JPH0244648A - Paste type lead electrode - Google Patents

Paste type lead electrode

Info

Publication number
JPH0244648A
JPH0244648A JP63194100A JP19410088A JPH0244648A JP H0244648 A JPH0244648 A JP H0244648A JP 63194100 A JP63194100 A JP 63194100A JP 19410088 A JP19410088 A JP 19410088A JP H0244648 A JPH0244648 A JP H0244648A
Authority
JP
Japan
Prior art keywords
paste
styrene
binder
type lead
butadiene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63194100A
Other languages
Japanese (ja)
Inventor
Tsutomu Iwaki
勉 岩城
Yoshio Moriwaki
良夫 森脇
Shigeo Kondo
繁雄 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP63194100A priority Critical patent/JPH0244648A/en
Publication of JPH0244648A publication Critical patent/JPH0244648A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To reduce volume change in charge-discharge and to obtain a long life paste type lead-acid battery by using styrene-ethylene-butadiene-styrene copolymer as a thermoplastic elastomer for binder. CONSTITUTION:Lead powder compound, sulfuric acid, water, and thermoplastic elastomer are kneaded to form paste. The paste is filled in a lead alloy grid, then aged and dried to form an unformed positive electrode. By using styrene- ethylene-butadiene-styrene copolymer as the elastomer for binder, volume change caused by expansion and shrinkage of the active material in charge-discharge is reduced and the capacity of the active material is stabilized for a long time. A paste type lead-acid battery having high capacity and long life is obtained.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、鉛蓄電池用ペースト式鉛電極に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a paste-type lead electrode for lead-acid batteries.

従来の技術 ・ ペースト式鉛電池は、蓄電池のなかで最も低廉で比
較的高性能であり、自動車をはじめ各種ボータプル機器
などに広く使われている。
Conventional technology Paste type lead batteries are the least expensive and relatively high-performance storage batteries, and are widely used in automobiles and various voltaic devices.

ペースト式鉛電極は、通常、鉛粉化合物に水、希硫酸な
どを加えて練合し、得られた鉛ペーストを船台金製の支
持体に練塗して充填し、熟成、乾燥工程を経て得られる
。この場合加える水の量や硫酸の濃度によってペースト
式電極の強度に差が生じ、軟ペーストによる電極は、利
用率が大で高放電特性の点で優れているが、充放電サイ
クル寿命は良くない、一方の硬ペーストの場合ではその
逆で利用率や高放電特性の点では劣るが、充放電サイク
ル寿命は良くなる。したがって、前者は主に自動車用に
、後者は据置用やポータプル機器用などに使われている
Paste-type lead electrodes are usually made by mixing a lead powder compound with water, dilute sulfuric acid, etc., applying the resulting lead paste to a support made of sill metal, filling it, and then going through an aging and drying process. can get. In this case, the strength of paste electrodes varies depending on the amount of water added and the concentration of sulfuric acid, and electrodes using soft paste have a high utilization rate and are superior in terms of high discharge characteristics, but the charge/discharge cycle life is not good. On the other hand, in the case of hard paste, the opposite is true; the utilization rate and high discharge characteristics are inferior, but the charge/discharge cycle life is improved. Therefore, the former is mainly used for automobiles, and the latter for stationary and portable devices.

しかし、いずれにしても寿命については、これも蓄電池
として広く使われてニッケルーカドミウム電池に比べる
とかなり劣る。そこで寿命を改良するためにペースト中
への添加剤が試みられている。たとえば、無機質ではケ
イそう土、アルミナ、硫酸カルシウム、ケイ酸カルシウ
ムなどであり、有機質としてはポリエチレン、ポリスチ
ロール、ポリ塩化ビニル、フッソ樹脂などの結着剤があ
げられる。
However, in any case, their lifespan is considerably inferior to that of nickel-cadmium batteries, which are also widely used as storage batteries. Therefore, attempts have been made to add additives to the paste in order to improve its life. For example, inorganic materials include diatomaceous earth, alumina, calcium sulfate, and calcium silicate, and organic materials include binders such as polyethylene, polystyrene, polyvinyl chloride, and fluorocarbon resin.

