suppresses atomic divergence and reduces contamination within the chamber.

実施例 第1図は本発明における超格子製造装置の構成図である
。第1図において、1および2はイオンを発生させるた
めのイオン源、3はイオンビーム中の不純物を除去する
ための、EXB型質量分離器、4,5および6はイオン
ビームを収束させるためのアインツエルレンズ、7はイ
オンのエネルギーを制御するための減速レンズ、8は基
板台である。イオン源1,2で発生させたイオンを、高
電界を印加して引き出し、イオンビームを形成する。ア
インツエルレンズによりビームの発散を抑え、質量分離
器3により不純物イオンを除去した後、イオンビームは
減速レンズ7に入る。減速レンズ7内の電界により、イ
オンのエネルギーを制御し、堆積可能なエネルギーに調
整する。
Embodiment FIG. 1 is a block diagram of a superlattice manufacturing apparatus according to the present invention. In Fig. 1, 1 and 2 are ion sources for generating ions, 3 is an EXB type mass separator for removing impurities in the ion beam, and 4, 5, and 6 are for converging the ion beam. An Einzel lens, 7 a deceleration lens for controlling the energy of ions, and 8 a substrate stand. Ions generated by the ion sources 1 and 2 are extracted by applying a high electric field to form an ion beam. After the beam divergence is suppressed by the Einzel lens and impurity ions are removed by the mass separator 3, the ion beam enters the deceleration lens 7. The energy of the ions is controlled by the electric field within the deceleration lens 7 and adjusted to an energy that can be deposited.

今回は、タンタルイオンと酸素イオンを用いて、金属(
タンタル)と絶縁物(酸化タンタル)の超格子を作製し
た。第2図は、減速レンズのまわりのイオンビームの軌
道をシミュレーションしたものである。図のように、減
速レンズ内の電界により、タンタルイオン(Ta”)と
酸素イオン(02”)はきれいに分離されている。
This time, we will use tantalum ions and oxygen ions to
We fabricated a superlattice of tantalum) and an insulator (tantalum oxide). FIG. 2 shows a simulation of the trajectory of the ion beam around the deceleration lens. As shown in the figure, tantalum ions (Ta") and oxygen ions (02") are clearly separated by the electric field within the deceleration lens.

このことにより、基板を図で左に移動させると、まず、
金属タンタルが堆積してから酸素イオンにより表面が酸
化されてい(。次に、右に移動していくききは酸化膜の
上に金属タンタルが形成されていく。このくり返しによ
り超格子構造が形成される。さらに、イオンビームはレ
ンズにより収束されているため堆積物がチャンバーに付
着しに<<、汚染を防ぐことができる。イオン電流の測
定ではタンクルビームと酸素ビームの間隔は約2Mであ
る。第3図は本発明により作成した超格子膜の深さ方向
のオージェプロファイルである。
As a result, when the board is moved to the left in the diagram, first,
After the metal tantalum is deposited, the surface is oxidized by oxygen ions (Next, as it moves to the right, metal tantalum is formed on the oxide film. This repetition forms a superlattice structure. In addition, since the ion beam is focused by a lens, it is possible to prevent deposits from adhering to the chamber and contamination.In the measurement of ion current, the distance between the tank beam and oxygen beam is approximately 2M. 3 is an Auger profile in the depth direction of the superlattice film prepared according to the present invention.

基板の移動速度は毎分2馴でイオンのエネルギーは10
0eVである。図より、金属−絶縁物層が3層形成でき
ていることがわかる。
The moving speed of the substrate is 2 degrees per minute, and the energy of the ions is 10 degrees.
It is 0eV. The figure shows that three metal-insulator layers can be formed.

また、本実施例では、イオンビームラインを基板に対し
て角度を持って入射するよう配置したが、基板に対して
平行にビームラインを並べてもよい。また、今回は金属
イオン源とガスイオン源を用いたが、両方とも金属イオ
ン源にして、異種金属による超格子を作成することも可
能である。
Further, in this embodiment, the ion beam lines are arranged so as to be incident on the substrate at an angle, but the beam lines may be arranged parallel to the substrate. Furthermore, although a metal ion source and a gas ion source were used this time, it is also possible to use both metal ion sources to create a superlattice made of different metals.

