JPH0244283A - Radiation measuring apparatus - Google Patents
Radiation measuring apparatusInfo
- Publication number
- JPH0244283A JPH0244283A JP19501688A JP19501688A JPH0244283A JP H0244283 A JPH0244283 A JP H0244283A JP 19501688 A JP19501688 A JP 19501688A JP 19501688 A JP19501688 A JP 19501688A JP H0244283 A JPH0244283 A JP H0244283A
- Authority
- JP
- Japan
- Prior art keywords
- radiation
- magnetic field
- radiation sensor
- generated
- current
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000005855 radiation Effects 0.000 title claims abstract description 51
- 238000001514 detection method Methods 0.000 abstract description 12
- 239000004020 conductor Substances 0.000 abstract description 4
- 239000000463 material Substances 0.000 abstract description 2
- 241000238366 Cephalopoda Species 0.000 abstract 1
- 238000000034 method Methods 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 238000005259 measurement Methods 0.000 description 2
- 230000003071 parasitic effect Effects 0.000 description 2
- 239000011324 bead Substances 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
Landscapes
- Measurement Of Radiation (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明は医療用放射線検査装置当に用いられる放射線測
定装置に関するものである。DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a radiation measuring device used in a medical radiation examination device.
従来の技術
μs来の放射線測定装置としては1例えば特開昭59−
400885号公報に示されたものがある。As a radiation measuring device since the conventional technology μS, for example, Japanese Patent Application Laid-Open No. 1983-1
There is one shown in Japanese Patent No. 400885.
第3図はこの公報に示された放射、線測定積置の放射線
センサから出力を取り出すための構成を示すものであり
、1は放射線センナ、2は電源、3は出力抵抗である。FIG. 3 shows a configuration for extracting the output from the radiation sensor of the radiation and line measurement stack disclosed in this publication, in which 1 is a radiation sensor, 2 is a power source, and 3 is an output resistor.
放射線センサ1に放射線が入射したとき、放射線センサ
1内には放射線のエネルギーに応じた数の電子正孔対が
発生する。放射線センサ1には電源2によりバイアスが
かけられているためこの回、路に放射線センサlに発生
した電子正孔対に比例する、すなわち入射した放射線の
エネルギーに比例する電流が流れる。この電流により抵
抗3に電圧降下が生じ、両端電圧が出力電圧として取り
出される。When radiation is incident on the radiation sensor 1, a number of electron-hole pairs are generated within the radiation sensor 1 according to the energy of the radiation. Since the radiation sensor 1 is biased by the power supply 2, a current proportional to the electron-hole pairs generated in the radiation sensor 1, that is, proportional to the energy of the incident radiation, flows in this circuit. This current causes a voltage drop across the resistor 3, and the voltage across the resistor 3 is taken out as an output voltage.
発明が解決しようとする課題
上記従来の構成では、放射線センサの出力電流は数μへ
以下の微弱な電流であり、この微弱な電流の変化を比較
的安定に得るために、出力抵抗は抵抗値が1にΩ以上の
ものが必要でなる。ところが、この回路には放射線セン
サ1のもつ寄生容量や信号ラインの浮遊容量があり、出
力抵抗の抵抗値を大きくすると回、路の時定数が大きく
なり周波数特性が非常に悪くなる。したがって、押接値
のあまり大きい出力抵抗も使えないことから、精度の良
い安定した検出出力を得られないという課題を有してい
た。Problems to be Solved by the Invention In the above-mentioned conventional configuration, the output current of the radiation sensor is a weak current of several μm or less, and in order to obtain relatively stable changes in this weak current, the output resistance is set to a resistance value. Ω or more is required for 1. However, this circuit has parasitic capacitance of the radiation sensor 1 and stray capacitance of the signal line, and when the resistance value of the output resistor is increased, the time constant of the circuit becomes large and the frequency characteristics become very poor. Therefore, it is impossible to use an output resistor whose pressing value is too large, so there is a problem that a stable detection output with high accuracy cannot be obtained.
本発明は上記課題を解決するもので、精度よくかつ安定
に放射線エネルギーを測定できる放射線測定装置を提供
することを目的とするものである。The present invention solves the above problems, and aims to provide a radiation measuring device that can measure radiation energy accurately and stably.
課題を解決するための手段
上記目的を達成するために本発明の放射線測定装置は、
入射放射線のエネルギーに応じた放射線センサの出力電
流により発生する磁界を、磁界検出素子により検出し、
この磁界検出素子の検出出力により放射線測定出力を得
るものである。Means for Solving the Problems In order to achieve the above object, the radiation measuring device of the present invention has the following features:
A magnetic field detection element detects the magnetic field generated by the output current of the radiation sensor according to the energy of the incident radiation,
Radiation measurement output is obtained from the detection output of this magnetic field detection element.