発明が解決しようとする課題 ペースト式鉛電極の長寿命化のために検討されてきた結
着剤には、他の電極と同様に少量の添加で強い結着強度
を有すること、化学的に安定であること、電池反応を阻
害しないことなどが要求される。しかし、従来の結着剤
を用いた電極は、結着剤が少量では充放電の繰返しによ
って膨潤さらには活物質の脱落等を生じ、′FIi極の
性能低下が認められ、多量に用いると長期間使用の安定
性は向上するが、本来の電池反応を阻害することによる
容量低下が認められる。したがって、使用する結着剤の
改善によって長期間にわたって安定に、優れた電池性能
を得ることが1つのアプローチの方法として重要である
。 これまでの結着剤ではこのように優れた性能で長寿
命を有するものがなく、本発明は、従って高性能で長寿
命のペースト式鉛電極を提供することを目的とする。
Problems to be Solved by the Invention The binders that have been studied to extend the lifespan of paste-type lead electrodes include the ability to have strong binding strength with a small amount of addition, similar to other electrodes, and to be chemically stable. It is required that the battery reaction be not inhibited. However, in electrodes using conventional binders, if the binder is used in a small amount, repeated charging and discharging causes swelling and the active material falls off, resulting in a decrease in the performance of the 'FIi electrode. Although the stability of use over a period of time is improved, a decrease in capacity is observed due to inhibition of the original battery reaction. Therefore, it is important as an approach to stably obtain excellent battery performance over a long period of time by improving the binder used. No existing binder has such excellent performance and long life, and the object of the present invention is therefore to provide a paste-type lead electrode with high performance and long life.

課題を解決するための手段 本発明は、熱可塑性エラストマーを結着剤として用いる
ことを特徴とするペースト式鉛電極である。熱可塑性エ
ラストマーとしては、スチレン系共重す体、特にスチレ
ン−エチレン−ブタジエン−スチレン共重合体(5RB
S )であることが好ましい。その添加量としては、鉛
活物質に対し1〜20重僅%であることが好ましい。な
お、熱可塑性エラストマーとフッソ樹脂などの他の樹脂
を併用した結着剤も有効である。
Means for Solving the Problems The present invention is a paste-type lead electrode characterized by using a thermoplastic elastomer as a binder. Examples of thermoplastic elastomers include styrene copolymers, particularly styrene-ethylene-butadiene-styrene copolymers (5RB
S ) is preferred. The amount added is preferably 1 to 20% by weight based on the lead active material. Note that a binder that uses a thermoplastic elastomer and other resins such as fluorocarbon resin in combination is also effective.

作用 ペースト式鉛電極は、充放電により活物質が膨張°、収
縮する。この体積変化をうまく緩和して電極としての機
能を向上させるために弾性の著しい熱可塑性エラストマ
ーを結着剤として用いることが効果的であることが明ら
かになった。すなわち熱可塑性エラストマーを結着剤と
して用いるとこのような条件下でも少量の添加で長期間
安定に性能が保たれることが明らかになった。これまで
のポリエチレン、ポリスチロール、ポリ塩化ビニルそれ
にフッソ樹脂などの結着剤では一応の効果はあったが、
優れた性能を有するものがなかった。
In the active paste type lead electrode, the active material expands and contracts during charging and discharging. It has been found that it is effective to use a highly elastic thermoplastic elastomer as a binder in order to effectively alleviate this volume change and improve the function as an electrode. In other words, it has been revealed that when a thermoplastic elastomer is used as a binder, performance can be stably maintained for a long period of time even under such conditions with the addition of a small amount. Conventional binders such as polyethylene, polystyrene, polyvinyl chloride, and fluorocarbon resin have been somewhat effective, but
None had excellent performance.

また熱可塑性エラストマーとしては種々の材料が知られ
ているが、スチレン−ブタジェン共重合体(SBS)、
スチレン−イソプレン共重合体(SIS)などのスチレ
ン系共重合体、特にスチレン−エチレン−ブタジエン−
スチレン共重合体(SEBS)であることにより優れた
特性を長期にわたって発押できることがわかった。
Various materials are known as thermoplastic elastomers, including styrene-butadiene copolymer (SBS),
Styrenic copolymers such as styrene-isoprene copolymers (SIS), especially styrene-ethylene-butadiene-
It was found that by using styrene copolymer (SEBS), excellent properties could be maintained over a long period of time.