発明の詳細 な説明したように、本発明によれば、複数のイオンビー
ムの一部をシャッターで遮蔽することなく、連続的に照
射でき、チャンバー内を堆積物で汚染することなく超格
子膜を形成できるためその実用的効果は大きい。
As described in detail, according to the present invention, multiple ion beams can be irradiated continuously without being partially shielded by a shutter, and a superlattice film can be grown without contaminating the chamber with deposits. Since it can be formed, its practical effects are great.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明における実施例の超格子構造製造装置の
構成図、第2図は減速レンズまわりのイオンビーム軌道
のシミュレーション図、第3図は実施例において作成し
た超格子膜の深さ方向のオージェプロファイル図、第4
図は従来のMBE装置の構成図である。 1.2・・・・・・イオン源、3・旧・・質量分離器、
4゜5.6・・・・・・アインツエルレンズ、7・・・
・・・減速レンズ、8・・・・・・基板台。 代理人の氏名 弁理士 粟野重孝 はが1名第 図 s           to          t
sスハゝソゲソング時間(分) 第 図 第 図 基板
Fig. 1 is a block diagram of a superlattice structure manufacturing apparatus according to an embodiment of the present invention, Fig. 2 is a simulation diagram of an ion beam trajectory around a deceleration lens, and Fig. 3 is a depth direction of a superlattice film produced in an embodiment. Auger profile diagram of 4th
The figure is a configuration diagram of a conventional MBE device. 1.2...Ion source, 3.Old...Mass separator,
4゜5.6... Einzel lens, 7...
...Deceleration lens, 8...Board stand. Name of agent: Patent attorney Shigetaka Awano
s Suha Sogae song time (minutes) Diagram Diagram Board

Claims (2)

【特許請求の範囲】[Claims] (1)2本以上のイオンビームラインと基板の平行移動
機構を持つ超格子構造製造装置。
(1) Superlattice structure manufacturing equipment with two or more ion beam lines and a parallel movement mechanism for the substrate.
(2)2本以上のビームの前記基板上の照射点が、前記
基板の移動方向に平行に配列する特許請求の範囲第1項
の超格子構造製造装置。
(2) The superlattice structure manufacturing apparatus according to claim 1, wherein irradiation points of two or more beams on the substrate are arranged parallel to the moving direction of the substrate.
JP19657588A 1988-08-05 1988-08-05 Device for manufacturing superlattice structure Pending JPH0244715A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19657588A JPH0244715A (en) 1988-08-05 1988-08-05 Device for manufacturing superlattice structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19657588A JPH0244715A (en) 1988-08-05 1988-08-05 Device for manufacturing superlattice structure

Publications (1)

Publication Number Publication Date
JPH0244715A true JPH0244715A (en) 1990-02-14

Family

ID=16360022

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19657588A Pending JPH0244715A (en) 1988-08-05 1988-08-05 Device for manufacturing superlattice structure

Country Status (1)

Country Link
JP (1) JPH0244715A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0437024A (en) * 1990-05-31 1992-02-07 Shimadzu Corp Manufacturing equipment of semiconductor element
JPH088187A (en) * 1995-05-16 1996-01-12 Shimadzu Corp Semiconductor element fabricating apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0437024A (en) * 1990-05-31 1992-02-07 Shimadzu Corp Manufacturing equipment of semiconductor element
JPH088187A (en) * 1995-05-16 1996-01-12 Shimadzu Corp Semiconductor element fabricating apparatus

Similar Documents

Publication Publication Date Title
JPH04137728A (en) Converging ion beam etching device
JPH03500066A (en) Method and apparatus for producing a layer of material from a laser ion source
US5708267A (en) Processing method using fast atom beam
US5910220A (en) Apparatus and method for selective area deposition of thin films on electrically biased substrates
JPH0244715A (en) Device for manufacturing superlattice structure
US6355574B1 (en) Method and device for treating a semiconductor surface
DE69829487T2 (en) ION APPARATUS DEVICE AND METHOD
JPH04186831A (en) Charged-particle beam treatment method and device thereof
JP3752259B2 (en) Cluster ion beam sputtering method
KR930008186A (en) Patterning method
JP3168593B2 (en) Method for generating compound thin film pattern using high-intensity focused ion beam
RU2135633C1 (en) Method of vacuum deposition of thin films
JP3546370B2 (en) Ion beam neutralization method
JPH0745595A (en) Patterning of semiconductor device
JP2890680B2 (en) Semiconductor device manufacturing equipment
JPS63271856A (en) Ion beam vapor deposition device
DE1917406A1 (en) Process and device for material vapor deposition
JPS62229844A (en) Thin-film deposition method
JP2890431B2 (en) Superconducting circuit manufacturing method
JPS6042832A (en) Ion beam device
JPH05299716A (en) Focused ion beam apparatus
Yamada Applications of gas cluster ion beams for materials processing
Hosaka et al. Study on irradiation effects by femtosecond-pulsed extreme ultraviolet in resist materials
JPH04272640A (en) Focused ion beam etching device
JPS63216257A (en) Ion beam device