作用
上記構成により、放射線センサ1に入射する放射線によ
り流れる電流は、磁場として検出されるために出力を得
るための抵抗を必要としないので、この出力抵抗と回路
中の寄生容量成分による周波数特性の劣化がなくなり、
精度の良い検出出力を安定的に得ることが可能となる。Effect With the above configuration, the current flowing due to the radiation incident on the radiation sensor 1 is detected as a magnetic field and does not require a resistance to obtain an output. Therefore, the frequency characteristics due to the output resistance and the parasitic capacitance component in the circuit are No more deterioration,
It becomes possible to stably obtain a highly accurate detection output.
実施例
以下、本発明の放射線装置の一実施について図面を参照
しながら説明する。EXAMPLE Hereinafter, one implementation of the radiation apparatus of the present invention will be described with reference to the drawings.
第1図は本発明の一実施例における放射線測定装置の構
成図を示す回路図である。なお、第1図において第3図
に示した従来の構成を同様のものについては同符号を付
してその詳細な説明を省略する。第1図において、1は
放射線が入射したときに放射線のエネルギーに比例した
電子正孔対を発生スる放射線センサー 2はバイアス用
電源である。第3図に示した構成では放射線センサlの
一端とアースの間に出力抵抗3を挿入していたが、本実
施例では放射線センサ1の一端は直接アースしている。FIG. 1 is a circuit diagram showing the configuration of a radiation measuring device according to an embodiment of the present invention. Components in FIG. 1 that are similar to the conventional configuration shown in FIG. 3 are designated by the same reference numerals, and detailed explanation thereof will be omitted. In FIG. 1, 1 is a radiation sensor that generates electron-hole pairs proportional to the energy of radiation when radiation is incident. 2 is a bias power source. In the configuration shown in FIG. 3, the output resistor 3 is inserted between one end of the radiation sensor 1 and the ground, but in this embodiment, one end of the radiation sensor 1 is directly grounded.
そして出力抵抗3に代えてこの放射線センサー1の一端
とアースとを結合する導体の発生する磁界を測定する出
力素子4を設ける。In place of the output resistor 3, an output element 4 is provided to measure the magnetic field generated by a conductor connecting one end of the radiation sensor 1 and the ground.
第2図は磁界検出素子としての超電導量子干渉素子(S
Q U I D : Superconductl
ng Quantum 1nterference D
evIce)の概略構成を示す平面図である。この5Q
UID4は、超・伝導材料からなる一対の半円状の部材
4 al 4 bをジョセフソン接合X、 Yを介
してその両端を接合し、環状とする。Figure 2 shows a superconducting quantum interference device (S) as a magnetic field detection element.
QUID: Superconductl
ng Quantum 1nterference D
evIce) is a plan view showing a schematic configuration of the evIce. This 5Q
In the UID 4, a pair of semicircular members 4 al 4 b made of a superconducting material are joined at both ends via Josephson junctions X and Y to form an annular shape.
そして、リング部材4aの上部Rからリング部材4bの
下部Sにかけてバイアス電流■。が流れるようにバイア
ス回路(図示せず)に接続する。そし線センサ内に放射
線のエネルギーに応じた電子正孔対が発生し、センサを
含む上回5路に電流が流れ、この電流によって回、路導
体の回りには磁界が発生する。この磁界の強さは、例え
ば主回路を流れる電流が1μAのとき、回路等体から1
Oramの位置で約8 X 10−口Tである。半径5
II1mの検出素子4で約2.6X10〜LIT程度の
精度で測定できる。A bias current ■ is applied from the upper part R of the ring member 4a to the lower part S of the ring member 4b. Connect to a bias circuit (not shown) so that the current flows. Electron-hole pairs are generated in the wire sensor according to the energy of the radiation, and current flows through the upper five paths including the sensor, and this current generates a magnetic field around the circuit and path conductors. For example, when the current flowing through the main circuit is 1 μA, the strength of this magnetic field is 1 μA from the circuit etc.
Approximately 8 x 10-mouth T at the Oram location. radius 5
The detection element 4 of II1m can measure with an accuracy of approximately 2.6×10 to LIT.