実施例 以下、本発明をペースト式鉛正極に適用した場合を実施
例として述べる。
EXAMPLE Hereinafter, a case where the present invention is applied to a paste-type lead positive electrode will be described as an example.

鉛粉化合物1kgに対して比重1.4の硫酸70m1.
水140m1それに市販のラテックス溶液状の熱可塑性
エラストマーであるスチレン−ブタジェン共重合体(S
BS)、スチレン−イソプレン共重合体(SIS)スチ
レン−エチレン−ブタジエン−スチレン共重合体(SE
BS)をそれぞれ混合し練合してペースト化した。これ
を幅110mm、高さ120mm、厚さ1.4mmの鉛
合金製格子体に充填し、熟成後130 ’Cで乾燥を行
い、乾燥後のペースト重量が約50gの未化成正極を得
る。この際に熱可塑性エラストマーの添加量は鉛活物質
に対しそれぞれ1,3.5.10.20重量%になるよ
うに調整した。この電極をこれまでの結着剤を用いた電
極と性能の比較を行なった。 すなわち、このようにし
て得られた正極6枚と公知の負極8枚とを、ガラスマッ
ト付きバルブ系セパレータを用いて電池を構成し、化成
した。電解液としては、化成終了後に比重が1゜26に
なるように硫酸の濃度を調整した。なお、特性について
は、熱可塑性エラストマーとして最も優れた容量維持率
を示したスチレン−エチレン−ブタジエン−スチレン共
重合体(SRBS)を用いた電池の結果を例として示す
。結着剤の添加量にしたがってそれぞれ電池A−1、A
−3、A−5、A−10、A−20とする。比較のため
に、ポリエチレンおよびフッソ樹脂を結着剤として用い
た電池をそれぞれB−1〜B−20、C−1〜C−20
として加えた。
70 ml of sulfuric acid with a specific gravity of 1.4 per 1 kg of lead powder compound.
140 ml of water and styrene-butadiene copolymer (S), a thermoplastic elastomer in the form of a commercially available latex solution.
BS), styrene-isoprene copolymer (SIS), styrene-ethylene-butadiene-styrene copolymer (SE
BS) were mixed and kneaded to form a paste. This was filled into a lead alloy grid having a width of 110 mm, a height of 120 mm, and a thickness of 1.4 mm, and after ripening, it was dried at 130'C to obtain an unformed positive electrode having a paste weight of about 50 g after drying. At this time, the amount of the thermoplastic elastomer added was adjusted to be 1, 3, 5, 10, and 20% by weight, respectively, based on the lead active material. The performance of this electrode was compared with that of a conventional electrode using a binder. That is, six positive electrodes thus obtained and eight known negative electrodes were used to form a battery using a bulb-type separator with a glass mat, and chemically formed. As for the electrolytic solution, the concentration of sulfuric acid was adjusted so that the specific gravity would be 1°26 after completion of chemical formation. Regarding the characteristics, the results of a battery using styrene-ethylene-butadiene-styrene copolymer (SRBS), which exhibited the best capacity retention rate among thermoplastic elastomers, will be shown as an example. Batteries A-1 and A, respectively, depending on the amount of binder added.
-3, A-5, A-10, and A-20. For comparison, batteries using polyethylene and fluorocarbon resin as binders were labeled B-1 to B-20 and C-1 to C-20, respectively.
Added as.

通常の充放電の条件としては、充電は、室温O6IC(
10時間率)で130%まで、放電は30℃で0.2C
(5時間率)、放電深度60%とした。
Normal charging and discharging conditions include charging at room temperature O6IC (
10 hours rate) to 130%, discharge is 0.2C at 30℃
(5 hour rate), and the depth of discharge was 60%.

そして、25サイクルごとに終止電圧1.7Vまでの放
電を行ない容量の確認を行なった。この条件で充放電サ
イクルを繰り返した。
Then, the battery was discharged to a final voltage of 1.7 V every 25 cycles to confirm the capacity. Charge/discharge cycles were repeated under these conditions.

初期容量はA−1〜A−5のように比較的結着剤の少な
い領域では24〜26Ahであり、B、Cの電池も同様
の傾向を示した。A−10、B −10、では20〜2
2Ah、C−10では19Ah%A−20、B−20、
では、さらに減少して16〜18Ah、C−20では1
5Ahであった。
The initial capacity was 24 to 26 Ah in regions with relatively little binder, such as A-1 to A-5, and batteries B and C showed a similar tendency. A-10, B-10, 20-2
2Ah, 19Ah% for C-10 A-20, B-20,
In this case, it further decreases to 16-18Ah, and in C-20 it decreases to 16-18Ah.
It was 5 Ah.

以下これら初期の容量を100として充放電サイクルに
よる容量維持率を次長に示す。
Below, the initial capacity is taken as 100, and the capacity retention rate through charge/discharge cycles is shown below.

(以下余白) 各電池のサイクルと容量維持率(%) こ分結果から、これまでの結着剤による電池BおよびC
では、添加量が少ないと容量低下が大きく、結着剤の量
が多いと初期の放電容量が少ないので問題である。これ
に対して熱可塑性エラストマーであるスチレン−エチレ
ン−ブタジエン−スチレン共重合体(SRBS)を用い
た電池はこれらの中で最も優れた性能t!:400サイ
クル程度の試験範囲内では長期間安定して維持している
、その他のスチレン−ブタジェン共重合体(SBS ’
)、スチレン−イソプレン共重合体(SIS)ではやや
劣るが、それでも電池BやCより優れていた。
(Left below) Cycles and capacity retention rate (%) of each battery Based on the results, batteries B and C using the binder so far
However, if the amount of binder added is small, the capacity decreases greatly, and if the amount of binder is large, the initial discharge capacity is small, which is a problem. On the other hand, batteries using styrene-ethylene-butadiene-styrene copolymer (SRBS), which is a thermoplastic elastomer, have the best performance t! : Other styrene-butadiene copolymers (SBS'
) and styrene-isoprene copolymer (SIS) were slightly inferior, but were still superior to batteries B and C.

また、これまでの結着剤による電極の多くは、添加量が
少ないとペースト式鉛電極から脱落が見られ、逆に結着
剤量が多いと放電容量が少ないことが確認できた。これ
に対して熱可塑性エラストマーであるスチレン−ブタジ
ェン共重合体(SBS)、スチレン−イソプレン共重合
体(SIS)スチレン−エチレン−ブタジエン−スチレ
ン共重合体(SEBS)を用いた電極はこれらの中で最
も優れた性能を400サイクル程度の試験範囲内では長
期間安定して維持しており、その中でもスチレン−エチ
レン−ブタジエン−スチレン共重合体(SEBS)を用
いた電極は特に優れていた。
In addition, it was confirmed that in many conventional electrodes using binders, if the amount of binder added was small, the paste-type lead electrodes would fall off, and conversely, if the amount of binder was large, the discharge capacity would be low. On the other hand, electrodes using thermoplastic elastomers such as styrene-butadiene copolymer (SBS), styrene-isoprene copolymer (SIS), and styrene-ethylene-butadiene-styrene copolymer (SEBS) The best performance was stably maintained over a long period of time within the test range of about 400 cycles, and among these, the electrode using styrene-ethylene-butadiene-styrene copolymer (SEBS) was particularly excellent.

なお、上記実施例では支持体として格子を用いた例を示
したが エキスバンドメタルや金属繊維などを用いた場
合にも有効である。また、結着剤の添加量については、
1〜20重量%程度までの添加が有効であるが初期容量
を勘案すると3〜10%程度が好ましい。また、本実施
例では熱可塑性エラストマーとしてラテックス状の溶液
を用いたが、粉末を用いて後で加熱により溶融させても
良い。
In the above embodiment, a grid was used as the support, but it is also effective to use expanded metal, metal fiber, or the like. Regarding the amount of binder added,
It is effective to add up to about 1 to 20% by weight, but in consideration of the initial capacity, about 3 to 10% is preferable. Further, in this example, a latex-like solution was used as the thermoplastic elastomer, but a powder may be used and later melted by heating.

発明の効果 以上のように本発明のペースト式鉛電極は、結着剤とし
て熱可塑性エラストマー、特にスチレン系共重合体、好
ましくはスチレン−エチレン−ブタジエン−スチレン共
重合体(5RBS )を用いるものであり、これにより
優れた性能を長期間安定に発揮することができる。
Effects of the Invention As described above, the paste type lead electrode of the present invention uses a thermoplastic elastomer, particularly a styrene copolymer, preferably a styrene-ethylene-butadiene-styrene copolymer (5RBS) as a binder. This allows for excellent performance to be demonstrated stably over a long period of time.