この精度は素子4の半径により調整できる。したがって
、適当なバイアス電流Icが流れている磁界検出素子に
より放射線により流れる電流が発生する微小な磁場を測
定することができる。しかも、放射線センサ1の一端は
出力検出のための抵抗を介することなく直接アースされ
ているので、周波数特性の良い回路を構成することがで
きる。This accuracy can be adjusted by adjusting the radius of the element 4. Therefore, a minute magnetic field generated by a current flowing due to radiation can be measured by a magnetic field detection element through which an appropriate bias current Ic is flowing. Moreover, since one end of the radiation sensor 1 is directly grounded without passing through a resistor for output detection, a circuit with good frequency characteristics can be constructed.
発明の効果
本発明によれば、簡単な構成でありながら、精度が高く
周波数特性の良い放射線測定装置を構成することができ
その実用的効果は大きい。Effects of the Invention According to the present invention, it is possible to construct a radiation measuring device with high accuracy and good frequency characteristics, although it has a simple configuration, and its practical effects are great.
第1図は本発明における一実施例の放射線測定装置の構
成を示す回路図、第2図は磁界検出素子の構成を示す平
面図、第3図は従来の放射線測定装置の構成を示す回路
図である。
1・・・放射線センサ、2・・・電源、4・・・磁界検
出素子。
代理人の氏名 弁理士 粟野重孝 はか1名/−放’F
7珠亡ンサ
第
図FIG. 1 is a circuit diagram showing the configuration of a radiation measuring device according to an embodiment of the present invention, FIG. 2 is a plan view showing the configuration of a magnetic field detection element, and FIG. 3 is a circuit diagram showing the configuration of a conventional radiation measuring device. It is. 1... Radiation sensor, 2... Power supply, 4... Magnetic field detection element. Name of agent: Patent attorney Shigetaka Awano Haka1/- Ho'F
7 bead death diagram
Claims (1)
線センサと、この放射線センサの出力電流により発生す
る磁界を検出する素子とを備えたことを特徴とする放射
線測定装置。A radiation measuring device comprising: a radiation sensor that outputs a current proportional to the energy of incident radiation; and an element that detects a magnetic field generated by the output current of the radiation sensor.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19501688A JPH0244283A (en) | 1988-08-04 | 1988-08-04 | Radiation measuring apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19501688A JPH0244283A (en) | 1988-08-04 | 1988-08-04 | Radiation measuring apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0244283A true JPH0244283A (en) | 1990-02-14 |
Family
ID=16334129
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP19501688A Pending JPH0244283A (en) | 1988-08-04 | 1988-08-04 | Radiation measuring apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0244283A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001289953A (en) * | 2000-04-03 | 2001-10-19 | Seiko Instruments Inc | Superconducting radioactive ray detector |
-
1988
- 1988-08-04 JP JP19501688A patent/JPH0244283A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001289953A (en) * | 2000-04-03 | 2001-10-19 | Seiko Instruments Inc | Superconducting radioactive ray detector |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0147655B1 (en) | Miniature squid susceptometer | |
CA2083008C (en) | Magnetic field sensing device | |
US4692703A (en) | Magnetic field sensor having a Hall effect device with overlapping flux concentrators | |
Goodman et al. | Superconducting instrument systems | |
JPH1048303A (en) | Detecting coil-integrated squid | |
JP3081902B2 (en) | Magnetic field detection circuit | |
US4339715A (en) | Carrier-domain magnetometers with compensation responsive to variations in operating conditions | |
AU598700B2 (en) | Superconducting magnetometer | |
US20060022671A1 (en) | An apparatus and method for transmission and remote sensing of signals from integrated circuit devices | |
JP3205021B2 (en) | Pickup coil | |
EP0349168A2 (en) | Circuit element measuring apparatus | |
JPH0244283A (en) | Radiation measuring apparatus | |
JPH08220201A (en) | Superconducting quantum interferometer | |
JPH0943328A (en) | Superconductive magnetic detecting device | |
JPS59126961A (en) | Measuring device of large current | |
Matlashov et al. | Electronic gradiometer using HT/sub c/SQUIDs with fast feedback electronics | |
JPH0641174Y2 (en) | Voltage-current measuring device | |
SU838765A1 (en) | Device for measuring voltage-current characteristics of neavy-current superconductors | |
Ruede et al. | Readout system for NanoSQUID sensors using a SQUID amplifier | |
JPH07294615A (en) | Squid magnetic flux meter | |
Granata et al. | Integrated DC SQUID magnetometers in multichannel systems for biomagnetic imaging | |
Gupta et al. | A circuit and five probe resistivity method for measuring pulse I–V characteristics of superconductors | |
JPH02296157A (en) | Ac-loss measuring apparatus | |
SU879487A1 (en) | Device for measuring infralow voltages | |
JPH0227280A (en) | Superconductor quantum interference element |