Claims (1)

【特許請求の範囲】 (1)熱可塑性エラストマーを結着剤として用いること
を特徴とするペースト式鉛電極。(2)熱可塑性エラス
トマーがスチレン系共重合体であり、好ましくはスチレ
ン−エチレン−ブタジエン−スチレン共重合体(SEB
S)であることを特徴とする請求項1記載のペースト式
鉛電極。 (3)電極中の熱可塑性エラストマーの含有量が鉛活物
質に対して1〜20重量%である請求項1記載のペース
ト式鉛電極。
[Claims] (1) A paste-type lead electrode characterized in that a thermoplastic elastomer is used as a binder. (2) The thermoplastic elastomer is a styrene copolymer, preferably a styrene-ethylene-butadiene-styrene copolymer (SEB
The paste-type lead electrode according to claim 1, characterized in that it is S). (3) The paste type lead electrode according to claim 1, wherein the content of the thermoplastic elastomer in the electrode is 1 to 20% by weight based on the lead active material.
JP63194100A 1988-08-03 1988-08-03 Paste type lead electrode Pending JPH0244648A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63194100A JPH0244648A (en) 1988-08-03 1988-08-03 Paste type lead electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63194100A JPH0244648A (en) 1988-08-03 1988-08-03 Paste type lead electrode

Publications (1)

Publication Number Publication Date
JPH0244648A true JPH0244648A (en) 1990-02-14

Family

ID=16318947

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63194100A Pending JPH0244648A (en) 1988-08-03 1988-08-03 Paste type lead electrode

Country Status (1)

Country Link
JP (1) JPH0244648A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5233148A (en) * 1990-11-29 1993-08-03 Mitsubishi Denki K.K. Electrical discharge machine with machining gap voltage control
WO2010032785A1 (en) * 2008-09-22 2010-03-25 日本ゼオン株式会社 Electrode for lead storage battery and lead storage battery
US8974965B2 (en) 2008-03-24 2015-03-10 Zeon Corporation Electrodes for a lead acid battery and the use thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5233148A (en) * 1990-11-29 1993-08-03 Mitsubishi Denki K.K. Electrical discharge machine with machining gap voltage control
US8974965B2 (en) 2008-03-24 2015-03-10 Zeon Corporation Electrodes for a lead acid battery and the use thereof
WO2010032785A1 (en) * 2008-09-22 2010-03-25 日本ゼオン株式会社 Electrode for lead storage battery and lead storage battery
JP5494487B2 (en) * 2008-09-22 2014-05-14 日本ゼオン株式会社 Lead-acid battery electrode and lead-acid battery
US9166231B2 (en) 2008-09-22 2015-10-20 Zeon Corporation Lead acid battery electrode comprising a porous carbon material layer and a lead acid battery

Similar Documents

Publication Publication Date Title
JPH0244648A (en) Paste type lead electrode
JPH1069900A (en) Pole plate for lead-acid battery
JPS59173961A (en) Organic electrolyte secondary battery
JPS63152868A (en) Lead-acid battery
JPH07312225A (en) Sealed lead-acid battery
JPS63190252A (en) Lead storage battery
JPS6357913B2 (en)
JPS59169075A (en) High temperature type battery
JPH07147160A (en) Lead-acid battery
JPS61264675A (en) Positive plate of clad type lead-acid battery
JP2004199949A (en) Manufacturing method of electrode plate for lead-acid storage battery
JP2001167764A5 (en)
JPH0151024B2 (en)
JP2003223890A (en) Lead accumulator and manufacturing method therefor
JPH0770318B2 (en) Lead acid battery
JPS5933758A (en) Sealed nickel cadmium battery
JPS59180971A (en) Manufacturing method for paste type lead positive electrode plate
JPH01149369A (en) Sealed lead-acid battery
JPH09167619A (en) Plate for lead-acid battery and its manufacture
JPH09129239A (en) Organic electrolytic battery
JPH02158063A (en) Sealed lead-storage battery
JPS5951466A (en) Positive electrode for lead storage battery
JP2003132879A (en) Lead-acid battery
JPS61269869A (en) Clad type sealed lead-acid battery
JPH0355765A (en) Sealed lead storage battery